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a b s t r a c t 

Amidst a pandemic, operators of emergency medical service (EMS) systems aim at upholding service 

at sufficiently low response times while reducing the infection probability of their personnel. Designat- 

ing ambulances to serve only infected patients and suspected cases may reduce the outage probabilities 

of ambulances and consequently the response times of the EMS. We investigate the benefits that EMS 

personnel and patients can gain from such a split. As a solution method to quantify these benefits, we 

apply a two-stage approach. First, we run a first-stage optimization model to pre-select ambulance splits 

with the highest emergency call coverage. Second, we solve the approximate Hypercube Queuing Model 

(AHQM) to evaluate the performance of the pre-selected ambulance splits at the second stage. We con- 

tribute to the existing literature by including multiple incident categories and outages of ambulances in 

the AHQM and combining it with the first-stage optimization model. Further, we conduct a case study 

for the Coronavirus Disease 2019 (Covid-19) pandemic to draw conclusions on the benefits of splitting. 

We observe that an ambulance split would not reduce the average response time for the examined data 

set since the Covid-related call volume in Munich and the infection probability are too low. However, a 

sensitivity analysis shows that long isolation times and high infection probabilities make an ambulance 

split beneficial for patients and EMS personnel, as an ambulance split reduces the average response time 

without significantly increasing the mean infection probability for EMS personnel. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In January 2020, the Coronavirus Disease 2019 (Covid-19) 

andemic was officially declared a Public Health Emergency of 

nternational Concern (World Health Organization, 2020c). By the 

nd of 2020, more than 81 million people worldwide were infected 

ith Covid-19 (World Health Organization, 2021). The health of 

mergency Medical Service (EMS) personnel is at risk during a 

isease outbreak such as the Covid-19 pandemic. Paramedics re- 

ponding to emergency calls are often the first medical personnel 

n contact with infected individuals. They must operate in uncon- 

rolled environments such as accident scenes while only having 

imited information about the patient. Thus, especially during a 

andemic, personal protective equipment (PPE) is indispensable to 

rotect EMS personnel from infection. However, in many countries, 
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PE was scarce during the Covid-19 pandemic in 2020 ( Dargaville, 

pann, & Celina, 2020; Ranney, Griffeth, & Jha, 2020 ). This em- 

hasizes the importance of finding supplementary ways to reduce 

he infection risk for EMS personnel during a pandemic. Further, 

ome paramedics are more likely to get infected and be badly 

mpacted by an infection. For example, Covid-19 may affect people 

ith pre-existing conditions, which increase the risk of a severe 

isease progression, more seriously. Also, vaccinations may not be 

vailable for all groups. Especially early in a pandemic, there is a 

ack of knowledge about the disease and its transmission routes. 

n addition, the personnel might not be trained, so insufficient or 

rong use of PPE can lead to high infection probabilities despite 

ts availability. Should paramedics need to isolate themselves due 

o an infection, EMS systems can suffer personnel shortfalls. At the 

rst peak of the Covid-19 pandemic in April 2020, 19.3% of New 

ork City EMS personnel was absent due to self-isolation despite 

he availability of PPE ( Prezant et al., 2020 ) which significantly 

educed the capacity of the EMS system. Thus, it is paramount to 

mprove the dispatching of ambulances in order to uphold service 

https://doi.org/10.1016/j.ejor.2021.11.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.11.051&domain=pdf
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nd reduce the infection probability of the medical personnel. 

ere, EMS operators may face a tradeoff between reducing the 

ime patients have to wait for first aid and protecting the EMS 

ersonnel. Thus, ethical considerations are necessary, and decision- 

akers require data to quantify the effects of possible measures. 

According to the World Health Organization (2018 pp. 14-18), 

he probability for further disease outbreaks with unpredictable 

ature and origin in the future is high. These prospects justify 

reparing for future disease outbreaks such as the Covid-19 pan- 

emic. To remain operational, the EMS should adapt to the circum- 

tances of a pandemic. Here, we investigate the benefit of desig- 

ating ambulances to certain patient categories such as suspected 

r known cases, further referred to as “ambulance split”. Ko et al. 

2004) present an observational study on a practical application of 

uch an ambulance split applied during the severe acute respira- 

ory syndrome (SARS) epidemic in Taipei (Taiwan). In this study, 

.6% of paramedics developed a probable SARS infection. Thus, a 

ossible advantage of an ambulance split could be to restrict the 

isk of infection when treating suspected or known cases to only 

 limited share of personnel. Decreasing the risk of infection for 

aramedics reduces absence times and, therefore, increases avail- 

ble personnel. Since we investigate the categorization of ambu- 

ances, we consider an ambulance and its personnel as one unit. A 

egative effect of an ambulance split could be the reduction of the 

ooling effect as there are fewer ambulances available from which 

he ambulance dispatcher can choose from. Thus, some patients 

ay experience longer waiting times if the nearest ambulance is 

esignated to serve only other patient categories. In our context, 

e divide patients into unsuspicious, suspected and known cases. 

hus, to apply this approach in practice, the number and locations 

f ambulances serving each patient category must be defined in 

 way that ensures acceptable emergency response times for all 

atients. Here, we need to decide which ambulance should serve 

hich patient category to obtain the highest system performance 

valuated by various performance measures. 

Quantified benefits and drawbacks of an ambulance split form 

he basis for evaluating its ethical justifiability. Depriving patients 

f the nearest ambulance based on their categorization must have 

egitimate reasons. When categorizing patients and ambulances, 

verage response times may decrease. However, an ambulance split 

ay lead to an increased health risk for personnel and patients. 

atients who cannot be served by the nearest ambulance must ac- 

ept longer waiting times and a share of personnel must accept a 

igher mean infection probability. These ethical considerations de- 

end on many factors, such as the EMS infrastructure and disease 

haracteristics. Thus, further research needs to investigate the eth- 

cal considerations of an ambulance split. 

Evaluating all possible ambulance splits is computationally in- 

ractable for large-scale systems. Thus, we apply a two-stage ap- 

roach. First, to decide on the allocation of ambulances to patient 

ategories, we pre-select ambulance splits based on their emer- 

ency call coverage by applying a first-stage optimization model. In 

his model, the coverage of emergency calls serves as an approx- 

mation for the performance of the EMS system. We assume that 

he better the coverage of emergency calls, the higher the perfor- 

ance of the EMS system in terms of its average response time. 

n the next step, at the second stage, we calculate performance 

easures for each pre-selected ambulance split using an adapted 

pproximate Hypercube Queuing Model (AHQM) in which we em- 

ed ambulance outages. To evaluate the performance, we consider 

erformance measures perceived by the patients, such as the re- 

ponse time, the share of late arrivals, and the patients’ waiting 

ime in the queue until an ambulance becomes idle and is dis- 

atched. Furthermore, calculating the mean infection probability 

or paramedics quantifies the benefit experienced by EMS person- 

el. We evaluate the benefit of an ambulance split by conduct- 
240 
ng a case study simulating a Covid-19 pandemic based on data of 

unich, Germany. Here, we consider disease-specific characteris- 

ics such as the infection probability and isolation time of infected 

aramedics. As unknown future diseases are likely to evolve and 

andemic data is subject to many uncertainties such as virus mu- 

ations or public health authorities prescribing isolation times, we 

onduct a sensitivity analysis to quantify the impact of such pa- 

ameters. 

The contribution of this paper is threefold. (i) To calculate the 

MS performance measures, we extend Larson ’s (1975) AHQM to 

he pandemic context and adapt Jarvis ’ (1985) solution algorithm 

or faster convergence. (ii) We combine an optimization model 

ith the AHQM to first pre-select ambulance splits and to evalu- 

te their performance thereafter. (iii) We quantify the performance 

enefit gained by EMS personnel and patients when designating 

mbulances to serve only suspected and known cases during a 

andemic. By doing so, we provide necessary data for evaluating 

he justifiability of an ambulance split. 

Results show that introducing a flexible split can reduce the av- 

rage response time without significantly increasing the mean in- 

ection probability for EMS personnel. This is the case if system 

orkloads are high due to long isolation times or high infection 

robabilities. Consequently, the general population could benefit 

rom a split which indicates ethical justifiability. Nevertheless, dis- 

ase specific characteristics, such as isolation times or transmission 

robabilities, influence the decision whether to split. In the case of 

hort isolation times and a low infection probability, the best av- 

rage response times are observed when not dividing ambulances 

nto categories. Applying a fixed split can decrease both the average 

esponse time and the mean infection risk for personnel serving 

nly unsuspicious cases; in turn, the remaining personnel desig- 

ated to suspected and known cases must accept higher mean in- 

ection probabilities. Here, decision-makers face a tradeoff whether 

 share of personnel should be protected at the expense of the re- 

aining personnel. 

