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Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine 
functions, such as direct hormone and hepatokine production, hormone 
metabolism, synthesis of binding proteins, and processing and redistribution of 
metabolic fuels. In the last 10 years, many new endocrine functions of the liver 
have been discovered. Advances in the classical endocrine functions include 
delineation of mechanisms of liver production of endocrine hormones [including 
25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], 
hepatic metabolism of hormones (including thyroid hormones, glucagon-like 
peptide-1, and steroid hormones), and actions of specific binding proteins to 
glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered 
insight into cirrhosis-associated endocrinopathies, such as hypogonadism, 
osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and 
lipid homeostasis, and controversially relative adrenal insufficiency. Several novel 
endocrine functions of the liver have also been unraveled, elucidating the liver’s 
key negative feedback regulatory role in the pancreatic α cell-liver axis, which 
regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid 
levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth 
factor 21, have also been discovered to play important endocrine roles in 
modulating insulin sensitivity, lipid metabolism, and body weight. It is expected 
that more endocrine functions of the liver will be revealed in the near future.
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Core Tip: The liver has many newly discovered endocrine functions, most of which are 
in regulating metabolism, underscoring the functioning of the liver as a major 
metabolic organ. Convincing evidence has shown that the liver regulates endocrine 
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functions in mineral and fuel metabolism, especially in the metabolism of glucose and 
lipids via hepatokines and amino acids via negative feedback on pancreatic α cells. As 
research into the endocrine function of the liver is a rapidly evolving field, contro-
versial findings often exist; caution needs to be taken when interpreting novel findings 
to avoid over-simplification of complex metabolic processes and premature allocation 
of research resources.
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INTRODUCTION
The liver is a dynamic endocrine organ and mediates critical metabolic pathways via 
roles in direct hormone and hepatokine production, hormone metabolism, synthesis of 
binding proteins, detoxification, and processing and redistribution of metabolic fuels
[1-4]. It participates in multiple signaling pathways with other endocrine organs, 
including the pituitary, pancreas, gut, thyroid, adrenal glands, and bone, with 
hormones in turn modulating the liver’s metabolic and synthetic functions[1,5]. 
Diseases that affect the liver lead to a variety of endocrine manifestations, including 
hypogonadism, osteoporosis, effects on glucose metabolism and growth hormone 
(GH), and controversial effects on cortisol[1,5].

The liver, with its vascularity, is well-positioned to provide and receive endocrine 
signals, including those from pancreatic and gut hormones[6]. It also receives exposure 
to antigen-rich blood systemically and from the gastrointestinal system as a lymphoid 
organ[7] and serves as a principal organ in drug metabolism and clearance[8]. Despite 
only representing 2.5% of the body weight, the liver receives up to 25% of the total 
cardiac output at rest[9]. It also receives a unique double afferent blood flow from the 
hepatic artery and partially deoxygenated portal vein, with around 75% of the blood 
flow from the latter[9]. The portal vein, in turn, receives blood from the stomach, small 
and large intestines, pancreas, spleen, and gallbladder[9], with direct physiological 
implications on the regulation of metabolism by endocrine liver functions[6]. Great 
progress has been made in the understanding of the endocrine functions of the liver in 
the last 10 years.

ADVANCES IN CLASSIC ENDOCRINE FUNCTIONS OF THE LIVER
We will first briefly summarize the advances in the understanding of the liver classic 
endocrine functions (Table 1).

Direct hormone production
The liver directly synthesizes multiple hormones, including 25-hydroxyvitamin D, 
insulin-like growth factor 1 (IGF-1), and angiotensinogen. Given roles in direct 
hormone production, the liver also has permissive roles of normal hormone function, 
in particular with effects on bone health, the GH-IGF-1 axis, and renin-angiotensin-
aldosterone (RAA) pathway.

Vitamin D: The liver is the primary site of 25-hydroxylation of vitamin D to 25-
hydroxyvitamin D (calcidiol), the main storage form of vitamin D[10]. Vitamin D is a 
secosteroid hormone well known for its role in calcium and bone homeostasis, with 
pleiotropic effects on cellular proliferation, differentiation, and immunomodulation
[11-13]. 25-hydroxyvitamin D (calcidiol) then undergoes 1-alpha-hydroxylation in the 
kidney to the activated form 1,25-dihydroxyvitamin D (calcitriol)[10], which provides 
the active hormonal effects of vitamin D. The hydroxylation of vitamin D to produce 
calcidiol is mainly carried out in the liver by multiple cytochrome P450 mixed-function 
oxidases (CYPs) located in the mitochondria, endoplasmic reticulum (ER), and 
microsomes, though studies also show presence of these CYPs in extrahepatic tissues
[10,11].
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Table 1 Classic endocrine functions of the liver

Hormone Liver function Target organ Action on target organ Alteration in liver 
diseases

25-hydroxyvitamin D Direct production Gut Prohormone of calcitriol which stimulates 
gut calcium absorption

Decreased production 
resulting in low bone 
density

Insulin-like growth 
factor 1

Direct production Ubiquitous Promoting growth and differentiation and 
regulating nutrients metabolism

Decreased production 
resulting in dysmetabolism

Angiotensinogen Direct production Cardiovascular 
system

Precursor of angiotensin II which regulates 
aldosterone level. Both regulate vascular 
tone, sodium retention, and cardiac 
remodeling

Near-normal function

Thyroid hormone Activation through T4 to T3 
conversion; inactivation through 
degradation; TBG production

