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Abstract

Cloud-hosted environments offer known benefits when computational needs outstrip affordable 

local workstations, enabling high-performance computation without a physical cluster. What has 

been less apparent, especially to novice users, is the transformative potential for cloud-hosted 

environments to bridge the digital divide that exists between poorly funded and well-resourced 

laboratories, and to empower modern research groups with remote personnel and trainees. Using 

cloud-based proteomic bioinformatic pipelines is not predicated on analyzing thousands of files, 

but instead can be used to improve accessibility during remote work, extreme weather, or working 

with under-resourced remote trainees. The general benefits of cloud-hosted environments also 

allow for scalability and encourage reproducibility. Since one possible hurdle to adoption is 

awareness, this paper is written with the nonexpert in mind. The benefits and possibilities of using 

a cloud-hosted environment are emphasized by describing how to setup an example workflow 

to analyze a previously published label-free data-dependent acquisition mass spectrometry data 

set of mammalian urine. Cost and time of analysis are compared using different computational 

tiers, and important practical considerations are described. Overall, cloud-hosted environments 

offer the potential to solve large computational problems, but more importantly can enable and 

accelerate research in smaller research groups with inadequate infrastructure and suboptimal local 

computational resources.
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INTRODUCTION

Remote hosted computational environments, often referred to as the cloud, allow for 

potentially easier setup, faster processing, and lower cost to build and manage than 

local workstations. Recently, with increased remote work due to pandemic driven 

lockdowns, globalization of scientific research (e.g., globally distributed research consortia), 

and the growth of public data repositories and reanalysis of public data sets, using 

cloud-hosted environments as the computational backbone of research offers increasing 

advantages. Specific to proteomics there are opportunities for increased use of cloud-hosted 

environments, leading to improved accessibility, scalability, and reproducibility. Currently, 

there is a plethora of cloud-based options and different benefits, with real and perceived 

bottlenecks to implementation. These benefits are not limited to utilizing cloud-hosted 

environments for high-throughput large-scale proteomics data, but can also prove essential 

for remote work, remote training, or disaster resilience. To help the reader, a glossary of 

terms is provided.

CLOUD COMPUTING

Depending on the available resources of both investigators and their institution/company, 

there exists a spectrum of local computational capacity. These resources may be available 

via remote access, but many cases exist when this is not possible often due to institutional 

security concerns. By utilizing cloud-hosted environments (Figure 1), computational work 

may continue even when local resources are inaccessible (due to lockdowns, extreme 

weather, inconsistent power, etc.) and provide access to remote colleagues and trainees 

(including those in other countries) that otherwise could be using inadequate local resources. 

Furthermore, using cloud-hosted environments allows users to quickly scale resources 

to accomplish larger tasks at appropriate times, instead of purchasing or upgrading 

local hardware that runs far below its potential most of the time and requires periodic 

system hardware and software maintenance. Depending on the cloud environment, adding 

computational resources can be as simple as “building” a new virtual cluster with the 
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click of a button, using an instance with more cores or memory with an existing image, 

utilizing workflows that automatically scale across a virtual cluster depending on workload, 

or executing a function in a serverless framework. In theory, this means that every researcher 

can have the same computational capacity, regardless of location.

Cloud-based computing can trace a line from the time-sharing of the 1950s1 through the 

packet radio van of 19772 into the modern “cloud” available from public and commercial 

providers. In many regions across the globe, there are federally subsidized resources 

available to researchers through varied application processes. For instance, Jetstream (a 

distributed collaboration of the University of Indiana, University of Texas at Austin, and 

University of Arizona) on the National Science Foundation-funded Extreme Science and 

Engineering Discovery Environment (XSEDE) allows users to start instances using a catalog 

of Linux-based images, many already preconfigured for common research applications, and 

create single multi-CPU and high memory instances or multiple-node virtual clusters, and 

access these by web-based console or remote desktop. Setting up seemingly complicated 

virtual clusters can be accomplished with ease when a tutorial exists, exemplified by 

MAKER on Jetstream,3 Cactus on Amazon Web Services (AWS),4 and Bioconductor on 

AWS.5 The ease of using a service like Jetstream for a cloud novice cannot be understated. 