First, we present related literature in Section 2 . Section 3 in- 

roduces the problem statement and second-stage model. 

ection 4 explains the solution algorithm based on the AHQM 

nd the calculation of performance measures. We introduce and 

ptimize the ambulance splits in Section 5 . In Section 6 , we 

valuate the tradeoff numerically. Section 7 concludes the paper. 

. Literature and background 

The problem of dispatching ambulances is related to allocating 

ervice units to customer inquiries such as towing requests for ve- 

icles or repair services for industrial machines causing high costs 

uring downtime. In such fast-response service networks, mini- 

izing response times is paramount. Drent, Keizer, & van Houtum 

2020) optimize the dispatching and repositioning process of a ser- 

ice provider responsible for the maintenance of, e.g., industrial 

achines. Hiller, Krumke, & Rambau (2006) tackle the dispatching 

roblem of a car breakdown service provider in real-time appli- 

ations by successively solving a re-optimization model using the 

nformation available at that time. 

In operations and supply chain risk management, there are sev- 

ral streams focusing on the preparation for various unpredictable 

vents such as earthquakes, terrorist attacks, or pandemics. These 

vents can lead to disruptions which one should prepare for. For 

his reason, measuring and improving supply chain resilience has 

ained attention. Golan, Jernegan, & Linkov (2020) conduct a sys- 

ematic literature analysis of trends and applications. Furthermore, 

ueiroz, Ivanov, Dolgui, & Fosso Wamba (2020) review literature 

nvestigating the influence of pandemics on logistics and supply 

hains. Caunhye, Nie, & Pokharel (2012) provide an overview of op- 

imization models to improve logistics operations before as well as 
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hortly after an emergency event, such as evacuation or transporta- 

ion of injured people. Dasaklis, Pappis, & Rachaniotis (2012) out- 

ine literature dealing with logistics operations preparing and con- 

rolling disease outbreaks caused naturally or by bioterrorist at- 

acks. Farahani, Fallah, Ruiz, Hosseini, & Asgari (2019) review the 

perations Research (OR) literature including facility location mod- 

ls for large-scale disasters such as earthquakes or terrorist attacks, 

mall-scale emergencies including EMSs, as well as non-emergency 

ealthcare facilities such as hospitals. Similar to Farahani et al. 

2019) , Altay & Green (2006) review OR literature studying the 

reparation, response and recovery from disasters, however, ex- 

luding daily emergency service operations. 

In the OR literature dealing with emergency services (e.g. op- 

rations of police forces, fire brigades, or EMS systems), different 

pproaches exist to investigate and optimize their performance. 

chmid (2012) applies approximate dynamic programming to in- 

estigate dispatching strategies and the relocation of idle ambu- 

ances in an EMS system. Another stream of literature investigates 

he operations of emergency services and their performance ap- 

lying simulation ( Amorim, Ferreira, & Couto, 2018; Haghani, Tian, 

 Hu, 2004 ). Tassone & Choudhury (2020) provide an overview of 

ptimization models and other solution methods applied to solve 

he routing and location problem of ambulances. Nickel, Reuter- 

ppermann, & Saldanha-da Gama (2016) introduce a sampling ap- 

roach to optimize ambulance depot and vehicle locations. Larson 

1974) introduces a descriptive model, the Hypercube Queuing 

odel (HQM), to determine performance measures of emergency 

ervice systems such as the average response time or ambulance 

orkloads. Although the HQM and its extensions can be applied to 

ifferent emer gency services, in our context, ambulances function 

s servers and patients’ emergency calls reflect the demand. Thus, 

n the following we refer to these terms interchangeably. 

.1. Hypercube queuing model 

Larson ’s (1974) HQM is a spatial queuing model based on a 

ontinuous-time Markov Process. The examined region consists of 

 set of geographical areas among which emergency calls and am- 

ulances are spatially distributed. The locations of ambulances can 

ither be fixed or mobile. Mobile locations refer to ambulances 

hat are non-stationary when they are idle. If all ambulances are 

usy, incoming emergency calls can either be queued or assumed 

o be lost and served by another system. In the HQM, every state 

s a binary sequence with each position representing the status of 

n ambulance. A binary value of 0 indicates an idle ambulance, 1 

enotes a busy ambulance. The transition graph forms a hypercube 

or systems operating more than three ambulances. The times be- 

ween transitions are exponentially distributed and depend on the 

rrival and service rates of emergency calls. Under single dispatch, 

nly transitions between states directly connected by an edge in 

he hypercube are possible ( Larson, 1974 ). 

Larson (1975) presents an approximate HQM (AHQM) which 

oes not require an exponential number of constraints compared 

o the exact HQM when calculating steady-state probabilities. 

herefore, it is applicable for large-scale systems. Ghobadi, Arkat, & 

avakkoli-Moghaddam (2019) present key aspects of the exact and 

pproximate HQM and give an overview of possible extensions. 

Chelst & Barlach (1981) extend the HQM and AQHM by adding 

he possibility of multiple-dispatch. In doing so, they can reflect 

he dispatch of multiple ambulances to incidents requiring in- 

reased manpower. In their experiments applied to the context 

f police forces, the performance measures obtained from the 

dapted approximate model deviate by less than 2% from the 

xtended exact model, on average. Jarvis (1985) embeds multi- 

le patient types into the AHQM and develops a stable and fast- 

onverging approximation procedure to obtain the steady-state 
241 
robabilities. In the developed model, service times depend not 

nly on the ambulance but also on the patient type. Souza, Mora- 

ito, Chiyoshi, & Iannoni (2015) categorize patients according to 

heir priority and account for these priorities when serving pa- 

ients from the queue. Comparing the results of the extended HQM 

ith simulated results yields a relative error of 1%, on average. 

imilarly, Iannoni, Chiyoshi, & Morabito (2015) consider three pa- 

ient classes based on the patients’ urgency of being served. Look- 

ng at small instances, the service quality of the two higher-priority 

lasses increases slightly, at the expense of the lowest-priority 

lass which faces a significantly lower service quality. Goldberg & 

az (1991) develop an optimization model and apply pairwise in- 

erchange heuristics to find the best locations for ambulances. Re- 

ults show that the heuristics perform best if either locations cov- 

ring the lowest share of emergency calls or locations with the 

owest utilization are closed in each iteration of the pairwise inter- 

hange heuristics. Iannoni, Morabito, & Saydam (2008) , based on 

helst & Barlach (1981) , assume that a call can only be answered 

y specific ambulances, referred to as “partial backup”. Optimizing 

he size of the geographical areas, each with its own ranked list of 

referred ambulances, may improve the performance of the EMS 

ithout adapting the ambulances’ locations. Morabito, Chiyoshi, & 

alvão (2008) compare the performance measures of the HQM for 

omogenous and non-homogenous ambulances. They observe that 

mbulance-specific service times improve the estimation of the ac- 

ual performance measures. Budge, Ingolfsson, & Erkut (2009) fo- 

us on the EMS system’s ambulance depots rather than on the am- 

ulances. They assume that multiple ambulances are located at the 

ame depot and numerically quantify the difference between the 

terative approximation approach and a discrete-event simulation 

o be mainly below 2%. However, there is no proof that the itera- 

ive algorithm converges for all problem instances. 

In the existing (A)HQM literature, the influence of a pandemic 

n an EMS system has not yet been adressed. Thus, we close this 

iterature gap by including different patient groups categorized by 

he infection risk they pose to the EMS personnel. In addition, 

e include outage times of ambulances if paramedics have been 

nfected. We further investigate different ambulance splits which 

llocate ambulances to patient categories. Such assignments have 

ot yet been considered in combination with the (A)HQM. 