Ubiquitous Increasing metabolism and energy 
expenditure

Low T3 syndrome

Glucagon-like peptide 
1 (GLP-1)

Metabolism of GLP-1 via 
dipeptidyl peptidase-4(DPPIV)

Pancreas, gut, 
and brain

Stimulating insulin production, decreasing 
gut motility, and suppressing appetite

Increased DPPIV 
expression resulting in 
higher risk of diabetes

Sex hormones Hormone metabolism and SHBG 
production

Ubiquitous Numerous (details beyond this review) Hypogonadism

Glucocorticoids Hormone metabolism and CBG 
production

Ubiquitous Numerous (details beyond this review) Relative adrenal 
insufficiency

Mineralocorticoids Hormone metabolism Cardiovascular 
system

Maintaining electrolyte balance and blood 
pressure

Largely intact

TBG: Thyroxine binding globulin; CBG: Cortisol binding globulin; SHBG: Sex hormone binding globulin.

IGF-1: The liver is the primary source of IGF-1, a 70-amino acid polypeptide hormone 
with endocrine, paracrine, and autocrine effects[14]. IGF-1 affects almost every tissue 
and organ[15], and its receptors are ubiquitously expressed[16]. Besides mediating the 
actions of GH, more recently, non-growth-related actions of IGF-1 are found. IGF-1 
binds to the insulin receptor and the hybrid IGF-1/insulin receptors, with implications 
on the metabolic effects of IGF-1[14]. IGF-1, GH, and insulin are hypothesized to 
constitute a regulated axis to inform cells about nutritional status, helping direct cells 
grow and differentiate vs induce a state of quiescence, senescence or apoptosis[14]. The 
IGF-1 receptor also participates in a crosstalk with the thyrotropin receptor by forming 
heterodimers[17], with implications on cellular growth and pathological implications 
in Graves’ eye disease.

Angiotensinogen: The liver is the primary source of angiotensinogen, which is 
involved in the RAA system[18]. The RAA system is vital for maintaining blood 
pressure homeostasis, via effects on sodium balance, intra- and extra-vascular volume, 
and systemic vascular tone[19]. Angiotensinogen, an alpha-globulin, is the only 
known substrate for renin and the main precursor molecule for angiotensin II (AngII), 
the major biologically active peptide in the RAA pathway[19]. Despite local tissue 
production of AngII, liver angiotensinogen is the primary source of renal AngII[18]. 
Hepatocytes tonically secrete angiotensinogen and primarily determine plasma 
angiotensinogen levels, with small increases in angiotensinogen levels increasing 
blood pressure and AngII levels[20].

Hormone metabolism
The liver is involved in the metabolism of multiple endocrine hormones, including 
thyroid hormones, glucagon-like peptide-1, and steroid hormones, with roles in both 
activation and inactivation of the hormones.

Thyroid hormone: Hepatic metabolism has roles in both activation and inactivation of 
thyroid hormones. The biologic activity of thyroid hormone is mainly mediated 
through the active thyroid hormone T3. The thyroid only secretes 20% of the daily T3 
requirement, with the remainder 80% converted from T4 by peripheral selenium-
containing deiodinase enzymes (DIO), of which three primary deiodinases (type 1, 2, 
and 3) have been identified[21]. The liver expresses DIO1, along with the kidney and 
thyroid, which converts T4 to T3, though with less kinetic efficiency compared to 
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DIO2, which is expressed by brown adipose tissue and the pituitary. Subsequently, the 
thyroid hormone is metabolized by conjugation with sulfate or glucuronic acid, which 
occurs prominently in the liver[22].

Glucagon-like peptide 1: With the discovery of glucagon-like peptide 1 (GLP-1), 
increasing research has been studying the gut-pancreas-liver axis, and the liver has 
been shown to play a key role in the hormone’s metabolism[23]. GLP-1 is an incretin 
hormone produced by the intestinal L-cells in response to ingestion of nutrients, 
including carbohydrates, fatty acids, and fiber[24]. It stimulates insulin secretion in a 
glucose-dependent manner, with associated inhibition of hepatic gluconeogenesis, and 
promotes insulin gene transcription and growth and proliferation of islet cells[24]. 
GLP-1 is inactivated by dipeptidyl peptidase-4 (DPPIV), also known as CD26, a 
ubiquitous membrane-associated peptidase[25]. DPPIV has pleiotropic effects and 
widespread tissue distribution in all organs, with expression in capillary endothelial 
cells and high expression in the liver[25].

Steroid hormone metabolism: The liver participates in most steps of steroid hormone 
regulation, starting from being the primary site of cholesterol biosynthesis[26,27]. At 
the liver, steroid hormones undergo phase I metabolism by cytochrome P450 enzymes 
(CYPs), via multiple pathways including hydroxylation or reduction, and phase II 
metabolism, also via various processes including glucuronidation, sulfation, or 
methylation[27], ultimately leading to excretion of their conjugates in urine or bile.