Similar to XSEDE, other publicly subsidized resources including ACI-REF (Advanced 

Cyberinfrastructure Research and Education Facilitators) Network, ELIXIR (the European 

life-sciences Infrastructure for biological Information), NCI (National Computational 

Infrastructure) Australia, and PRACE (Partnership for Advanced Computing in Europe) 

make free hosted computation time available to researchers. Although the free or low-cost 

nature of these services is preferred, commercial resources are also available and include 

AWS, Microsoft Azure, and Google Cloud, which also have free tiers or trials available. 

These services, both public and commercial, are the backbone of most large computational 

efforts from particle physics to population genomics.

PROTEOMICS IN THE CLOUD

Mass spectrometry-based proteomics is a broad term encompassing many applications6 

used across different biological systems,7 and accordingly has an abundance of software 

tools available.8 Protein inference is made possible by peptide identification following 

database searching of tandem mass spectrometry data.9 Computation in many modern 

protein identification algorithms is performed in RAM with high-speed CPUs and varied 

I/O requirements. These computational requirements mean that high-performance local 

machines are perceived as better suited to database searching, as opposed to cloud-hosted 

environments, though there have been notable cost benefit analyses over the past decade 

showing the benefits of proteomics analysis in cloud-hosted environments.10,11 In contrast, 

nucleic acid sequencing computation has historically relied on massive parallelization on 

modestly appointed motherboards, and therefore was very amenable to cloud applications. 

Despite this historic precedent, with decreasing cloud computing costs there is an ever 

increasing list of cloud-based proteomic solutions including Bolt12 and ionbot.13 More 

importantly, there are software platforms specifically tuned to run proteomic data processing 

and analysis in the cloud, such as Galaxy-P.14,15 Even without being specifically tailored 

to a cloud environment, any software can be used in a cloud-hosted environment, though 
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there may be concerns for licensing. Software that can run in a Linux environment is 

best for services like Jetstream or containers like Singularity, while software that can run 

in Windows may be used for services like AWS or containers like Docker. Examples 

of free or open-source proteomic software that can run in a Linux environment include 

Crux,16 EncyclopeDIA,17 ProteoWizard,18 SearchGUI,19 The OpenMS Proteomics Pipeline 

(referred to as OpenMS or TOPP),20,21 Trans-Proteomic Pipeline (TPP),22,23 X!Tan-dem,24 

and FragPipe.25,26 Other tools that run in Windows but can also be run via command 

line in a Linux environment include MaxQuant,27,28 MetaMorpheus,29 and Spritz.30 In 

order to truly take advantage of the scalability of cloud environments, software that can 

work in a clustered environment is preferred. This relies on distributing tasks across 

nodes, often integrated with workflow engines including the Konstanz Information Miner 

(KNIME),31 Makeflow,32 Nextflow,33 Snakemake,34 Swift,35 and Toil,36 which frequently 

provide tutorials specific to scaling in cloud-hosted environments. A recent review of 

proteomic software, containerization, and workflow engines highlights the benefits related 

to scalability.37 Regardless, most proteomic applications have not made the transition to 

being capable of fully utilizing modern clustering options, though database searching has 

been shown to benefit greatly from parallelization.38 Notable noncommercial exceptions 

include MS-PyCloud,39 SEQUEST-PVM,40 UltraQuant, which uses Snakemake to run a 

containerized MaxQuant,41 and OpenMS-based tools, which can be run on a cluster using 

KNIME42 and Nextflow.43,44 Beyond workflows and virtual clusters, in the coming years 

computational steps will be offloaded onto serverless frameworks (i.e., function as a service; 

FaaS),45 blurring the line between local and cloud-hosted environments. Given the potential 

of cloud-hosted environments, it seems that we are on the cusp of seeing a shift to cloud­

based solutions in proteomics.