.2. Analysis of large-scale emergency medical service systems 

The presented extensions of the (A)HQM are mostly applied to 

mall problem instances. In the following, we present literature 

ocusing on large-scale systems. Atkinson, Kovalenko, Kuznetsov, 

 Mikhalevich (2006) present two heuristics for large-scale sys- 

ems to estimate the systems loss probability and ambulances’ 

tilization factors in an EMS along a highway. Iannoni, Mora- 

ito, & Saydam (2011) build upon Atkinson et al. (2006) to ex- 

mine performance metrics for large-scale EMSs and to solve the 

ocation as well as the districting problem of an EMS. Iannoni 

t al. (2011) conduct a case study focusing on an EMS system 

ocated along a Brazilian highway as well as large-scale systems 

hat are randomly generated. They observe that the increase in 

heir heuristic’s runtime is nearly linear with the number of ambu- 

ances. Geroliminis, Kepaptsoglou, & Karlaftis (2011) apply a two- 

tep approach to the repair service of the public bus network in 

thens (Greece). They tackle the location problem for large-scale 

ystems by first dividing the examined area into so-called “su- 

erdistricts” before they derive the required number of servers 

nd their optimal locations per superdistrict. To find a solution for 

he location problem of servers, Boyacı & Geroliminis (2015) in- 

roduce the so-called 3N HQM in which each server is always in 

ne of the following three states: idle or busy serving an intra- 

istrict or inter-district incident. To handle the large number of 
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tates, they develop an aggregate HQM in which servers are clus- 

ered into sets. Boyacı & Geroliminis (2015) conclude that the time 

ervers substitute a preferred server is significant and cannot be 

eglected. Furthermore, it is shown that the 3N HQM, as well as 

he aggregate HQM, can be embedded in a simulated annealing 

nd variable neighborhood search to find near-optimal locations 

or servers. Similar to Geroliminis et al. (2011) , they apply their 

pproach to Athens’ repair service of public transportation vehi- 

les. As the number of states in the HQM grows exponentially with 

he number of ambulances, the previously presented papers pre- 

ominantly focus on reducing the state-space of the HQM. Blank 

2020) investigates to what extent the computational times can 

mprove when aggregating the demand areas into “super demand 

reas” without reducing the number of states. Furthermore, a ge- 

etic algorithm is applied to improve the location of servers, which 

eads to near-optimal solutions with a deviation of less than 2% 

rom the optimal solution. Yoon, Albert, & White (2021) show that 

n ambulance split can improve service times if some ambulances 

re dedicated to life-threatening conditions. Unlike this work, they 

o not consider tradeoffs between response times and infection 

isks, but focus on the tradeoffs between patient groups resulting 

n different splits. 

.3. Technology choice 

The decision of whether to designate a share of ambulances to 

efined patient categories is related to technology choice problems. 

ere, decision-makers choose between flexible technology that can 

andle multiple products and dedicated technologies each appli- 

able for one product only. Flexible machines can better handle 

emand uncertainties except in the case of perfect demand cor- 

elation or when cost savings can be achieved ( Fine & Freund, 

990; Van Mieghem, 1998 ). Cao, He, Huang, & Liu (2020) investi- 

ate the benefits and disadvantages of pooling in queuing systems 

sing various performance measures. While it is commonly known 

hat pooling reduces server idle times, dedicated queues may re- 

uce the probability of customers waiting longer than some delay 

hreshold. Late arrivals represent an important performance mea- 

ure for EMS systems. In the case of an ambulance split, such cost 

avings may correspond to lower outage probabilities of dedicated 

echnologies which has not yet been addressed in literature. 

. Problem statement and second-stage model 

We apply a two-stage approach to design and evaluate the am- 

ulance split. At the first stage, we solve an optimization model 

o pre-select ambulance splits. At the second stage, we evaluate 

he pre-selected splits using the AHQM. Before presenting the first- 

tage model, we introduce the problem statement. Additionally, we 

escribe the second-stage model applied to quantify the EMS sys- 

em’s performance using performance measures, such as the aver- 

ge response time or the mean infection probability for EMS per- 

onnel. Table 6 in Appendix A summarizes the notation. 

.1. Problem statement 

During a pandemic, the demand for EMSs putting their person- 

el at risk increases, as paramedics provide first aid to infected in- 

ividuals. To improve the performance of the EMS, we designate 

 share of ambulances and personnel to serve only suspected and 

nown cases. To evaluate the performance of such an ambulance 

plit, we estimate the average response time including the patient’s 

ueuing time, the time for dispatching, and the driving time to the 

ncident. In Bavaria (Germany), the law prescribes that the location 

f each emergency call must be reachable within 12 min driving 

ime (AVBayRDG §2 (1) Bayerisches Staatsministerium des Innern 
242 
2010)). We thus additionally calculate the share of incidents for 

hich the driving time exceeds time threshold t D and the share of 

ncidents for which the response time exceeds time threshold t R . 

he EMS operator aims to find the best possible allocation of am- 

ulances to patient categories, improve the performance measures, 

nd consider uncertain emergency call locations and arrival times. 

hus, although capacity planning is a tactical decision, we need to 

dapt the dispatching processes on an operational basis to improve 

he system’s performance. 

Infrastructure. The EMS operates in a given region, represented 

y a set of nodes J . These nodes serve as possible locations for 

ncoming emergency calls, ambulance depots, and hospitals. Hospi- 

als serve as destinations for patient transfers. N ambulances n ∈ N 

ocated at ambulance depots which are spatially distributed among 

he examined region serve the incoming calls. Each depot can hold 

ore than one ambulance. We refer to these ambulances as “co- 

ocated”. The assigned depot of each ambulance, l ( n ) , is fixed. This 

s reasonable since the current allocation of ambulances to depots 

hould be appropriate to fulfill all existing regulations, such as the 

aximum driving time to incidents. The optimal assignment will 

ot change if the geographic distribution of incidents does not al- 

er significantly. 

Incidents. Within the examined region, spatially distributed de- 

and for service occurs, reflecting emergency calls of patients. For 

he EMS system at the time of a pandemic, we divide the inci- 

ents into categories, denoted by i ∈ I . In our case study, these 

re known cases, suspected cases, and unsuspicious cases. How- 

ver, the model’s generality allows additional patient groups, such 

s risk patients requiring higher safety standards or introducing 

atient priorities. As we assume a risk of infection for personnel 

hen serving a patient, we distinguish between infection types 

 ∈ K = { 0 , 1 } . Here, k = 1 denotes that the ambulance’s personnel

as been infected and the ambulance is taken out of service; oth- 

rwise, we set k to 0. Incidents arriving at node j with a rate of 

ik j follow a Poisson process. 

Ambulances and Personnel. We assume that regular testing 

rocedures detect every staff infection. Thus, the probabilities for 

nfection and outage of personnel coincide. In the case of a trans- 

ission, ambulance and personnel are taken out of service for an 

xponentially distributed outage time. This assumption is based 

n presuming that the outage time of paramedics is stochastic, 

s infected individuals may remain in isolation longer than pre- 

cribed by public authorities. Furthermore, an earlier release from 

solation is often possible after being tested negative. Thus, due to 

he stochastic nature, we assume exponentially distributed service 

imes. To account for this simplification, we implement a discrete- 

vent simulation in Section 6.3 which studies the impact of ap- 

lying constant distribution types for the service times including 

he outage times. In the conducted case study, the expected out- 

ge time corresponds to the time an infected person is isolated. 

hen modeling these outages, the ambulance is the smallest unit 

s we do not consider the personnel separately. We assume that 

hysical distancing between EMS personnel is enhanced, as recom- 

ended by the Centers for Disease Control and Prevention (2020b). 

hus, we assume that paramedics avoid having contact with their 

o-workers serving in other ambulances to minimize the infection 

isk. Further, if a paramedic is infected, there is a high chance that 

o-workers operating in close contact in the same ambulance are 

ither infected or quarantined, too. However, to reduce the person- 

el shortfall, the dispatcher can divide ambulances into categories 

 n ∈ C where c n denotes the category of ambulance n . Depending 

n the assigned category, the ambulance can only serve, or pref- 

rentially serves, certain incident types. We assume that an ambu- 

ance and incident type can only be assigned to exactly one cat- 

gory. Nevertheless, each ambulance category can serve multiple 

ncident types. Thus, a particular share of emergency calls d c j at 
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ode j is designated to be served by ambulance category c. The 

odel permits an arbitrary number of ambulance categories. The 

odel’s generality is beneficial when analyzing possible ambulance 

plits, e.g., in regards to emerging Covid-19 variants of concern 

uch as B.1.351 (Beta) or P.1 (Gamma) (Robert Koch Institut, 2021). 