Steroid hormone metabolism: Sex hormones: The liver is the main site for metabolic 
conversion of estrogens, progesterone, and androgens to their metabolites via CYPs, 
which are abundantly expressed in the liver[28]. In particular, as part of the first phase 
of metabolism, estrogens undergo hydroxylation by numerous CYPs, including 2-
hydroxylation to 2-hydroxyestradiol and 4-hydroxylation to 4-hydroxestradiol, which 
represent 80% and 20% of biotransformation of estradiol in the liver, respectively. 2-
hydroxylation is mainly catalyzed by CYP1A2 and CYP3A4, which are expressed in 
the liver, and CYP1A1 in extrahepatic tissues[28]. 4-hydroxestradiol, unlike 2-
hydroxestradiol, is associated with free radical generation and cellular damage, with 
associated increased risk of carcinogenesis in the breast and endometrium. Subsequent 
phase II metabolism of sex hormones, via O-methylation by catechol O-methyltrans-
ferase (COMT), glucuronidation, or sulfation, occurs at high levels at the liver, with 
subsequent elimination in the urine or stool[28-30].

Steroid hormone metabolism: Glucocorticoids and mineralocorticoids: The liver is 
also the primary site of glucocorticoid and mineralocorticoid metabolism[27]. Cortisol 
is converted to and from its inactive metabolite cortisone by two isozymes of 11-beta 
hydroxysteroid dehydrogenase (11-beta-HSD)[31]. 11-beta-HSD type 1 (11-beta-HSD1) 
is widely distributed, though most abundantly located in the liver and adipose tissue, 
and is responsible for converting cortisone back to cortisol[31], with in vitro activity 
being greater in omental than subcutaneous adipose tissue[32]. In healthy individuals, 
local splanchnic cortisol production, including from the liver, can equal or even exceed 
that produced by extra-splanchnic tissues, including the adrenal gland[32]. In obese, 
non-diabetic individuals, the liver has been shown to account for virtually all 
splanchnic cortisol production[32]. Though primarily secreted from the adrenal glands 
under the regulation of the RAA axis, animal studies suggest possibility of local 
hepatic aldosterone production during liver injury, which may contribute to fibro-
genesis[33]. Glucocorticoids and mineralocorticoids, like other steroid hormones, 
undergo phase I and phase II metabolism in the liver, with excretion of their 
conjugates in urine or bile[27].

Binding protein production
Lipophilic hormones, including steroid hormones, are not water soluble and need to 
be carried in the blood stream by binding proteins[2,34]. The liver is the primary 
source of binding proteins for many hormones. The liver produces specific binding 
proteins to multiple lipophilic hormones, including glucocorticoids, mineralocor-
ticoids, sex steroids, thyroid hormones (T3 and T4), and vitamin D metabolites[2,34]. 
Binding globulins for these lipophilic hormones include cortisol binding globulin 
(CBG, which binds cortisol, aldosterone, and progesterone), sex hormone binding 
globulin (SHBG, which binds estradiol, testosterone, and other sex hormones), 
thyroxine binding globulin (TBG, which binds T3 and T4), and vitamin D binding 
globulin (DBG, which binds vitamin D metabolites)[2,34]. Binding proteins that are 
produced by the liver also include transthyretin (which binds thyroid hormone and 
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retinol), IGF-1 binding proteins (IGFBP, which binds IGF, including IGF-1), and non-
specific binding proteins including albumin and lipoproteins. Binding proteins serve 
as a circulating reservoir for hormones, potentially regulating tissue distribution and 
target destination in a manner that can be highly selective and targeted[2,35]. Binding 
protein expression and production, which occur primarily at the liver, is complex and 
under the regulation and influence of multiple factors[2]. Most binding protein 
expression increase in response to estrogens, including physiologically with pregnancy 
or with oral contraceptives[2,34]. Hepatic failure and protein-losing nephropathies 
lead to decrease of binding proteins in general[2,34].

Endocrine dysregulation in liver disease
The liver mediates the effects of numerous hormonal pathways, whether directly or 
indirectly; thus, not surprisingly, derangements affecting the liver lead to disruptions 
of various hormonal pathways. Patients with cirrhosis are characterized by various 
endocrinopathies, including relative increase in estrogen compared to androgens, 
hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in 
glucose and lipid homeostasis, and perhaps more controversially a relative adrenal 
insufficiency.

Sex hormones: Cirrhosis is characterized by symptoms of estrogen-androgen 
imbalance, with relatively higher estradiol and lower testosterone concentrations[36]. 
The etiology of estrogen-testosterone imbalance is at least in part due to conversion of 
androgens to estrogens in cirrhosis, which in large part occurs peripherally[36]. The 
pathophysiology of hypogonadism is complex, including potential contribution from 
hypothalamic-pituitary suppression from a relatively increased estrogen circulation. 
SHBG is elevated in compensated cirrhotic patients, with subsequent decreases with 
decompensated cirrhosis, leading to concern for potential underestimation of 
hypogonadism in cirrhosis[34].

Cortisol: Patients with cirrhosis have relatively lower cortisol levels, also in the setting 
of lower production of cortisol binding globulin[37]. Some studies suggest the 
presence of a relative adrenal insufficiency in cirrhosis, also termed critical illness-
associated corticosteroid insufficiency[38]. These studies suggest a potential 
hepatoadrenal syndrome in advanced liver disease, with associated inadequate 
cortisol production during stress response[38]. The decrease in cortisol binding 
globulin makes the diagnosis more difficult, though some studies suggest that free 
cortisol levels are decreased in relative adrenal insufficiency[37]. Hepatoadrenal 
syndrome and associated low free cortisol are attributed to decreased formation of 
HDL precursors and formation of proinflammatory cytokines and endotoxins[38].

RAA system: In liver disease, the systemic RAA pathway is upregulated due to 
systemic and splanchnic arterial vasodilation and associated hypoperfusion of the 
renal system[39]. Notably, the cirrhotic liver is able to produce angiotensinogen to 
near-normal plasma levels until the end stages[40].

