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Deep convolutional neural networks (CNNs), such as U-
Nets (1), can perform semantic segmentation of medi-

cal images, including three-dimensional (3D) CT data (2). 
However, 3D image volumes are challenging to analyze 
given their large size and their associated large memory 
footprint, which limits the implementation of 3D archi-
tectures on commercially available graphics processing 
units (GPUs) to shallow designs (3,4). Although previous 
approaches have analyzed image volumes as a series of two-
dimensional sections (5–7), this process irrevocably dis-
rupts the 3D content and/or information. Further, 3D ap-
proaches downsample and/or crop image volumes to keep 
3D information intact (3,4). However, cropping reduces 
the extent of information available to the network and can 
lead to multiple inferences that may require postprediction 
combination, whereas downsampling is a lossy operation 
that decreases image fidelity, thereby limiting the accuracy 
of the resulting segmentation (8). Although alternative im-
age representations, such as point clouds (9,10) and sparse 
tensors (11) exist, there is no obvious way to apply CNNs 
to these data structures.

In this study, we explored an octree-based repre-
sentation for 3D CT images that provides high data 

compression without sacrificing 3D content or spatial 
resolution. The approach maintains a grid structure that 
enables application of convolution-based neural net-
work architectures. To adapt the framework to medical 
imaging, we introduced an intensity tolerance param-
eter in the octree subdivision algorithm to govern image 
compression. We found that across a range of compres-
sion levels, the octree-based representation preserved 
image and segmentation features better than spatial 
downsampling. Further, the octree representation en-
abled semantic segmentation with a 3D U-Net archi-
tecture at the native image resolution, which improved 
segmentation accuracy, especially at the object border. 
We demonstrated these findings in semantic segmenta-
tion of left ventricular (LV) and left atrial (LA) blood 
pools on clinical cardiac CT angiograms.

Materials and Methods

Dataset
Electrocardiographically gated end-systolic and end-
diastolic cardiac CT angiographic studies from 100 
patients obtained between June 2012 and June 2018 
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Purpose: To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation ac-
curacy of three-dimensional images.

Materials and Methods: Cardiac CT angiographic examinations from 100 patients (mean age, 67 years 6 17 [standard deviation]; 60 
men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) 
blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error 
[RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with 
spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs 
with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of 
octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.

Results: Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice 
coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had 
lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation 
improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets 
with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).

Conclusion: Octree-based representations can reduce the memory footprint and improve segmentation border accuracy.
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section thickness of 0.625 mm (IQR, 0.5–0.625 mm). The 
typical 3D image volume had a matrix size of 512 3 512 3 
256 voxels (left-right, anterior-posterior, and craniocaudal, 
respectively).

Image Segmentation
ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) (13) 
was used by trained undergraduate researchers (A.C. and 
A.R.) to segment the left side of the heart at the native resolu-
tion with two different classes labeled as (a) LV and (b) LA, 
including the LA appendage. For each patient, end-diastolic 
and end-systolic frames were segmented, leading to 200 im-
age volumes with corresponding semantic segmentations. 
Segmentations were visually confirmed or corrected by a ra-
diology resident (D.M.V.), who had 7 years of experience in 
cardiac image segmentation.

Dataset Preprocessing
After segmentation, all images and segmentations were resa-
mpled to a 256 3 256 3 256 volume with a 0.625-mm 
isotropic resolution spanning 160 mm, which was centered 
at the center of the LV blood pool to standardize neural net-
work evaluation. Patients were divided into five folds, each 
with 20 patients (20 end-diastolic and 20 end-systolic im-
ages). Fivefold cross-validation (160 training and 40 valida-
tion end-diastolic and end-systolic images) was performed, 
and each fold was used once as the set of validation images. 
This sample was successfully used to train a CNN to evalu-
ate cardiac function and obtain short- and long-axis imag-
ing views on electrocardiographically gated cine CT images 
(12).