urthermore, future research could address additional categories to 

nclude patient priorities, distinguish ambulance types according to 

heir equipment, or provide higher safety standards for patients or 

ersonnel with pre-existing conditions which increase the risk of 

 severe disease progression. Considering the infection risk posed 

y the three patient categories defined for Munich, we limit the 

umerical analysis to two ambulance categories, one for serving 

uspected and known cases (S, K), another for unsuspicious cases 

U). Thus, C = {{ U} , { S, K}} . Based on the set of defined ambulance

ategories C, different ambulance splits have the same number of 

mbulances per category, denoted by A c . Therefore, we introduce 

he set A = {{ A { U} , A { S,K} } : A { U} + A { S,K} = N} which represents the

et of all possible combinations of A c for c ∈ {{ U} , { S, K}} . 
EMS operations. Service times are independent random vari- 

bles with a common exponential distribution with a mean of τik jn 

hich do not depend on the arrival of emergency calls. The service 

imes include the following steps: After dispatching an ambulance 

hich takes a mean dispatching time τD , it travels to the incident 

cene. We reflect the driving time from the ambulance location 

 ( n ) to node j as τl ( n ) j . After treating the patient at the incident 

cene, the ambulance returns to the depot or transfers the patient 

o a hospital. Afterward, the personnel cleans the ambulance if the 

atient is suspected or known to be infected. If the paramedics 

ave been infected, the total service time increases by the per- 

onnel’s absence time. For simplicity, we assume that personnel 

ests themselves in a timely manner to detect infections immedi- 

tely. When transferring a patient to a medical facility, we always 

hoose the closest hospital. We estimate the mean travel times us- 

ng the Haversine function and the ambulance’s velocity. We can 

pply this approximation as we assign all incidents, ambulance de- 

ots, and hospitals to the nearest node. In line with Iannoni et al. 

2008) and Mendonça & Morabito (2001) , we assume that an am- 

ulance always returns to its depot before being dispatched as the 

eturn time amounts only to a small share of the total service time. 

or the dispatching process, we assume single dispatch. This means 

hat we always dispatch exactly one ambulance to an incident. Fur- 

her, we apply a ranked-ordered list of ambulances for each node 

nd incident type independent of the system’s state. The parameter 

 i jr refers to the r th ranked ambulance for incident type i at node 

j. We dispatch the unit with the lowest rank which is idle. We de- 

ermine the preference among ambulances located at the same de- 

ot at random. Balancing the co-located ambulances’ loads among 

hem counteracts the inaccuracy introduced by this random selec- 

ion and allows us to model each ambulance individually. We refer 

o Budge et al. (2009) who introduce a model tackling the prob- 

em of co-located ambulances by focusing on the ambulance de- 

ots rather than on the individual ambulances. 

Queued emergency calls. The higher the system’s workload, 

he higher is the probability that no ambulance is available to be 

ispatched. Since all patients must eventually be served, we as- 

ume that incoming emergency calls join a First-In-First-Out (FIFO) 

ueue with infinite capacity. This queue becomes more critical in 

 pandemic context since system unavailability naturally occurs 

ore frequently if the number of emergency calls increases and 

he EMS personnel may need to self-isolate. Because the service 

imes of ambulances are independent and identically distributed, 

ach ambulance has an equal probability of becoming idle and be- 

ng dispatched to the next call in the queue if all ambulances are 

usy. Therefore, in line with Larson (1974, 1975) and Batta, Dolan, 

 Krischnamurthy (1989) , we assume that the probability of an 

mbulance being dispatched to a queued call is equal for all ambu- 
243 
ances. In the case the system utilization exceeds 100%, we refer to 

he system as being “overloaded”. To derive the performance mea- 

ures of the EMS system, we assume that the system operates in a 

teady state. Therefore, we calculate the steady-state probabilities 

y adapting the AHQM. 

.2. Second-stage model 

We adapt Larson ’s (1975) AHQM by including the incident and 

nfection types I and K in the performance measures and input 

arameters. Furthermore, we consider the ambulance split that we 

ecide on, denoted by c n ∈ C ∀ n ∈ N . 

The AHQM with infinite capacity depicts an M/M/N/ ∞ queuing 

odel. This permits us to derive the probability of the steady state, 

enoted by P v , with exactly v busy ambulances ( Larson, 1975 ). Un-

ike the exact HQM, the AHQM does not make use of the detailed 

tate description representing each ambulance independently. For 

his reason, we approximate the probability of dispatching ambu- 

ance n as the r th favored server to an unqueued emergency call 

f incident type i at node j by assuming an M/M/N/ ∞ queuing 

ystem in which we randomly draw ambulances without replace- 

ent. r i jn is the rank of ambulance n for incident type i at node j. 

hus, we extend Larson ’s (1975) AHQM by having preference lists 

ot only depend on node j, but also on incident type i . As we con-

ider an M/M/N/ ∞ queuing system, the system’s utilization ρ is 

τ/N ( Larson, 1975; Jarvis, 1985; Tijms, 2003 , p. 187-188). We ap- 

roximate the probability that ambulance n is dispatched as the 

 

th favored ambulance to an unqueued emergency call of type i at 

ode j by multiplying the availability factor ( 1 − ρn ) of ambulance 

 by the workloads of all better ranked ambulances ( ρn ) ( Jarvis, 

985; Larson, 1975 ). As EMS operators consider the status of each 

mbulance at the time of dispatching, ambulances do not operate 

ndependently. For this reason, we amend the result by the cor- 

ection factor Q introduced by Larson (1975) . We approximate the 

robability of an ambulance being dispatched to a queued call by 

 N /N, i.e., in the case that all ambulances are busy, each ambu- 

ance has an equal probability of becoming idle and dispatched to 

 queued call. Thus, we obtain the probability f i jn that ambulance 

 is dispatched to any incident of type i at node j. 

f i jn = Q 

(
N, ρ, r i jn − 1 

)
( 1 − ρn ) 

r i jn −1 ∏ 

l=1 

ρa i jl 
+ 

P N 
N 

∀ i ∈ I, j ∈ J , n ∈ N 

(1) 

We present a detailed derivation for f i jn in Appendix B. Making 

se of the dispatching probabilities f i jn , the mean service time of 

he system is 

= 

∑ 

i ∈I 

∑ 

k ∈K 

∑ 

j∈J 

λik j 

λ

∑ 

n ∈N 
f i jn τik jn . (2) 

Here, we adapt Jarvis ’ (1985) calculation by considering the in- 

ident and infection type i and k in the arrival rates λik j , ser- 

ice times τik jn and dispatching probabilities f i jn . Contrary to Jarvis 

1985) , no calls are lost. Thus, to obtain the mean service time, we 

ultiply the probability that ambulance n is dispatched to incident 

ype i at node j by the required service time for this incident. As 

he share of emergency calls differs among nodes, we account for 

he share of incidents of type ik occurring at node j by λik j /λ. 

We further obtain the rate λik j f i jn at which ambulance n is as- 

igned to incidents of type ik at node j. Multiplying the assignment 

ate by the service time τik jn , results in the probability that ambu- 

ance n is busy serving an incident of type ik j, P 
(
B ik jn 

)
. Taking the

um over all nodes, incident and infection types yields the individ- 

al ambulance workload ρn ( Jarvis, 1985 ). 

 

(
B ik jn 

)
= λik j f i jn τik jn ∀ i ∈ I, k ∈ K, j ∈ J , n ∈ N (3) 
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n = 

∑ 

i ∈I 

∑ 

k ∈K 

∑ 

j∈J 
λik j f i jn τik jn ∀ n ∈ N (4) 

We reformulate ρn in (4) by inserting f i jn from (1) and consider 

ll possible ranks r that can be assigned to an ambulance in a pref- 

rence list. To account for the pandemic, we include service times 

ik jn which depend on the ambulance n and node j, as well as the 

ncident and infection type ik . To consider queued calls, we add the 

erm λik j τik jn P N /N which corresponds to the expected time ambu- 

ance n spends serving patients from the queue, given by the ar- 

ival rate λik j multiplied by the expected service time τik jn and the 

robability that any ambulance serves an incident from the queue 

 N /N. 

n = 

∑ 

i ∈I 

∑ 

k ∈K 

∑ 

j∈J 

(
λik j τik jn Q ( N, ρ, r ( i, j, n ) − 1 ) ( 1 − ρn ) 

×
r ( i, j,n ) −1 ∏ 

l=1 

ρa i jl 
+ λik j τik jn 

P N 
N 

) 

∀ n ∈ N 

(5) 

To account for ties in a preference list among ambulances of the 

ame ambulance category located at the same depot, we balance 

heir workloads ρn and dispatching probabilities f i jn evenly among 

hem. Thus, we divide the sum of their individual workloads by 

heir number. Similarly, we balance the dispatching probabilities. 

he binary parameter y in indicates whether ambulance n can serve 

ncident type i . Thus, balanced workloads and dispatching proba- 

ilities are given by 

′ 
n = 

ρn + 

∑ 

m ∈N\ { n } 
∑ 

i ∈I 
1 ( y in = y im ) 1 ( l ( n ) = l ( m ) ) ρm ∑ 

m ∈N\ { n } 
∑ 

i ∈I 
1 ( y in = y im ) 1 ( l ( n ) = l ( m ) ) 

∀ n ∈ N (6) 

f ′ i jn = 

f i jn + 

∑ 

m ∈N\ { n } 
1 ( y in = y im ) 1 ( l ( n ) = l ( m ) ) f i jm ∑ 

m ∈N\ { n } 
1 ( y in = y im ) 1 ( l ( n ) = l ( m ) ) 

∀ n ∈ N , i ∈ I, j ∈ J 

(7) 

here 1 ( ·) is the indicator function and returns 1 iff its input is 

rue. 