DPPIV and GLP-1: DPPIV may play a role in linking type 2 diabetes with chronic liver 
disease. Type 2 diabetes has been associated with a greater than 2-fold increased risk 
of liver disease[41], and in vitro studies have suggested that elevated glucose can 
induce DPPIV expression in liver cells[42]. The increased DPPIV activity, which 
degrades the incretin hormone GLP-1, may contribute towards development of IGT, 
insulin resistance, lipogenesis, and hepatic injury in liver disease[25,43]. Serum DPPIV 
levels are notably increased in cirrhosis[25], and increased DPPIV expression in the 
liver has been observed in hepatitis C, NAFLD, experimental liver regeneration, and 
cirrhosis[25,43]. Cirrhotic nodules show diffuse and uniform staining of DPPIV, with 
loss of usual zonal expression of DPPIV[43], and degree of hepatic expression of 
DPPIV has also been shown to correlate with NAFLD grading[25]. Increased DPPIV 
expression has also been seen in various malignant tumors, including hepatocellular 
carcinoma, with DPPIV noted to promote resistance to anticancer agents[25].

Thyroid hormone: Given the liver’s role in thyroid hormone metabolism, including 
local conversion of T4 to T3 by DIO1[21], patients with cirrhosis may present with 
abnormalities in thyroid hormone levels[44]. Though a variety of patterns are seen, the 
most common pattern is a low total T3 (TT3), low free T3 (FT3), elevated reverse T3 
(rT3), low total T4 (TT4), variable literature on elevated vs low free T4 (FT4) levels, and 
possible elevations in TSH[44,45]. The low total hormone levels are attributable to low 
TBG[44]. The pattern is consistent with low T3 syndrome, which occurs in systemic 
illnesses, and represents non-thyroidal illness syndrome, previously known as 
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euthyroid sick syndrome[44].

IGF-1: Systemic IGF-1 deficiency in cirrhosis has been associated with an altered 
metabolic profile, including diabetes, deregulated lipid profile, and cardiovascular 
disease[14]. Lack of liver-derived IGF-1, in particular, has been associated with 
resultant insulin insensitivity in the liver, skeletal muscle, and adipose tissue, and 
corresponding hyperinsulinemia[46]. In NAFLD, the severity of steatosis has been 
correlated with a decrease in IGF-1 levels, with statistically significant differences in 
IGF-1 levels between mild-moderate vs severe steatosis[14,47].

Bone health and vitamin D: Chronic liver disease, including cirrhosis regardless of 
etiology, is associated with osteomalacia, osteopenia, and osteoporosis, and up to 40% 
of patients with chronic liver disease may develop an osteoporotic fracture[48]. The 
etiology of hepatic osteodystrophy is not well understood, though potential 
contributing factors include hypogonadism, and decreased hepatic production of IGF-
1 and fibronectin[48]. There is a shift in cytokine production with changes in the 
receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) 
system and an up-regulation of IL-6, which stimulates osteoclasts[48]. Decreased 
vitamin D synthesis, which is more marked in severely compromised liver function or 
in cholestatic liver disease, can further contribute to increased osteoporotic risk[49]. 
History of steroid treatment in chronic liver disease may be a risk factor for 
osteoporosis as well[48,49]. Different etiologies of liver disease may differ in their 
pathogenesis of osteoporosis, and in particular, diseases such as hemochromatosis and 
Wilson’s may also directly impact bone health[48].

NOVEL ENDOCRINE FUNCTIONS OF THE LIVER
Besides the advances in the understanding of classic endocrine functions of the liver, 
novel liver endocrine functions have been unraveled in the last several years (Table 2), 
including endocrine regulation of pancreatic α cells, adipose tissue, and insulin 
sensitivity.

Feedback regulation of pancreatic α cells and glucagon
A major novel endocrine function of the liver is its critical role in a pancreatic α cell-
liver axis that regulates pancreatic α cell proliferation and circulating glucagon and 
amino acid levels[50,51]. The pancreatic α cells, unlike the insulin-secreting β cells, 
have been considered a mysterious cell type until recently[52,53]. The α cells appear 
first during embryogenesis[54]. The main known function of the α cells is to produce 
and secrete the hormone glucagon[55]. Glucagon raises circulating glucose levels 
directly by stimulating gluconeogenesis and glycogenolysis, and indirectly by 
inhibiting insulin secretion[55,56].

Recently, a new α cell-liver axis has been discovered, endowing the liver with new 
endocrine functions[50,51]. The first clue of the α cell-liver axis came from glucagon 
receptor (GCGR) knockout mice[57,58]. The GCGR knockout mice harbor diffusely 
enlarged pancreas and exhibit extremely high glucagon levels[57-59]. Histologically, 
the pancreas of GCGR knockout mice contain numerous islets at various sizes, which 
are composed of mostly α cells as demonstrated by immunochemistry[57-59]. 
Normally the number of islets is quite small, and the islets are mostly composed of β 
cells. Mahvash disease, a human autosomal recessive hereditary disease discovered by 
our group, is caused by biallelic inactivating GCGR mutations, and its universal 
features are also α cell hyperplasia and hyperglucagonemia[60-62]. GCGR inactivation 
in zebra fish and non-human primates also result in α cell hyperplasia and hypergluca-
gonemia[63-66]. Thus, preservation of glucagon function is conserved throughout 
evolution.