Implementation of Octree Image Compression
A 3D octree-based architecture, OctNet (14), was modi-
fied to compress medical image volumes prior to semantic 
segmentation by using a user-defined intensity tolerance t. 
Octrees exploit similarity among neighboring voxels to gen-
erate a memory-efficient, quickly accessible, hierarchic par-
titioning of the image volume (15). Medical images rarely 
have identical neighboring intensity values but frequently 
have regions with nearly homogeneous intensity. Therefore, 
we introduced a user-defined intensity tolerance parameter 
t, which controls the compression (and memory footprint) 
of the octree representation. An increasing t value leads to 
more compression but higher loss of image and segmenta-
tion features (Fig 1). The ability of the octree representation 
to preserve image features in our dataset was compared with 
conventional spatial downsampling at various levels of im-
age compression (Fig 2).

Octree-based Semantic Segmentation
Octree images were generated at desired memory footprints 
through a binary search of t. The ability to specify the mem-
ory footprint of an octree representation allowed comparison 
of OctNet performance with conventional U-Net segmenta-
tions of spatially downsampled images.

were anonymously analyzed as part of an institutional re-
view board–approved retrospective study with a waiver of 
informed consent (study number 191797) in accordance 
with the Health Insurance Portability and Accountability 
Act. This cohort of images was previously used to develop a 
machine learning approach to segment the left ventricle and 
atria and estimate short- and long-axis imaging planes (12). 
Studies were included on the basis of the availability of expert 
segmentations.

Briefly, patients were 67 years 6 16 (standard deviation) 
old, and there were 60 men. Studies were obtained for pre-
operative assessment of transcatheter aortic valve replace-
ment (n = 39), suspected coronary artery disease (n = 38), 
and preoperative assessment of pulmonary vein ablation (n 
= 23).

Image Acquisition
Images were acquired with three different CT systems: the 
Toshiba Aquilion One (Canon Medical Systems) (n = 47), 
GE Revolution (GE Healthcare) (n = 41), and Siemens So-
matom Force (Siemens Healthcare) (n = 12). Iohexol (Om-
nipaque) contrast-enhanced intensity in the LV was 512 HU 
6 147 and was greater than 275 HU for all patients.

The median field-of-view diameter in the x–y dimension 
was 200 mm (interquartile range [IQR], 190–220 mm) with 
a median in-plane voxel spacing of 0.39 mm (IQR, 0.37–0.43 
mm). Along the z dimension, the median field of view was 
160 mm (IQR, 120–320 mm) with a median reconstructed 

Abbreviations
CNN = convolutional neural network, FVD = feature vector depth, 
GPU = graphics processing unit, IQR = interquartile range, LA = 
left atrium, LV = left ventricle, RMSE = root mean square error, 3D 
= three dimensional 

Summary
Octrees can reduce the memory footprint of three-dimensional 
imaging volumes with minimal loss of image quality through a user-
controlled intensity tolerance parameter that enables convolutional 
neural network segmentation at higher spatial resolutions and with 
deeper feature vectors, leading to improved boundary segmentation 
performance.

Key Points
 n Neural network–based semantic segmentation of three-dimension-

al (3D) images with a high spatial resolution and a large field of 
view is constrained by the memory footprint of the input images 
and the associated computations within the network.

 n Octree representation was adapted for use in medical imaging by 
introducing an intensity tolerance parameter to control image 
compression; compared with spatial downsampling, octrees im-
proved the representation of 3D imaging volumes.

 n Semantic segmentation with an octree-based convolutional neural 
network increased the accuracy of predicted segmentations, par-
ticularly at boundaries between structures.

Keywords
CT, Cardiac, Segmentation, Supervised Learning, Convolutional 
Neural Network (CNN), Deep Learning Algorithms, Machine 
Learning Algorithms
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limited FVD (FVD = 4). Model 3 doubled the FVD (FVD 
= 8) by decreasing the input image size (3D array: 160 3 
160 3 160 voxels, memory footprint: 24%). Models 5 and 
7 further downsampled the image volume to memory foot-
prints of 12.5% and 5%, respectively, to achieve higher FVDs 
(FVD = 12 and 20, respectively.) OctNet models (models 2, 
4, 6, and 8) operate on images at the native 3D image volume 
(256 3 256 3 256 array) but achieve the same FVD as the 
U-Nets by varying t.