To obtain the performance measures of the EMS system, we 

pply an adapted version of the iterative algorithm developed by 

arvis (1985) presented in Section 4 . In each iteration, denoted 

y the iteration counter ι, we normalize the individual ambulance 

orkloads such that the mean of all workloads corresponds to the 

verage system utilization. Here, we multiply each workload ρn by 

he normalizing factor �. Furthermore, we normalize the dispatch- 

ng probabilities such that 
∑ 

n ∈N f i jn ( ι) = 1 ∀ i ∈ I, j ∈ J . 

= 

ρ( ι − 1 ) 
1 
N 

∑ 

n ∈N 
ρn ( ι) 

(8) 

′ 
n ( ι) = �ρn ( ι) ∀ n ∈ N (9) 

f ′ i jn ( ι) = 

f i jn ( ι) ∑ 

m ∈N 
f i jm 

( ι) 
∀ i ∈ I, j ∈ J , n ∈ N (10) 

. Solution algorithm and performance measures 

In the following, we introduce the iterative solution algorithm 

pplied to estimate the ambulance workloads and dispatching 

robabilities. We further define performance measures to evaluate 

he system’s performance. 
244 
.1. Estimating ambulance workloads: An iterative solution algorithm 

The developed solution algorithm to obtain the perfor- 

ance measures of the EMS system is based on Jarvis (1985) . 

lgorithm 1 depicts the pseudo-code. 

lgorithm 1 Pseudo-Code of the Iterative Workload Approxima- 

ion Algorithm. 

Given: τik jn , λik j , a i jr , ε
ι ← 0 

converged ← F alse 

ρn ( ι) ← 

∑ 

i ∈I 
∑ 

k ∈K 
∑ 

j∈J λik j τik ja i j1 

τ ( ι) ← 

∑ 

i ∈I 
∑ 

k ∈K 
∑ 

j∈J λik j τik ja i j1 
/λ

Balance workloads (6) 

Distribute workload of overloaded ambulances (11)-(12) 

while not converged do 

Calculate average workload ρ( ι) = λτ ( ι) /N 

if ρ( ι) > 1 then return null 

else 

ι ← ι + 1 

Calculate ρn ( ι) from (5) inserting Q ( N, ρ( ι − 1 ) , j ) and 

ρn ( ι − 1 ) 
Balance workloads (6) 

if max n | ρn ( ι) − ρn ( ι − 1 ) | ≤ ε then 

converged ← T rue 

Normalize workloads (9) 

else 

Compute f i jn ( ι) (1) 

Balance dispatching probabilities (7) 

Normalize dispatching probabilities (10) 

Compute τ ( ι) (2) 

end if 

end if 

end while 

return Calculate performance measures (13)-(20) 

After initializing the ambulance workloads and the average sys- 

em service time, we balance the workloads of co-located ambu- 

ances of the same category by distributing the sum of their work- 

oads evenly among them. Then, we distribute the workloads of 

verloaded ambulances to their direct backup ambulances. By do- 

ng so, we observe a better runtime in the experimental results. 

hus, we first calculate the number of preference lists in which 

mbulance m serves as direct backup of ambulance n ( b nm 

) as fol-

ows: 

 nm 

= 

∑ 

i ∈I 

∑ 

j∈J 
1 ( a i jr = n ∧ a i j ( r+1 ) = m ) ∀ n ∈ N , m ∈ N \ { n } (11) 

Then, we derive the workload that is shifted from ambulance n 

o backup ambulance m ( ω nm 

): 

 nm 

= 

( ρn − 1 ) · b nm ∑ 

o∈N 
( b no ) 

where ρn > 1 ∀ n ∈ N , m ∈ N \ { n } (12) 

We repeat these steps until no ambulance remains overloaded, 

f possible. After the initialization and the distribution of work 

verload, we verify that the system is not overloaded, i.e. ρ ≤ 1 . 

therwise, the algorithm terminates without a solution. If this is 

ot the case, we continue and iteratively approximate the ambu- 

ances’ workloads by recalculating the average system workload, 

he dispatching probabilities, and the average system service time 

n each iteration. As soon as the maximum deviation between the 

orkloads in two consecutive iterations is smaller than thresh- 

ld ε, we use the obtained approximations to calculate the per- 

ormance measures of the EMS. In line with Larson (1975) , we as- 
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ume a convergence threshold of ε = 3 . 3 E - 4 . Applying this thresh-

ld, Larson (1975) observes a maximum error of 0.36%. 

.2. Computation of performance measures 

Based on the variables obtained by the AHQM, we derive per- 

ormance measures to evaluate the performance of the EMS sys- 

em. A widely applied performance measure is the average re- 

ponse time r ( Schmid, 2012; Souza et al., 2015 ). Before calculating 

he average, we must derive the response time for ambulance n for 

 given incident of type i occurring at node j. Here, we take the pa-

ients’ average waiting time in the queue w , the dispatching time 

D and the travel time τl ( n ) j into account. According to Tijms (2003 , 

. 192), the average waiting time in an M/M/N/ ∞ -queue is: 

 = 

ρτ

N ( 1 − ρ) 
2 

P N−1 (13) 

We can also use the waiting time as an indicator of the sys- 

em’s congestion. After determining the waiting time, we obtain 

he average response time by multiplying the fraction of inci- 

ents of type i occurring at node j by the probability that am- 

ulance n is dispatched ( f i jn ) and the response time required by 

mbulance n . 

 = 

∑ 

i ∈I 

∑ 

j∈J 

λi j 

λ

∑ 

n ∈N 
f i jn 

(
w + τD + τl ( n ) j 

)
(14) 

Similarly, we obtain the average driving time: 

 = 

∑ 

i ∈I 

∑ 

j∈J 

λi j 

λ

∑ 

n ∈N 
f i jn τl ( n ) j (15) 

We measure the share of incidents for which the driving time 

l ( n ) j exceeds a given time threshold t D , denoted by ζ D . In a pan- 

emic context, the unavailability of ambulances may occur more 

requently. Thus, we consider the queuing time by additionally 

easuring the share of incidents where the response time exceeds 

ime threshold t R , termed ζ R . 

D = 

∑ 

i ∈I 

∑ 

j∈ J 

λi j 

λ

∑ 

n ∈N 
f i jn 1 ( τl ( n ) j >t D ) (16) 

R = 

∑ 

i ∈I 

∑ 

j∈ J 

λi j 

λ

∑ 

n ∈N 
f i jn 1 ( r>t R ) (17) 

Splitting the ambulances into categories may protect EMS per- 

onnel from infections. We quantify this benefit by calculating the 

robability for ambulance n to be taken out of service due to in- 

ected personnel. We refer to this probability as “infection proba- 

ility”. For this reason, we multiply the percentage share of inci- 

ents for which ambulance n is taken out of service ( λi 1 j /λ) with 

he probability that ambulance n is dispatched to this type of inci- 

ent ( f i jn ). 

 

I 
n = 

∑ 

i ∈I 

∑ 

j∈ J 

λi 1 j 

λ

∑ 

n ∈N 
f i jn ∀ n ∈ N (18) 

here k = 1 indicates that ambulance n is unavailable due to an 

nfection of its personnel. 