Although a physiological compensation of hyperglucagonemia in animals and 
humans with inactive GCGR is quite intuitive, the specific mechanism of the 
compensation was initially not clear[67]. The liver-specific GCGR knockout mice 
interestingly have similar α cell hyperplasia and hyperglucagonemia, as those in global 
GCGR knockout mice[57,58,68], suggesting that the liver is the only target organ of 
glucagon that sends feedback signals to α cells, and that loss of the usual negative 
feedback mechanism stimulates α cell hyperplasia and glucagon secretion. This theory 
is also supported by the liver-specific stimulatory G protein α subunit (Gsα) knockout 
mice, which also exhibit α cell hyperplasia and hyperglucagonemia[69]. As glucagon 
antagonists were a promising anti-diabetes medication, both academia and pharmaco-
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Table 2 Novel endocrine functions of the liver

Liver 
hormone Target organ Action on target organ Alteration in liver diseases

Amino acids Pancreatic α cells Stimulate cell proliferation and glucagon secretion Not studied yet

Betatrophin Pancreatic β cells (?) Stimulate cell proliferation (?) Increased in cirrhosis

Fetuin Skeletal muscle; Adipose 
tissue

Decrease insulin sensitivity; Reduce adiponectin 
expression

Elevated in nonalcoholic fatty liver disease

FGF21 Adipose tissue; Brain Increase insulin sensitivity; Reduce food intake Elevated in nonalcoholic fatty liver disease

Activin E Adipose tissue Increase fat oxidation Increased in nonalcoholic fatty liver 
disease

Tsukushi Adipose tissue Increase thermogenesis Increased in nonalcoholic fatty liver 
disease

GPNMB Adipose tissue Increase lipogenesis Increased in nonalcoholic fatty liver 
disease

FGF21: Fibroblast growth factor 21; GPNMB: Glycoprotein nonmetastatic melanoma protein B.

logical companies became interested in the α cell-liver axis due to potential applic-
ations in diabetes drug development[70,71]. Some of the key original large-scale 
experiments leading to the discovery of the role of amino acids in regulating α cells 
were performed by pharmaceutical companies[72-74].

The liver may regulate α cells via neural or humoral mechanisms[67,68]. Islet 
transplantation experiments demonstrate that the liver uses a humoral mechanism
[68]. Wild-type islets transplanted into the kidney of GCGR knockout mice undergo α 
cell hyperplasia, while GCGR knockout islets transplanted into wild-type kidney 
undergo reduced α cell proliferation. Thus, it is assumed that the liver sends a humoral 
factor (hormone) to stimulate pancreatic α cells, a phenomenon that is pronounced in 
diseases where the usual negative feedback mechanism is affected.

Initially, it was hoped that a single liver hormone would be isolated from differ-
ential liver gene expression patterns of wild-type and GCGR knockout mice[67]. 
Several groups, including ours, performed liver mRNA arrays of GCGR knockout 
mice and in wild-type mice treated with inhibitory GCGR antibodies, using wild-type 
mice as control[67,68,72]. Not surprisingly, many genes are overexpressed (potential 
stimulatory hormones) or underexpressed (potential inhibitory hormones) in the 
GCGR knockout liver[67,68,72]. Genes involved in gluconeogenesis are downreg-
ulated in the GCGR knockout liver[67,68,72]. On the other hand, genes involved in 
amino acid synthesis (e.g., asparagine synthetase, Asns) are upregulated, and genes 
involved in amino acid catabolism (e.g., glutaminase 2, Gls2) are downregulated[67,68,
72]. Genes regulating lipid metabolism are also differentially expressed[67,68,72]. Most 
of the genes with significant differential expression were not bona fide hormone 
candidates because they were not secreted proteins[67,68,72]. InhbA and DefB1 were 
the only 2 overexpressed secreted proteins by both the GCGR knockout liver and wild-
type liver treated with inhibitory GCGR antibodies; however, these two proteins were 
are also upregulated by glucagon in primary hepatocytes and thus unlikely the 
pursued liver hormone[67,68,75].

Another possibility was that the liver hormone may not be a direct gene product 
such as a protein or polypeptide; rather, the hormone may be a small molecule or 
metabolite[67]. Metabolomes of the GCGR knockout and wild-type mice were 
compared[72]. Many differences exist but most notable differences were in glucose, 
amino acid, nucleotide, and bile acid levels[72]. The GCGR knockout mice have lower 
glucose levels (70% of wild-type value) and higher levels of most amino acids (up to 
15-fold for alanine, glutamine, glycine, lysine, and threonine) and 2 bile acids (cholic 
acid and glycocholic acid, both about 200-fold) [72]. In humans with Mahvash disease, 
glucose levels are generally normal, but the levels of amino acids, especially alanine 
and glutamine, are clearly elevated[62,76-78].

Pinpointing the identity of the novel liver hormone requires tremendous amount of 
work. Parabiosis of GCGR knockout and wild-type mice was considered, but no such 
models were published[67]. A more practical in vitro islet culture assay was adopted 
by most groups to screen for the liver hormone that stimulates α cell hyperplasia and 
hyperglucagonemia[73-75]. With the islet culture assay, it is shown that a < 10 kDa 
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fraction of serum from GCGR knockout mice sufficiently stimulates α cell proliferation
[75]. This fraction contains small proteins or peptides, lipids, amino acids, and 
metabolites[75]. We have discussed earlier that most proteins or peptides are unlikely 
the liver hormone. Eliminating lipids from the fraction does not change the activity of 
the fraction in stimulating α cell proliferation[75]. Finally, as amino acids levels are 
much higher in GCGR knockout serum, cocktails that mimic the amino acids levels in 
GCGR knockout mice serum have been tested for their ability to stimulate α cell prolif-
eration, and indeed they do[73-75].