CNN Training
For all models, 10 random augmentations were generated for 
each image before training. Translations ranged from −10% to 
10% of the field of view in the x, y, and z directions, and af-
fine scalings between −10% and 10% were applied. An Adam 
optimizer was used to minimize categorical cross-entropy loss 

CNN Architecture
Traditional U-Net architectures have proven successful in 
performing image segmentation. However, for 256 3 256 3 
256 image volumes, a 3D conventional U-Net with a feature 
vector depth (FVD) of 16 at the input layer (and doubling 
after each downsampling step) requires approximately 100 
GB of GPU memory, which is unrealizable on most GPUs 
(typical memory range, 8–16 GB).

Therefore, we implemented four different 3D networks 
(eight models in total) that trade off image compression with 
the FVD, as shown in Table 1 and Figure 3. All the networks 
required the same memory at runtime (approximately 10 
GB), which allowed for training on a single GPU. Model 1 
was a 3D U-Net with minor (approximately 1.3 times) spa-
tial downsampling (input 3D array: 192 3 192 3 192 vox-
els, memory footprint: 42% of the original array) but a very 

Figure 1: Octrees enable compressed image representation while maintaining image and segmentation quality. (A) Octree compression with an intensity threshold τ 
can decrease the memory (Mem) footprint while avoiding substantial image degradation. In this example, τ = 200 HU leads to 15% memory use with minimal image (root 
mean square error [RMSE], 0.98 HU) and segmentation (left ventricular [LV] Dice coefficient, 0.979; LV border Dice coefficient [LV bDice], 0.884) errors. (B) To achieve 
the desired image memory footprint, τ thresholds were identified through a binary search, with increasing τ values leading to more significant memory savings (a lower 
memory footprint).

Figure 2: Study schematic. Image volumes were compressed by using either the octree approach or conventional downsampling. Each volume was then used to train 
a semantic segmentation convolutional neural network. In addition to losing boundary information in the image during downsampling, spatial downsampling leads to post-
segmentation upsampling, which can lead to errors in segmentation. The octree representation can avoid these limitations using an intensity tolerance, τ. Res. = resolution.
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azon Web Services instances with NVIDIA (Santa Clara) Tesla 
V100 GPUs with Python 3.7 were used for all experiments. A 
GitHub repository with modified octree-based model is avail-
able at https://github.com/ucsd-fcrl/med-img-octnet-adaptation.

of the predicted segmentation. Each model was trained for 100 
epochs, with a learning rate of 0.0001 and a learning rate decay 
of 0.1 every 15 epochs after the 30th epoch. These values were 
observed to result in consistent training results across folds. Am-

Table 1: CNN Segmentation with OctNet and U-Net

Model Arch. FVD Image Size
Intensity Threshold  
 t (HU)

Image Volume Memory 
 Footprint (%)

Border Dice Coefficient

LV Label LA Label

1 U-Net 4 1923 … 42.2 0.516 (0.381–0.592) 0.525 (0.453–0.578)
2 OctNet 4 2563 59 (46–72) 42.1 (41.6–42.5) 0.325 (0.200–0.484) 0.408 (0.285–0.540)
3 U-Net 8 1603 … 24.4 0.568 (0.453–0.617) 0.58 (0.512–0.641)
4 OctNet 8 2563 102 (84–121) 23.9 (23.5–24.3) 0.612 (0.514–0.694)* 0.636 (0.564–0.697)†

5 U-Net 12 1283 … 12.5 0.579 (0.516–0.637) 0.592 (0.550–0.647)
6 OctNet 12 2563 187 (150–225) 12.4 (12.0–12.8) 0.593 (0.475–0.654) 0.639 (0.544–0.692)†

7 U-Net 20 963 … 5.3 0.542 (0.495–0.579) 0.566 (0.527–0.603)
8 OctNet 20 2563 300 (300–375) 6.9 (6.5–7.3) 0.453 (0.388–0.530) 0.533 (0.462–0.588)

Note.—CNN segmentation with octree compression (OctNet) was compared with a U-Net approach with spatial downsampling over a 
range of image volume compression and spatial downsampling. Median values with interquartile ranges in parentheses are reported for the 
intensity threshold, memory footprint, and border Dice value. Arch. = architecture, CNN = convolutional neural network, FVD = feature 
vector depth at highest level, LA = left atrium, LV = left ventricle, t = threshold used by octree for image compression.
* Model 4 results were higher than those of other models (P , .05) at pairwise comparison.
† Respectively, model 4 and 6 results were comparable with (P = .37) and higher than (P , .05) those of the remaining models at pairwise 
comparison.