Making use of the infection probability per ambulance, the 

ean infection probability over all ambulances n ∈ N is 

 ̄

I = 

∑ 

n ∈N 
P I n 

N 

. (19) 

Here, we divide the sum of all infection probabilities by the 

umber of ambulances. As the mean infection probability may sig- 

ificantly differ among the ambulance categories c ∈ C, we apply 
245 
he same procedure used for calculating P̄ I in Eq. (19) for all cate- 

ories, separately. Thus, we only consider ambulances assigned to 

he examined category ( n ∈ N : c n = c). A c denotes the number of 

mbulances allocated to category c. 

 ̄

I 
c = 

∑ 

n ∈N : c n = c 
P I n 

A c 
∀ c ∈ C (20) 

Based on these performance measures we can evaluate the per- 

ormance of an EMS and, therefore, quantify the benefit of an am- 

ulance split. In Appendix C, we show that the mean infection 

robability is not linear in the number of ambulances per category. 

urthermore, the mean infection probabilities observed for the flex- 

ble split are not convex in the split. 

. First-stage optimization model 

In the following, we present the investigated ambulance splits 

nd introduce the first-stage optimization model that pre-selects 

mbulance splits before evaluating them in the second-stage 

odel. 

.1. Instantiation to multiple vehicle types and ambulance splits 

We distinguish three types of ambulance splits: Flexible split , 

xed split and no split . When investigating a flexible split , we al- 

ocate ambulance categories to certain incident types. However, if 

ll ambulances of a certain category are busy, ambulances desig- 

ated to other categories can serve as a backup. Thus, if all am- 

ulances are busy, emergency calls join a single queue. When ap- 

lying a fixed split , ambulances cannot serve as a backup for inci- 

ent categories to which they have not been assigned. Therefore, 

n incoming emergency call joins a queue if no designated ambu- 

ance is idle. Consequently, we require a separate queue for each 

mbulance category. Thus, in the case of a fixed split , we assume 

n independent system for each ambulance category c ∈ C and its 

ssigned incident types, I c . When applying no split , there is no re- 

triction and each incident type can be served by all ambulances in 

he system. We additionally combine the flexible split with an am- 

ulance reservation strategy. Further, we combine the reservation 

trategy with no split . As we include different ambulance categories 

nd do not consider call priorities, we adapt the cutoff policy pre- 

ented by Iannoni et al. (2015) . For both types of splits, we define a

utoff level 
 = [0 , 1] . For simplification, we assume the same cut- 

ff level for all ambulance categories. In the case that the relation 

etween the busy ambulances per category and the total ambu- 

ances per category exceeds this threshold, all remaining idle am- 

ulances of the corresponding category are dedicated to serve only 

he assigned categories. The ambulance categories for which the 

utoff level is not exceeded can continue serving calls according 

o the flexible or no split policy. Applying the ambulance reserva- 

ion strategies in the AHQM requires additional adaptations which 

re beyond the scope of this study. However, to investigate the po- 

ential of these strategies, we apply a discrete-event simulation in 

ection 6.3 and investigate the results obtained by incorporating 

he ambulance reservation strategies. 

Applying a flexible split or no split , without enabling ambulance 

eservation, requires an adaptation of the preference list for each 

ncident type and node. For the fixed split , the number of ambu- 

ances in each system equals the number of ambulances of the an- 

lyzed category, A c , given in (22) . As the optimal assignment of 

mbulances per category is determined in the first-stage, c n is a 

rst-stage variable which functions as a parameter in the second- 

tage. The binary parameter γic indicates whether ambulance cat- 

gory c can serve incident type i . I c represents the set of incident 

ypes served by ambulance category c. 

 c = { i ∈ I| γic = 1 } ∀ c ∈ C (21) 
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(

–  
 c = 

∑ 

n ∈N 
1 ( c n = c ) γic ∀ c ∈ C (22) 

fter running the solution algorithm for the fixed split , we obtain 

eparate performance measures for each system, e.g. an average 

esponse time for the system serving unsuspicious cases and an 

verage response time for suspected and known cases. The per- 

ormance measures of the different systems ( KP I c ) must be ag- 

regated in order to compare them to the corresponding perfor- 

ance measures of the flexible split and no split . Thus, for each 

ime-related performance measure, i.e. r, d, ζ D and ζ R , we sepa- 

ately apply the following weighting method: 

 P I = 

∑ 

c∈C 

∑ 

i ∈I: γic =1 

λi 

λ
K P I c (23) 

For all systems, each served by an ambulance category c ∈ C, we 

et the variable KP I c to the examined performance measure and 

eight it with the share of emergency calls that occurred in the 

orresponding system. 

Weighting the performance measures according to the share of 

mergency calls per system is inappropriate for some performance 

easures. While the time-related performance measures refer to 

he incidents, the mean infection probability refers to the ambu- 

ances. Thus, to obtain the mean infection probability of ambu- 

ances over all systems, we multiply the mean infection probability 

f each system ( ̄P I c ) by the number of ambulances per system A c 

ivided by the total number of available ambulances N. 

 ̄

I = 

∑ 

c∈C 

A c 

N 

P̄ I c (24) 

.2. Pre-selecting ambulance splits 

Calculating all possible ambulance splits is computationally in- 

ractable for large-scale systems. For the two examined ambulance 

ategories the iterative solution algorithm must be repeated 2 N 

imes. To reduce the number of ambulance splits to be evaluated 

y the AHQM, we solve a mixed-integer linear program (MILP) 

or each combination in A that determines the “best” split, i.e. 

he split that covers nodes with a high share of emergency calls 

ith as many ambulances as possible without neglecting the cov- 

rage of nodes with a low share of emergency calls. In line with 

atta et al. (1989) , we assume that ambulance n covers node j if 

t can be reached within a time threshold of t D . We refer to an

lement in A , in our context { A { U} , A { S,K} } , as combination . For ex-

mple, for N = 50 we run the optimization model for all combina- 

ions in A = {{ 0 , 50 } , { 1 , 49 } . . . , { 50 , 0 }} . For our case, if A { U} = 0

r A { S,K} = 0 , the optimal solution of the flexible split equals the 

bjective value of having no split . However, for the fixed split we 

ust exclude these cases from A , otherwise, some patient cate- 

ories are not served by any ambulance leading to a queue of infi- 

ite length. Based on preliminary experimental results, we set the 

eight for both ambulance categories to 1 / |C| = 0 . 5 . d c j is the per-

entage share of emergency calls occurring for ambulance category 

at node j. 

bjective 1: max 
∑ 

c∈C 

1 

2 

[
min ∀ j∈ J 

∑ 

n ∈N 
1 ( τl ( n ) j ≤t D 

∧ 

c n = c ) 

]
(25) 

bjective 2: max 
∑ 

n ∈N 

∑ 

j∈J 

∑ 

c∈C 
1 ( τl ( n ) j ≤t D 

∧ 

c n = c ) d c j (26) 

ubject to 

∑ 

n ∈N 
1 ( c n = c ) = A c ∀ c ∈ C (27) 
m
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 n ∈ C ∀ n ∈ N (28) 

The first objective (25) maximizes the minimum number of 

mbulances covering a node for all ambulance categories c ∈ C. 

he minimum coverage of both ambulance categories is weighted 

y factor 0.5. The indicator function 1 ( ·) returns 1 iff the driving 

ime from node j to the ambulance depot, l ( n ) , is smaller than 

r equal to the time threshold t D . Additionally, ambulance n must 

e assigned to category c. The second objective (26) maximizes 

he nodes’ coverages weighted by their share of emergency calls. 

gain, the value of the indicator function 1 ( ·) is 1 iff ambulance n 

s assigned to category c and covers node j. The linearization of the 

inimization terms in the objective functions is trivial. Constraint 

27) ensures that the sum of ambulances assigned to category c

quals the defined number of ambulances per category ( A c ). Con- 

traint (28) defines the domain of variable c n . 