TESTING PERFORMANCE IN THE CLOUD

It has been said that the future is already here, it is just not evenly distributed yet 

(paraphrased from William Gibson), which is especially true of cloud computing. Research 

in numerous fields including materials science, astronomy, and genomics rely heavily 

on cloud-based computing, while it is largely absent in proteomic research. Aside from 

knowledge of these resources and tools, a common hindrance is understanding the ease of 

use and estimating time and cost.10,11 With respect to time, it is difficult to directly compare 

cloud-hosted environments to local-hardware given the diversity and dynamic nature of 

computational time and costs, and the fact that processing time is affected by everything 

from algorithm, general code, and settings optimization, to the processing pipeline's physical 

arhitecture used for the cloud-hosted environment. For this reason, tools like the TPP 

Amazon simulator11 or an exploratory analysis such as presented here can help estimate the 

scale of time and costs. Since different search algorithms will use resuores differntily and 

react diffently to search settings (e.g., mass tolerance, database size, variable modifications, 

and quantification), users should benchmark their preferred tools with their typical data 

sets. Broader efforts such as the ongoing proteomic data analysis pipeline comparison led 

by the ELIXR Proteomics Commun-ity46 will help clarify pipeline performance. For the 

discussion herein, a previously published study47 with a follow-up analysis48 of label-free 

data-dependent acquisition shotgun proteomic data from mammalian urine was chosen. For 

Neely Page 4

J Proteome Res. Author manuscript; available in PMC 2022 April 02.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



this example, the data was analyzed using AWS Elastic Compute Cloud (EC2) instances 

with an arbitrarily chosen OpenMS-based Comet-Percolator workflow constructed with 

KNIME (Figure 2). The goal was to demonstrate time and costs with different computational 

resources on a ubiquitous commercial platform using a typical label-free data-dependent 

shotgun proteomic experiment.

EXAMPLE CLOUD SET-UP

Although AWS EC2 was chosen for this example, most services offer similar remote 

desktop access. This means that even for the cloud novice, making productive use 

of instances does not require command line work, but instead can look just like the 

computer they are already using by access via remote clients such as Windows Remote 

Desktop (RDP), Virtual Network Computing (VNC), Team Viewer or other available 

remote desktop options. For this example, a community Amazon Machine Image (AMI: 

Windows_Server-2019-English-Full-Base-2020.09.09) was used as a c5d.xlarge instance 

to set up the software and run analysis. The c5d instance types provide very fast local 

(to the instance’s motherboard) scratch disk space that is erased upon shut down of the 

on-demand instance. The 19 raw files from PRIDE PXD00901949 of approximately 1.3 

gigabytes each were copied to the instance using FTP. It should be noted that transfer 

speeds tend to be faster between a public cloud-hosted environment and a public data 

repository since they tend to be network proximal; for example, there seem to be fewer 

hops and bigger pipes between MassIVE and XSEDE. Additional tools such as Globus 

or Aspera can make high transfer speed through proximity for data that are not in public 

repositories. For the analysis, CSL16 was omitted and the other 18 files were used. Once 

the raw files were loaded onto the instance, MSConvert 3.0.20280 was installed to derive 

MS2 mzML files. The remove_duplicates.py script50 was used to collapse duplicate fasta 

entries prior to workflow execution. The KNIME 4.2.2 scientific workflow platform was 

installed with OpenMS 2.6.0 nodes and a simple workflow was built using KNIME OpenMS 

tutorials as a guide.42,51 Broadly, a mix of OpenMS native nodes including DecoyDatabase, 

PeptideIndexer, PSMFeatureExtractor, and IDMerger, and adapter nodes for the Comet 

search engine52 and Percolator53 were used, and the specific KNIME workflow with 

required files and settings for replication locally or in cloud-hosted environments is publicly 

available,54 as well as the final AMI (ami-0dead6b478bd16281 on us-east-2 region). 

These different software were chosen to demonstrate the capabilities and possibilities of 

this approach. Following completion of the workflow with the c5d.xlarge instance type, 

outputs, and benchmark times were saved from the scratch drive to a long-term EBS 

(Elastic Block Store) volume and the instance was shut down. Two further iterations were 

completed in the same manner by rebooting and rerunning the same workflow using the 

c5d.2xlarge and c5d.12xlarge instance types. Only the threads parameter was changed and 

the resulting benchmarking information was saved after confirming the idXML outputs. For 

all three instance types tested, the number of parallel threads allowed to be used by the 

CometAdapter was set at one less than the number of cores available to the instance type. 