Figure 3: Three-dimensional (3D) convolutional neural network (CNN) architecture. As outlined in Table 1, we evaluated different combinations 
of input 3D volume (variable D) and feature vector depths (variable F). Although this led to differences in the resulting network, other features of archi-
tecture, such as convolutions (Conv), max pooling, and upsampling steps, were kept constant. ReLU = rectified linear unit.

http://radiology-ai.rsna.org
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honestly significant difference procedure to account for mul-
tiple comparisons. Statistical analysis was performed in MAT-
LAB (MathWorks) by using a significance level of P = .05.

Results

Efficacy of Octree-based Representation
Octree compression enabled image compression while main-
taining high image and segmentation fidelity (Fig 1). Specifi-
cally, compression-decompression of 85% (ie, 15% memory 
footprint) resulted in a minimal image RMSE (0.98 HU) and 
segmentation accuracy (LV Dice coefficient, 0.979; LV border 
Dice coefficient, 0.884) loss.

Across our dataset, octrees enabled compression with lower 
loss of image or segmentation quality, relative to spatial downs-
ampling (Fig 5). For example, 76% compression (24% memory 
footprint) maintained a low median RMSE (0.5 HU), high 
LV Dice coefficient (0.988), and high border Dice coefficient 
(0.935). Further, octree compression had a higher (P , .001) 
performance than spatial downsampling in terms of the RMSE, 
LV Dice coefficient, and border Dice coefficient across the entire 
range of memory values evaluated. For example, octree repre-
sentation with a 12% memory footprint (median RMSE, 1.3 
HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 
0.843) had a higher performance than spatial downsampling 
with the same memory use (128 3 128 3 128 array; median 
RMSE, 13.0 HU [P , .001]; LV Dice coefficient, 0.852 [P , 
.001]; LV border Dice coefficient, 0.310 [P , .001]) as well as 

Assessment of Image Compression and Segmentation 
Quality
The root mean square error (RMSE) measured in Hounsfield 
units with respect to the original image was calculated after im-
ages underwent octree compression-decompression and spatial 
downsampling-upsampling. Because the effects of image com-
pression were expected to be observed primarily at label bound-
aries, the border Dice coefficient of each segmentation label was 
measured in addition to the global Dice coefficient. The border 
Dice coefficient was determined by calculating the percentage of 
correctly labeled boundary pixels (Fig 4), with boundary pixels 
being defined as the 2-pixel perimeter of the labels (and adjacent 
background pixels) in the ground truth segmentation. In addi-
tion, errors in cardiac chamber volume and function (measured 
by using the stroke volume and ejection fraction) were analyzed 
by using the volume in each segmentation label at the two phases 
(end-diastolic and end-systolic) of the cardiac cycle.

Statistical Analysis
The Shapiro-Wilk test was used to test for normality. Nonnor-
mal measures are reported as medians with interquartile ranges 
(first and third quartiles). Friedman test was used to assess sta-
tistical significance across trained models for nonparametric 
measures, given paired patient images. Lin concordance cor-
relation coefficient was used to assess differences in the LV ejec-
tion fraction and stroke volume, and these were compared by 
using Fisher z transformation with multiple-comparison cor-
rection. Pairwise assessment was performed by using the Tukey 

Figure 4: Example of segmentation error metrics. (A) An axial section of the heart and the corresponding ground truth and predicted segmentation from one of the 
patients; model combinations are shown. The Dice coefficient was used to assess overall segmentation accuracy and is illustrated by the fused image (right), with agreement 
shown in white and disagreement in black (in this section, the left ventricular [LV] Dice coefficient = 0.910). (B) Segmentation errors due to the compressed image represen-
tations are expected to occur primarily at the boundary. Therefore, we isolated the boundary of each segmentation and calculated a border Dice score (in this section, the 
LV border Dice coefficient = 0.402).

http://radiology-ai.rsna.org
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downsampling with a larger memory footprint (42%; 192 3 
192 3 192 array; median RMSE, 8.1 HU [P , .001]; LV Dice 
coefficient, 0.887 [P , .001]; LV border Dice coefficient, 0.392 
[P , .001]).