To solve the optimization model, we evaluate the two objectives 

exicographically: First, we maximize (25) . Second, we maximize 

26) without degrading the solution of the first objective. This en- 

ures that the minimal coverage of all nodes is as high as possible. 

he lexicographical approach obtains feasible splits for all combi- 

ations. Depending on the EMS infrastructure, defining a minimum 

overage as a hard constraint may prevent the model from finding 

 feasible solution. For example, nodes covered by only one ambu- 

ance can in this case never be covered by all ambulance categories 

hen applying a split, as ambulances can be assigned to one cate- 

ory only. We solve the optimization model for all N + 1 combina- 

ions and obtain the optimal ambulance split for each of them, as 

he numerical experiments show that there can be multiple local 

inima. Thus, a local search procedure or gradient descent may re- 

ult in a suboptimal solution. The existence of multiple local min- 

ma has different reasons. First, we heuristically use the emergency 

all coverage for the EMS system’s performance under a split. Sec- 

nd, as applying the exact HQM is computationally intractable, we 

pproximate the ambulances’ workloads. These approximations can 

esult in local minima if the ambulances’ workloads only slightly 

iffer. Even for large-scale EMS systems, the enumeration of all 

 + 1 combinations is computationally feasible. 

After obtaining the N + 1 best ambulance splits for the exam- 

ned combinations in the first step, in the second step, we compute 

heir performance measures using the developed AHQM. 

. Numerical results 

During the Covid-19 pandemic in 2020, Bavaria was one of 

he most affected states in Germany (Robert Koch Institut, 2020a). 

rom real data for November 2020 provided by Munich’s ambu- 

ance dispatching center, we determine the spatial emergency call 

istribution, interarrival times, and the mean dispatching time. Us- 

ng the performance measures we calculate in (13) –(20) , we evalu- 

te the benefit gained when designating ambulances to serve only 

nown and suspected cases for the Covid-19 pandemic. 

We run the numerical experiments on a Linux server with 

n Intel(R) Xeon(R) Platinum 8160 CPU with 2.10GHz. The model 

s implemented in Python for computing the steady state of the 

HQM, and Gurobi (version 9.1) for obtaining the optimal ambu- 

ance split for each combination in A applying the MILP (25) –(28) . 

.1. Experimental data 

Using the hexagonal hierarchical geospatial indexing system H3 

 Brodsky, 2018 ), we divide Munich into 3045 geographical atoms 

each with a size of 0 . 105 km 

2 
and an inner circle radius of 174

eters. The center of each atom serves as a node. The arrival 
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Fig. 1. Heatmap of spatial emergency call distribution and Munich’s EMS system’s infrastructure. 

r

l

c

w

s

a

t

i

t

a  

J

t

o

i

p

t

p

a  

a

g

i

d

o

d

i

o

B

t

t

a  

2

a  

t

w

&

w

o

E

S

3

Table 1 

Results for Covid-19 applying the AHQM. 

Flexible & No S. Fixed S. 

Combination {32,11} 

r [min] 7.27 8.72 

d [min] 3.50 4.85 

w [min] 0.00 0.10 

ζ R [%] 0.39 7.03 

ζ D [%] 0.39 6.34 

P̄ I { U} [%0] 0.00 

P̄ I { S,K} [%0] 1.48 

P̄ I [%0] 0.03 0.38 
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ate of emergency calls at each node and the locations of ambu- 

ance depots and hospitals are based on real data. 2.6% of the in- 

idents were excluded from the data set as the interarrival time 

as 0 which indicates multiple dispatch. However, we only con- 

ider single dispatches. In total, we consider 22 hospitals and 43 

mbulances located at 32 depots. Figure 1 depicts the infrastruc- 

ure and the spatial emergency call distribution of the EMS system 

n Munich. In this dataset, interarrival times are exponentially dis- 

ributed with a mean of 4.42 min. This is statistically significant at 

 p-value of p < 0 . 0 0 01 using a Kolmogorov-Smirnov-Test ( Massay

r, 1951 ). However, the Anderson-Darling test, being more sensitive 

han the Kolmogorov-Smirnov-Test ( Razali & Wah, 2011 ), indicates 

therwise. The reason lies in the variation observed in the mean 

nterarrival times throughout the day. Thus, we take the time de- 

endency into account and divide the day into 12 equally sized 

ime periods. For all periods, except one, we fail to reject the hy- 

othesis that the sample comes from an exponential distribution 

t a confidence level of 99%. In Section 6.3 we study the impact of

pplying the real interarrival time distribution. 

In real data of November 2020, on average 3.48% of all emer- 

ency calls were suspected cases, and 3.55% were known to be 

nfected. The remaining emergency calls were unsuspicious. The 

ata does not indicate how many patients without any suspicion 

f Covid-19 carry the virus. Thus, we estimate the number of un- 

etected cases in the general population in order to determine the 

nfection probabilities for EMS personnel. 

The total service time is composed of a mean dispatching time 

f 3.77 min and a mean treatment time of 12 min ( Jagtenberg, 

hulai, & van der Mei, 2017 ). Thus, we set the response time 

hreshold t R to 15.77. With a probability of 80%, the patient is 

ransferred to a hospital ( Jagtenberg et al., 2017 ), which adds 

 mean delay of 30 min to the service time ( Schwartz et al.,

005 ). If a suspected or known case was transported, we assume 

 mean cleaning time of 1 h ( Allen et al., 2020 ). The mean driving

imes depends on the Haversine distance and the vehicle’s velocity, 

hich we assume to be 30 km/h. Knyazkov, Derevitsky, Mednikov, 

 Yakovlev (2015) consider a velocity of 40 km/h on road distances, 

hich we reduce to account for traffic and the Haversine distance. 

We assume that the probability of an ambulance to be taken 

ut of service can be approximated by the infection risk of 

MS personnel serving infected patients. Phucharoen, Sangkaew, & 

tosic (2020) observe a transmission probability per exposure of 

.13% for Covid-19. However, we distinguish between the differ- 

t

247 
nt incident types. For known infections, the probability of 3.13% 

s reasonable. For suspected cases, we assume that the patient has 

een exposed to the virus and has been infected with a probabil- 

ty of 3.13%. Thus, we can calculate an infection risk of ( 3 . 13% ) 2 = 

 . 10% for paramedics serving the exposed patient. This is most 

ikely a lower bound which we account for by conducting a sen- 

itivity analysis on the infection probability. Considering the in- 

ection probability per exposure, the number of undetected cases 

mong the population and the number of infections in Munich in 

ovember 2020, we obtain an infection probability of 0.01% when 

reating unsuspicious cases. The mean outage duration corresponds 

o the isolation time of 10 days prescribed by health authorities 

or infected paramedics (Centers for Disease Control and Preven- 

ion, 2020a; Robert Koch Institut, 2020b; World Health Organiza- 

ion, 2020a). 

.2. Results 

In Table 1 , we present the combination resulting in the best 

verage response time r and its performance measures: the aver- 

ge driving time d, the average waiting time w , the share of late 

rrivals regarding the response and driving time ζ R and ζ D , the 

ean infection probability P̄ I , the mean infection probability for 

nsuspicious cases P̄ I { U} and for suspected and known cases P̄ I { S,K} . 
Not allocating ambulances to patient categories results in the 

owest average response time. Thus, identical values for the per- 

ormance measures are obtained for the flexible and no split . This 

plit reflects the fraction of the total caseload infected patients ac- 

ount for. For the fixed split , the number of ambulances assigned 

o the suspected and known cases is disproportionally higher than 
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Fig. 2. Optimal split for 96.48% unsuspicious, 1.74% suspected and 1.78% known cases. 
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heir relative caseload. This explains why the fixed split results in 

orse performance regarding all performance measures. The fixed 

plit may become more competitive once the share of Covid-19 pa- 

ients increases. 

esult 1. When applying a fixed split , the loss of pooling ad- 

antages and the resulting increase in the average driving time 

re mainly responsible for higher average response times. Conse- 

uently, also the share of late arrivals, does not improve when des- 

gnating ambulances to serve only known or suspected cases. The 

atients’ average waiting time in the queue is negligible. 

This indicates that for the analyzed cases, the EMS system is ca- 

able of handling the increment in workload caused by ambulance 

utages without becoming congested. Thus, our findings confirm 

he decision of the Munich EMS operator not to split ambulances 

nto categories during the Covid-19 pandemic in 2020. 

.3. Discrete-event simulation 

We implement a discrete-event simulation using SimPy to study 

he impact of applying the AHQM instead of the exact HQM. In 

reliminary experiments, we determined the length of the warm- 

p period and set it to one day. As the real input data for the in-

erarrival times represents a time period of one month (November 
248 
020), we set the simulation length to 30 days. Due to the stochas- 

ic nature of the service times and spatial emergency call distribu- 

ion, we perform 30 replications to increase the accuracy of the 

imulation results. The results obtained by the discrete-event sim- 

lation are depicted in Table 2 . 