Individual amino acids were further tested to see if a particular amino acid is 
sufficient to stimulate α cell proliferation[73-75,79]. So far, the data on individual 
amino acids are still somewhat controversial. Most individual amino acid do not 
stimulate α cell proliferation or glucagon secretion[73-75,79]. Glutamine alone 
stimulated α cell proliferation in 2 studies, but it did not stimulate glucagon secretion 
in another, which is intriguing as α cell hyperplasia and hyperglucagonemia coexist in 
all models of GCGR inhibition[74,75,79]. Alanine alone stimulated α cell proliferation 
in one study, but not in another, albeit acutely stimulating glucagon release[75,79]. 
Experimental conditions may explain some of the different results. It is also possible 
that α cell proliferation and acute glucagon release may be separate processes.

The α cell receptor for amino acids is under active research. In GCCR knockout mice 
and in wild-type type mice treated with inhibitory GCGR antibodies, the most 
upregulated α cell gene is the amino acid transporter Slc38a5 (20-80-fold increase)[74,
75]. Slc38a5 preferentially transports glutamine and several other amino acids, which 
is concordant with the stimulatory effect of glutamine on α cell proliferation[74,75]. 
Slc38a5 knockout mice treated with inhibitory glucagon antibodies and Slc38a5 and 
GCGR double knockout mice exhibited less prominent α cell hyperplasia ( approx-
imately 50% less) but similar hyperglucagonemia[74]; this data suggested that Slc38a5 
is at least partially responsible for amino acid-stimulated α cell hyperplasia and that α 
cell hyperplasia and hyperglucagonemia may be regulated separately. Slc38a5, 
however, is not expressed in human α cells[74]. Another amino acid transporter 
Slc38a4 is enriched in human α cells when mice with human islet implants are treated 
with inhibitory GCGR antibodies[80]. In humans with Mahvash disease, Slc38a4 is 
expressed in the α cells[80], supporting a role of the amino acid transporter in 
mediating amino acid-stimulated α cell hyperplasia in humans as well. The mTOR 
pathway in α cells is activated by amino acids as well, contributing to α cell 
hyperplasia[73-75].

As a result of these studies, the α cell-liver axis has largely been clarified (Figure 1). 
The α cells secrete glucagon, which signals the liver to increase hepatic amino acid 
breakdown and reduce amino acid synthesis, consequently leading to desirable amino 
acid levels in the circulation. After glucagon signaling is inhibited, the liver decreases 
amino acid breakdown and increases amino acid synthesis, thus raising circulating 
amino acid levels. The amino acid levels, in turn, act on the α cell amino acid 
transporters to stimulate α cell proliferation. The evolutionarily conserved α cell-liver 
axis suggests that glucagon’s primary role may be regulating amino acid levels.

Betatrophin
Betatrophin (also known as angiopoietin-like protein 8, ANGPTL8) is a 22-kD protein 
produced and secreted by the liver and adipose tissue[81,82]. Several years ago, 
betatrophin was touted as the long sought-after liver hormone that stimulates 
pancreatic β cell proliferation and insulin production in conditions with insulin 
resistance[83,84]. An insulin resistance mouse model based on insulin receptor 
antagonist (S961) infusion exhibits remarkable hyperinsulinemia and beta cell 
hyperproliferation[83]. As S961 does not directly stimulate β cell proliferation, it was 
hypothesized that a humoral factor mediates the stimulation of β cell proliferation in 
this mouse model[83]. Screening of liver genes that were differentially expressed as a 
result of S961 infusion suggested that betatrophin, a secreted protein that is 
upregulated by S961 infusion, could be the humoral factor[83]. Betatrophin expression 
correlated well with β cell proliferation rates. The original report found that liver 
overexpression of betatrophin stimulated β cell proliferation[83].

The potential of betatrophin as the Holy Grail for diabetes treatment attracted much 
attention, but later experiments strongly argue against this function of betatrophin[85-
87]. Betatrophin knockout mice exhibited normal glucose metabolism and similar 
hyperinsulinemia and β cell hyperproliferation in response to S961 infusion[85,86]. 
Detailed analysis of pancreas morphometry by several laboratories definitively 
showed that betatrophin overexpression does not stimulate β cell proliferation[88]. The 
only exception was that direct delivery of betatrophin to pancreas does stimulate β cell 
proliferation in rats[89]. In some mouse models of diabetes, betatrophin lowered 
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Figure 1 Schematic drawing of regulation of pancreatic α cell number and glucagon secretion by amino acid levels controlled by the 
liver. The numbers indicate specific ways to disrupt glucagon signaling. (1) Glucagon deletion; (2) Prohormone convertase 2 deletion (with no mature glucagon 
secretion); (3) Glucagon receptor (GCGR) global deletion; (4) GCGR liver-specific deletion; (5) GCGR inactivating mutation; (6) GCGR antisense RNA; (7) GCGR 
antagonists; (8) GCGR antibodies; and (9) Gsα liver-specific deletion. See text for details. Citation: Yu R, Zheng Y, Lucas MB, Tong YG. Elusive liver factor that 
causes pancreatic α cell hyperplasia: A review of literature. World J Gastrointest Pathophysiol 2015; 6(4): 131-139. Copyright ©The Author(s) 2015. Published by 
Baishideng Publishing Group Inc[67]. GCGR: Glucagon receptor.

glucose levels without effects on β cell proliferation[90]. Overall, betatrophin, despite 
the name, does not appear to stimulate β cell proliferation.