Improvement in CNN-based Semantic Segmentation Border 
Dice Coefficient with Octree Representation
A higher border Dice coefficient was obtained by models that bal-
anced image compression and network complexity (models 3–6 
vs models 1, 2, 7, and 8 in Table 1). Model 4 (OctNet with 24% 
image memory usage) had a higher LV border Dice coefficient 
(0.612) than other models (P , .001 on Friedman test with P , 
.05 on pairwise comparisons). The LA border Dice coefficient was 
not significantly different (P = .37) between model 4 (0.636) and 

model 6 (0.639), but both models had higher performance than 
the remaining models (P , .05 for all pairwise comparisons).

Validation of Global Octree-based Semantic Segmentation 
Performance
In results similar to those found with border Dice coefficients, 
models 3–7 had higher (Table 2, P , .05) global Dice perfor-
mance than models with a very limited FVD (models 1 and 2) 
or very compressed image data (models 7 and 8). The global LV 
Dice coefficient achieved by model 4 (0.929) was higher than 
that of the other models (P , .001 for all pairwise compari-
sons). LA Dice scores were comparable between model 4 and 
model 6 (0.946 vs 0.942; P = .26) and were higher than those 
of the remaining models (P . .05).

Table 2: Global Semantic Segmentation Accuracy for LV and LA Labels, Volumetric Segmentation Errors for the LV, and Re-
sulting CCC

Mod-
el Arch. FVD

Global Dice Coefficient LV Absolute Percentage Error LV CCC

LV Label LA Label EDV ESV SV EF SV EF

1 U-Net 4 0.902 (0.861–0.929) 0.924 (0.902–0.942) 9.1 (2.9–14.5) 11.3 (4.9–19.8) 16.7 (7.3–37.6) 10.3 (3.5–27.8) 0.944* 0.892*
2 Oct-

Net
4 0.828 (0.551–0.889) 0.877 (0.724–0.926) 17.8 (9.3–37.3) 18.0 (7.2–39.1) 36.4 (16.5–68.0) 17.9 (5.3–41.7) 0.616† 0.671†

3 U-Net 8 0.913 (0.885–0.934) 0.936 (0.914–0.949) 7.0 (3.4–10.6) 8.7 (5.2–17.7) 20.7 (8.2–46.2) 13.0 (4.8–41.7) 0.959 0.923

4 Oct-
Net

8 0.929‡ (0.900–0.945) 0.946§ (0.923–0.961) 7.2 (3.0–12.0) 8.7 (4.7–13.6) 17.9 (8.8–35.7) 10.8 (4.1–27.8) 0.975 0.936

5 U-Net 12 0.915 (0.893–0.938) 0.942 (0.919–0.951) 6.4 (3.3–10.2) 8.6 (3.7–14.1) 12.8 (5.3–25.1) 8.3 (2.9–18.8) 0.979 0.969

6 Oct-
Net

12 0.916 (0.883–0.936) 0.942 (0.919–0.956) 7.1 (2.9–11.4) 9.6 (4.3–17.2) 16.6 (5.8–32.9) 9.6 (2.7–29.5) 0.961 0.954

7 U-Net 20 0.906 (0.878–0.927) 0.933 (0.912–0.946) 6.1 (2.7–9.9) 8.8 (4.3–14.3) 15.8 (6.6–27.3) 10.4 (3.7–20.9) 0.980 0.981ǁ

8 Oct-
Net

20 0.879 (0.844–0.904) 0.916 (0.896–0.936) 7.5 (3.1–13.4) 9.1 (5.1–16.1) 18.4 (9.2–33.1) 9.9 (3.9–26.6) 0.956 0.936

Note.—Values are reported as the medians with interquartile ranges in parentheses. Arch. = architecture, CCC = Lin concordance correlation 
coefficient, EDV = end-diastolic volume, EF = ejection fraction, ESV = end-systolic volume, FVD = feature vector depth at highest level, LA = 
left atrium, LV = left ventricle, SV = stroke volume.
* After multiple-comparison adjustment, model 1 results were lower than those of models 2, 5, and 7 (P , .05 for all comparisons).
† After multiple-comparison adjustment, model 2 results were lower than those of all other models (P , .05 for all comparisons).
‡ Model 4 results were higher than those of other models (P , .05 for all pairwise comparisons).
§ Model 4 results were comparable (P = .25) with those of model 6 and higher than those of the remaining models (P , .001) at pairwise 
comparison.
ǁ After multiple-comparison adjustment, model 7 results were higher than those of models 1–4, 6, and 8 (P , .05 for all comparisons).