A representative completed search result was retained in long-term storage, and the results 

could be transferred elsewhere by various manners including browser-based file uplnoad 

from the desktop environment before shutting down.
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TIME AND COST

In the case of a commercial provider, it is recommended to use a modest computational tier 

with low hourly cost for learning the system and setting up the workflow. It is also important 

to note that on-demand pricing of services like EC2 requires instances to be manually shut 

down when not in use. For high-end instances, if not shut down, the monthly bill can easily 

exceed many thousand dollars. For this specific example, three c5d instance types were 

compared and analysis time and cost were determined using the same data, workflow, and 

search parameters (Table 1). As stated before, the time and cost aspect of this comparison is 

extremely dynamic and will change depending on computational speeds of instances (which 

are periodically upgraded), software (and their updates), and search settings (e.g., number of 

variable modifications). This is also important to note when comparing to running on local 

resources or in other cloud-hosted environments. For comparison, there are benchmarks 

available for this specific data set analyzed on different hardware with different software, 

which is being updated here.55 Specific to the results described herein, unsurprisingly the 

search was quicker with the higher performance tiers, but this came at a monetary cost, 

similar to other studies.10,11 Though this trade-off is important to note, in situations where 

accessibility is the main concern, it demonstrates that a modestly powered instance can 

perform well at a low cost, especially since “set it and forget it” is a common approach when 

analyzing proteomic results locally. Still, any costs may prove prohibitive when resources 

are limited, though with federally subsidized resources like Jetstream, this is surmountable. 

Budgeting dynamic costs versus one-time hardware purchases is also difficult, but it is 

expected that this cost model will continue to be easier to cover as institutional views shift 

to preferring cloud-hosted environments versus local infrastructure. There are additional 

concerns beyond this discussion concerning privacy and security concerns of using cloud­

hosted environments for certain types of data, and this may also affect costs. Whether 

speed or cost is a priority is up to each user and situation, but given the elastic nature of 

resource allocation, this decision can be made dynamically, further emphasizing the power 

of working in a cloud-hosted environment.

RESULT HANDLING AND REPRODUCIBILITY

Best practices for using a cloud-hosted environment will vary across fields, but in proteomic 

data analysis the primary computational bottlenecks are file conversion, processing 

spectra, peptide identification, protein inference, and relative quantification if applicable. 

Downstream steps such as differential analysis or enrichment analysis can be performed 

with fewer computational resources, meaning these steps are likely more appropriate on 

local systems. Following completion of the search steps, results files can be retrieved to 

local workstations. Typically, result files can be explored using the same software used to 

generate the data or software-specific viewers (e.g., PeptideShaker for SearchGUI output). 

Alternatively, flat file exports (e.g., csv) may be shared between users. It is also possible to 

stay completely within the cloud by using one of a growing number of cloud-based services 

for statistical analysis and result sharing (e.g., SimpliFi56).

One of the most important benefits of using cloud-hosted environments is the opportunities 

for reproducibility.57 Images can be shared privately or publicly between users, allowing 
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others to reproduce the same operating system and software versions and, if desired, 

settings as the original analysis. Similar to previous cloud-based proteomic analyses that 

supplied AMIs to encourage reproducibility,10,11 the AMI used in this example has been 

shared publicly on EC2 (ami-0dead6b478bd16281 on us-east-2 region), and is ready for use 

following modification of KNIME memory allocation and CometAdapter threads to match 

the instance’s resources. An image may also be cloned and modified if a user wants to 

update or change software, thus allowing for comparison of results all while preserving the 

original environment. Another way to achieve reproducibility is by using containers. For 

example, software from GitHub can be packaged into a Singularity container58 that can 

be linked with other workflow steps using Nextflow. In this way, more complex sets of 

software with different dependencies can work together in a pipeline that can be used in a 

cloud-hosted environment. The reason this is preferred is that software is exactly preserved 

and shared via GitHub and the container can also be made available via repositories such 

as Singularity Container Registry,59 DockerHub60 or BioContainers,61 while optimized 

application-specific Nextflow workflows are available via nf-core.62 Together, this degree 

of portability and reproducibility enables replication by anyone on any system.