Betatrophin, however, could be a circulating marker of insulin resistance[82]. Early 
studies of betatrophin levels in various forms of human insulin resistance were quite 
conflictory, partly due to the differences in measurement methods[82]. Later studies 
using more standardized methods for measuring betatrophin were summarized by 
several meta-analyses on the correlation of circulating betatrophin levels and type 2 
diabetes, gestational diabetes, polycystic ovary syndrome (PCOS), and obesity — all 
conditions with insulin resistance[91-95]. Xu et al[91] analyzed 25 such studies and 
showed a positive and significant correlation between circulating betatrophin levels 
and insulin resistance. Yue et al[92] analyzed 11 studies on betatrophin in type 2 
diabetes and found that betatrophin is significantly elevated in type 2 diabetes. Kong 
et al[93] analyzed 8 studies on betatrophin in gestational diabetes and concluded that 
betatrophin is significantly elevated in gestational diabetes. Varikasuvu et al[94] 
analyzed 11 studies on betatrophin in PCOS and concluded that betatrophin is 
significantly elevated in PCOS. Similarly, Ye et al[95] analyzed 6 studies on betatrophin 
in obesity and concluded that betatrophin is significantly elevated in obesity. Thus, 
overall, circulating betatrophin is likely a marker of insulin resistance in humans. The 
high betatrophin liver expression in mice treated with S961, in retrospect, could simply 
be a sign of insulin resistance caused by S961[83]. It is, however, not clear how insulin 
resistance upregulates betatrophin. In humans, hyperinsulinemia, often associated 
with insulin resistance, and metformin, an insulin sensitizer, both decrease betatrophin 
levels, suggesting that insulin resistance per se upregulates betatrophin levels[96]. 
Betatrophin overexpression could further worsen hepatocyte sensitivity to insulin, the 
significance of which needs to be further explored[97].

Betatrophin also has a role in lipids regulation[98]. Betatrophin knockout mice 
exhibit much reduced triglyceride levels due to reduction in liver VLDL secretion[86]; 
betatrophin also forms a complex with ANGPTL3, which inhibits lipoprotein lipase 
(LPL) activity[86]. The increased production of VLDL and decreased LPL activity both 
contribute to hypertriglyceridemia. Betatrophin overexpression doubles triglyceride 
levels in mice[86]. In humans, circulating betatrophin levels are positively correlated 
with triglyceride levels in the general population[99]. In people with dyslipidemia, 
however, betatrophin levels were lower than in controls[100]. Betatrophin may 
potentially be a target in dyslipidemia treatment[101].

Hepatokines
Hepatokines are metabolism-regulating proteins produced and secreted by the liver
[102,103]. Several hepatokines have been reported and studied. Five of the most 
studied hepatokines are discussed in this review: Fetuin-A, fibroblast growth factor 21 
(FGF21), activin E, Tsukushi, and glycoprotein nonmetastatic melanoma protein B 
(GPNMB).

Fetuin-A: Fetuin-A, also known as α2-Heremans-Schmid glycoprotein in humans, is 
one of the first discovered hepatokines[104]. A 52-kD glycoprotein, fetuin-A has 
diverse metabolic functions[104]. Under physiological conditions, fetuin-A mostly 
functions as a carrier protein and regulates osteogenesis and inhibits extra-skeletal 
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calcification[105]. Fetuin-A’s role in regulating insulin sensitivity has also been studied 
in detail[106,107]. Fetuin-A knockout mice exhibit higher insulin sensitivity and have 
less tendency to develop obesity[106]. At the molecular level, fetuin-A inhibits insulin 
receptor phosphorylation in myocytes and adipocytes and adiponectin expression in 
adipocytes[107]. Fetuin-A levels are elevated in patients with insulin resistance or type 
2 diabetes, likely mediated by high free fatty acid levels, and high fetuin-A levels are a 
risk factor for type 2 diabetes[108,109]. The thiazolidinedione-type diabetes medication 
pioglitazone directly inhibits hepatic production of fetuin-A, partly contributing to its 
action in improving insulin sensitivity[110].

FGF21: FGF21 is a hepatokine that was first discovered in 2000, but its metabolic 
regulation functions were not characterized until recently[111,112]. Although FGF21 is 
also expressed in adipose tissue and the pancreas, circulating FGF21 is predominantly 
derived from the liver[113]. Hepatic FGF21 expression is regulated by a number of 
physiological conditions and factors[114]. Prolonged starvation (> 7 d) and overnu-
trition both upregulate FGF21 expression[115,116]. Glucagon and the thyroid hormone 
triiodothyronine (T3) both stimulate FGF21 expression, while insulin may inhibit 
FGF21 expression in liver[117,118]. High-carbohydrate, high-fat diet, and low protein 
diets stimulate FGF21 expression as well[119,120]. The microRNAs miR-577 and miR-
212 target FGF21 mRNA for degradation, thus suppressing FGF21 expression[121,
122]. FGF21 is also upregulated by ER stress[123]. At the molecular level, at least some 
of the above actions are mediated by the nuclear hormone receptor peroxisome prolif-
eration-activated receptor α (PPARα), which binds to regions of the FGF21 promoter 
and simulates FGF21 expression[124-126].