Figure 5: Comparison of image and segmentation representation between spatial downsampling-upsampling and octree compression. (A) Use of OctNet leads to 
lower (P < .001) image distortion as measured by root mean square error (RMSE) than spatial downsampling-upsampling across all levels of compression. (B) Segmenta-
tion accuracy of the left ventricular (LV) label is higher (P < .001) with octree compression than with spatial downsampling. (C) Octrees preserve boundary segmentation 
Dice coefficients better (P < .001) than spatial downsampling. Boxes represent the interquartile range (25th to 75th percentile), and whiskers depict the 5th- and 95th-
percentile range.
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Aside from the lower performance of model 2, global volu-
metric measures—end-diastolic volume, end-systolic volume, 
stroke volume, and ejection fraction—were not significantly 
different (P . .05). After multiple-comparison adjustment, Lin 
concordance correlation coefficient of the ejection fraction for 
model 7 was higher than that of models 1–4, 6, and 8 (P , .05 
for all comparisons).

Discussion
Semantic segmentation of 3D image volumes is challenging 
because of the cubic relationship between the spatial resolution 
and memory footprint. We demonstrate how an octree-based 
image representation can significantly reduce the memory 
footprint without significant loss of image and segmentation 
fidelity. By preserving regions with significant intensity varia-
tion (ie, anatomic borders), octrees serve to primarily remove 
noise in regions of nearly homogeneous intensity.

The boundary of a segmentation is highly sensitive to com-
pression through spatial downsampling. When incorporated 
into a CNN, octrees improved border and global segmentation 
accuracy. This suggests that octree compression may provide a 
useful framework with which to perform 3D segmentation with-
out loss of thin-section features. Certain image analysis applica-
tions, such as estimating myocardial strain by using the motion 
of the segmented endocardial surface (16–20), are highly sen-
sitive to boundary segmentation accuracy. Octree compression 
and OctNet segmentation would enable automation of this im-
age analysis pipeline.

Although border and global segmentation metrics improved, 
volumetric measures such as stroke volume or ejection frac-
tion estimates did not significantly change. This is likely due to 
the limited effect of border pixels on the overall chamber size 
and confirms that certain metrics (and tasks) can be estimated 
through segmentation of downsampled images.

The optimal compressibility for a given dataset depends on 
both the image and the task. For example, images with sharp 
boundaries are more compressible when using the octree frame-
work than images with smoothly varying intensity. Further, seg-
mentation of small objects (such as coronary arteries) or those 
with highly textured surfaces are expected to be more sensitive 
to compression. Task-specific optimization of the threshold pa-
rameter t is likely needed to translate this approach to other ap-
plications. We evaluated segmentation of the LV and LA blood 
pools. These chambers have different sizes, geometry, and tex-
tures, and we observed higher border Dice coefficient for the LA 
(the smaller but smoother of the two chambers). This motivates 
future work to assess whether octrees can improve segmentation 
of small features such as coronary arteries and calcified lesions.

Our study had several limitations. First, the time-intensive 
nature of the 3D segmentation of left-sided cardiac structures 
limited the size of our dataset. However, differences between the 
octree- and downsampling-based models were consistent across 
different folds, and training with this dataset has previously 
shown clinical utility (12). Further, octree segmentation requires 
preprocessing (to represent the image as an octree), but U-Net 
models also required processing (both presegmentation downs-
ampling and postsegmentation upsampling).

In conclusion, we demonstrated the value of octree-based 
image representation for semantic segmentation of CT im-
ages. Specifically, octree compression preserved image and seg-
mentation features better than spatial downsampling, and an 
octree-based neural network architecture improves Dice coef-
ficients of the border.
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