REAL AND PERCEIVED LIMITATIONS

With the concurrent advancements in proteomic data repositories and software along with 

pricing and performance of cloud-hosted environments, there are fewer limitations than 

ever to take proteomics to the cloud. In addition to the points addressed in previous 

sections, data transfer speed and storage costs present different limitations. Transferring 

data from repositories or from a private resource to cloud-hosted environments can be very 

fast depending on where the actual servers are located. Although it can be tedious and 

unintuitive, it is worthwhile to choose services and host locations with data sources in 

mind. In the future, there will be improved integration of data repositories with cloud-hosted 

resources (e.g., Google’s Cloud Life Sciences public data sets), which will increase usability 

and reduce data storage costs. Currently, the cost of storage used with a computational 

instance will vary from free to minimal depending on the service, but it is a fraction of 

the computational cost if managed properly. Finally, maybe the most crucial limitation to 

adoption of many of the resources and tools is the perceived diffculty. The proteomics 

community could address this by creating more prebuilt proteomic-centric images (similar 

to those available for the TPP11), while software and pipeline developers could provide 

detailed vignettes using real data on different cloud-hosted environments.

FUTURE OUTLOOK

When researchers look to the cloud it is often to accomplish tasks that are not possible 

with local workstations. Although proteomics researchers are adept at using local resources 

to accomplish large computational tasks, there is far-reaching potential in developing and 

utilizing cloud-hosted environments for proteomic needs. The resilience of using remote 

resources should not be understated in the current climate, and though not foolproof, they 

are lockdown proof. More importantly, as the global flow of people has slowed, utilizing the 

cloud to avoid lost time with trainees in other countries or to maintain research with distant 

colleagues is invaluable and can be facilitated using shared cloud resources. Moreover, 
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these benefits are applicable beyond mass spectrometry-based proteomics since other similar 

mass spectrometry-based domains can benefit from cloud-hosted environments, including 

imaging, lipidomics, and metabolomics.37 As it becomes more common to work in cloud­

hosted environments we will see benefits that will continue to drive the field forward.
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GLOSSARY

Cloud computing
Computing performed with remote resources. Arguably, the first “cloud” drawn as an 

information system visual was for the first transatlantic demonstration of connectivity 

among ARPANET, SATNET, and PRNET in 1977.2

Container
An encapsulated environment typically containing only one program and associated 

dependencies, not to be confused with a virtual appliance, which is more akin to an image. 

A container can be run with a set of input and output arguments via a command or in a 

workflow.

Image
A complete snapshot (“template”) of a computational environment including operating 

system.

Instance
The instantiation of an instance type (putting a machine image onto an instance type and 

“spinning it up” in a server farm somewhere).

Instance type
A set of attributes describing number of processor cores, memory, and I/O resources having 

a cost per unit time.

Pipeline
A generic term referring to linked steps of analysis. Workflow engines generate workflows, 

often referred to as pipelines.

Running instance
An instance that is accumulating cost attributable to its instance type and associated data 

storage and I/O.

Stopped (or not running) instance
An instance accumulating cost attributable only to the storage of it is image.
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Time-sharing (computing term)
A concept dating from the 1950s relating to a computer system handling a number of 

problems (for different users) concurrently.1

Workflow engines
Typically a visual tool to link steps that are wrappers or containers of other programs. May 

be used in different environments including clustering if capable.
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Figure 1. 
Generalized concept of proteomics in a cloud-hosted environment. The environment is 

accessed via any client with Internet access (l). Data for analysis can be retrieved 

directly to the environment from private data sources (5) and public data repositories (6). 

Computational resources can be assigned to the environment prior to analysis (2), at which 

point programs (4) or workflows (3) may be used to complete the analysis.
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Figure 2. 
KNIME workflow using OpenMS adapters. OpenMS 2.6 KNIME nodes for a simple 

workflow loading spectra and protein sequence files, performing a search, and consolidating 

peptide and protein IDs found in the input spectra files. A simple approach to benchmarking 

was achieved through a standard KNIME node and file write timestamps.
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Table 1.

Time and Cost of Running the Same 18 Injection Search-Only Workflow on Three Instance Types
a

c5d.large c5d.2xlarge c5d.12xlarge

processors available 2 8 48

processors used 1 7 47

run rate ($/h) 0.22 0.84 5.08

search time (hours:minutes) 3:54 1:15 0:31

total workflow time (hours:minutes) 4:01 1:21 0:37

cost ($) 0.88 1.13 3.13

a
Each raw file is approximately 1.3 gigabytes and contains roughly 65 000 MS2 scans. The comparison of the large versus the 12× large c5 

instance found that the higher performance is about three times more expensive but six times faster.
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