The human pre-FGF21 (precursor of mature FGF21) includes a 28-amino-acid 
signaling peptide and a 181-amino-acid FGF21 proper as the circulating form[127]. 
FGF21 signals through its transmembrane tyrosine kinase receptors, FGFR1c and 
FGFR3c, and its transmembrane co-receptor, Klotho-β (KLB)[128]. FGF21 downstream 
signaling is tissue-specific but generally leads to metabolic benefits such as increased 
insulin sensitivity and weight loss[129]. In the adipose tissue, FGF21 stimulates the 
Ras/Raf/MAPK pathway, with phosphorylation of ERK1 and ERK2, and the mTOR 
pathway, contributing to higher insulin sensitivity[130-132]. Other FGF21 metabolic 
benefits such as weight loss is mediated by non-adipose tissue such as the brain[133]. 
FGF21 has been a major interest of metabolic drug development. As the native FGF21 
is not stable in the usual formulation, re-engineered FGF21 analogues and PEGylated 
FGF21 have been developed to be more stable[134]. Activating monoclonal antibodies 
targeting FGFR1–β-klotho have also been developed[135]. Preclinical and clinical 
studies have demonstrated clear metabolic benefits of the FGF21 analogs and 
activating antibodies, such as appetite suppression, weight loss, improved glycemia, 
and favorable lipid profile[134,135].

Activin E: Activin E belongs to the family of transforming growth factor-β (TGF-β) 
proteins[136]. Activin E is a secreted homodimer of inhibin-βE, which is mainly 
expressed in the liver[137]. Each mature inhibin-βE monomer has 113 amino acids
[137]. In both mice and humans, inhibin-βE is upregulated by obesity and insulin 
resistance[138]. In mice, hepatic overexpression of inhibin-βE prevents excess weight 
gain and improves insulin sensitivity by promoting energy expenditure via increased 
fat oxidation[139,140]. Inhibin-βE ablation in mice gives conflictory results[138,139]. In 
one study using the transcriptional activator-like effector nucleases (TALENs) to 
remove liver specific inhibin-βE expression, inhibin-βE-deficient mice exhibited 
normal weight but had impaired thermogenesis during cold exposure[139]. In another 
study, however, use of small interfering RNA (siRNA) to silence Inhibin-βE expression 
in the liver reduced weight gain in obese mice[138]. Thus, the roles of Activin E in 
metabolic regulation are still controversial.

Tsukushi: Tsukushi belongs to the family of small leucine-rich proteoglycan (SLRP) 
extracellular matrix proteins[141]. The secreted human Tsukushi protein has 337 
amino acids. Besides its role in regulating embryonic development, Tsukushi is found 
to be a hepatokine, potentially regulating adipose tissue, weight, and energy 
expenditure[142]. In both mice and humans, Tsukushi is upregulated by thyroid 
hormone[142,143]; in mice, Tsukushi is induced by obesity and cold exposure[142]. 
Tsukushi deficiency in mice protects them from diet-induced obesity by increasing 
adipose tissue thermogenesis and energy expenditure[142]. Using mice from a 
different genetic background, another group could not reproduce the metabolic 
benefits of Tsukushi deficiency[144]. Furthermore, studies have also failed to show 
deleterious metabolic effects from Tsukushi overexpression[144]. The roles of 
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Figure 2 Major classic and novel endocrine functions of the liver. Left, major classic endocrine functions of the liver; right, novel endocrine functions of 
the liver. See text for details. IGF-1: Insulin-like growth factor 1; TBG: Thyroxine binding globulin; CBG: Cortisol binding globulin; SHBG: Sex hormone binding 
globulin.

Tsukushi in metabolic regulation thus also remain controversial.

GPNMB: GPNMB is a transmembrane glycoprotein expressed in the liver and other 
organs[145]. The cleaved extracellular domain of GPNMB (a glycosylated 480-amino-
acid protein) is a hepatokine targeting adipose tissue[146,147]. In 2 obese mouse 
models, GPNMB expression was upregulated in the liver and secreted GPNMB levels 
were higher as well. Secreted GPNMB stimulates lipogenesis in vitro and in vivo[147]. 
A neutralizing antibody targeting GPNMB reduces obesity and improves insulin 
sensitivity[147]. In both mice and humans, GPNMB levels are positively correlated 
with obesity and insulin resistance[147]. GPNMB is thus a promising therapeutic 
target for treatments of obesity and diabetes.

CONCLUSION
The liver has numerous endocrine functions such as direct hormone and hepatokine 
production, hormone metabolism, synthesis of binding proteins, and processing and 
redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of 
the liver have been discovered (Figure 2). Several novel endocrine functions of the 
liver have been unraveled. The liver plays a key negative feedback regulatory role in 
the pancreatic α cell-liver axis which regulates pancreatic α cell mass, glucagon 
secretion, and circulating amino acid levels. Betatrophin and other hepatokines such as 
fetuin-A and FGF21 play important endocrine roles in modulating insulin sensitivity, 
lipid metabolism, and body fat weight. It is expected that more endocrine functions of 
the liver will be discovered in the near future. As endocrine function of the liver is a 
rapidly evolving field, controversial findings often exist; caution needs to be taken 
when interpreting novel findings to avoid over-simplification of complex metabolic 
processes and premature allocation of research resources.
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