The average response and driving times differ by less than 1%. 

he average waiting time calculated by the AHQM is similar to the 

verage waiting time observed in the simulated results when ap- 

lying no split . This indicates that in both the simulation and the 

HQM the systems are not overloaded. For the fixed split , we ob- 

erve an absolute difference of less than 2 seconds which we as- 

ume negligible. Similar to the mean infection probability, the ab- 

olute error of the share of late arrivals amounts to less than 1%. 

hese results indicate that the developed AHQM appropriately es- 

imates the performance measures. 

The developed model is based on exponentially distributed ser- 

ice times. However, as we were not provided real data to validate 

his assumption, we are interested in the impact of having ser- 

ice times which do not follow an exponential distribution. There- 

ore, we study the impact of having constant isolation, cleaning 

nd driving times by incorporating an additional experiment in the 

iscrete-event simulation (Simulation [B]). Table 2 shows the re- 

ults. 
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Table 2 

Comparing results for Covid-19 applying a flexible, fixed and no ambulance split (Simulation [A]: Exponential service times, Simulation [B]: Constant 

driving, cleaning and isolation times, Simulation [C]: Real interarrival times). 

Simulation [A] Simulation [B] Simulation [C] 

Flexible & No S. Fixed S. Flexible & No S. Fixed S. Flexible & No S. Fixed S. 

Combination {32,11} {32,11} {32,11} 

r [min] 7.28 8.72 7.34 8.74 7.46 8.90 

d [min] 3.51 4.87 3.57 4.93 3.69 5.08 

w [min] 0.00 0.08 0.00 0.04 0.00 0.05 

ζ R [%] 0.51 6.17 0.58 6.60 0.85 6.99 

ζ D [%] 0.51 6.16 0.58 6.59 0.85 6.97 

P̄ I { U} [ ‰ ] 0.00 0.00 0.00 

P̄ I { S,K} [ ‰ ] 0.10 0.10 0.07 

P̄ I [ ‰ ] 0.03 0.36 0.03 0.38 0.02 0.02 
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Table 3 

Application of ambulance reservation strategy based on combination {32,11}. 


 = 0 . 25 
 = 0 . 50 
 = 0 . 75 

No Split Flex. S. No Split Flex. S. No Split Flex. S. 

r [min] 7.61 8.64 7.30 8.65 7.26 8.64 

d [min] 3.84 4.86 3.53 4.88 3.49 4.87 

w [min] 0.00 0.01 0.00 0.00 0.00 0.00 

ζ R [%] 1.56 6.18 0.60 6.31 0.47 6.28 

ζ D [%] 1.56 6.18 0.60 6.31 0.47 6.28 

P̄ I [ ‰ ] 0.03 0.03 0.03 0.03 0.03 0.03 
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Applying constant service times only slightly influences the av- 

rage response and driving times. For both performance measures, 

he maximum deviation amounts to 2%. The deviations in queuing 

imes are negligible. The observed values for the mean infection 

robabilities are almost equivalent, the highest absolute difference 

mounts to < 0 . 0 0 01 comparing the simulations using exponential 

nd constant service times. Thus, the model’s results remain valid 

f service times were constant. 

The results of the statistical tests applied in Section 6.1 to vali- 

ate the distribution of the interarrival times have not been iden- 

ical. Therefore, we use the real interarrival times in a simulation 

xperiment (Simulation [C]) to study the error made by assuming 

xponentially distributed interarrival times. 

When applying real interarrival times, the average response and 

riving times differ by approximately 4%, on average, compared 

o the AHQM. Small deviations were expected, as the volume of 

mergency calls varies throughout the day. During peak times, the 

ystem must deal with higher workloads resulting in increased re- 

ponse and driving times. However, the average queuing time re- 

ains below 7 seconds when applying a fixed split . When apply- 

ng no split , we observe similar average queuing times. The share 

f late arrivals only slightly differ. The absolute deviations amount 

o less than 0.9%. The absolute error made for the mean infection 

robabilities amounts to a maximum of < 1% and is therefore as- 

umed negligible. With such a small error, using exponential dis- 

ributed interarrival times seems reasonable. 

esult 2. Comparing the results obtained by the AHQM with the 

imulated observations shows that the AHQM appropriately esti- 

ates the performance measures and is robust to alternative in- 

erarrival and service time distributions. 

We further investigate the flexible split and no split combined 

ith the ambulance reservation strategy. Referring to the results 

f the optimization model, we base our study on the optimal com- 

ination of the fixed split . Thus, 32 ambulances are assigned to 

nsuspicious cases while 11 ambulances serve the remaining in- 

ident types. In the case that the threshold 
 is exceeded for a 

ertain ambulance category, the associated ambulances refuse to 

erve other incident types. We consider three possible cutoff levels 

= { 0 . 25 , 0 . 50 , 0 . 75 } . The results are presented in Table 3 . 

esult 3. For all cutoff levels, the reservation strategy outperforms 

he fixed split without ambulance reservation. For a cutoff level 

f 0.25 and 0.50, applying no split without ambulance reservation 

erforms better than combining no split with the reservation strat- 

gy. Looking at the average response and driving time, introducing 

 cutoff level of 0.75 outperforms no split without reservation by 

ess than 1 second compared to the AHQM. 

The superiority of the ambulance reservation strategy compared 

o the fixed split results from the increased flexibility gained by 
249 
pplying a flexible split or no split until reaching the cutoff level. 

owever, for low cutoff levels, the reservation strategy limits the 

exibility of the corresponding split as soon as the cutoff level is 

eached. Therefore, incorporating ambulance reservation does not 

mprove the performance of the flexible split or no split for low 

utoff levels. However, an improvement in the average response 

ime is visible when introducing a high cutoff level of 0.75. Thus, 

lthough the share of late arrivals cannot be improved, slightly 

horter response and driving times can be reached. 

.4. Sensitivity analysis 

To investigate the effect of varying disease characteristics, we 

rst conduct a sensitivity analysis applying various parameter com- 

inations. Second, we apply data sets parameterized for two spe- 

ific diseases: Ebola and Influenza A. 

.4.1. Varying disease characteristics 

To investigate the benefits of an ambulance split for future pan- 

emics with unknown disease characteristics, we vary the infection 

robabilities and the isolation times of infected individuals. More- 

ver, as the number of infected people constantly changes during 

 pandemic, we consider these dynamics by accounting for differ- 

nt shares of unsuspicious, suspected and known cases, denoted 

s “incident share”. Here, we investigate three different incident 

hares: First, the incident share observed in November 2020 for 

ovid-19: 92.97% unsuspicious cases, 3.48% suspected cases and 

.55% known cases. Second, we increase the share of suspected and 

nown cases by 100%. Third, we decrease the share of suspected 

nd known cases by 50%. For each incident share, we analyze in- 

ection probabilities of 1%, 3%, 6%, 9%, 12%, 15%, 18%, and 21%. Fur- 

hermore, we increase the isolation times from 1 day to 3.5 weeks 

n steps of 0.5 weeks. Thus, in the sensitivity analysis, we calculate 

he performance measures for each combination of the three fac- 

ors. Figures 2–4 present the results of the sensitivity analysis for 

ifferent incident shares. Each figure shows the ambulance split re- 

ulting in the lowest average response time. 
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Fig. 3. Optimal split for 85.94% unsuspicious, 6.96% suspected and 7.10% known cases. 
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esult 4. If both isolation time and infection probability exceed 

ertain thresholds, we observe that a flexible or fixed split reduces 

he average response time and, consequently, the share of late ar- 

ivals regarding the response time threshold. Furthermore, reduc- 

ng the isolation time enables the system to remain operable for 

igher infection probabilities and vice versa. 

This result indicates that the two factors, isolation time and in- 

ection probability, can counteract each other. Thus, reducing one 

actor allows a higher value of the other factor until a certain 

evel is reached. The reason is that both factors influence the mean 

utage time of personnel either by frequent absences or long ab- 

ences. Both lead to higher average system service times which 

ncreases the system’s workload. Therefore, disease-specific char- 

cteristics must be considered as a whole. Looking at the factors 

eparately could result in suboptimal decisions. 

We further observe that the thresholds making an ambulance 

plit beneficial depend on the share of suspected and known cases. 

hen decreasing the share of suspected and known cases by 50%, 

 split is beneficial for an isolation time of 2 weeks or longer, com- 

ined with an infection probability of 12% or higher. For shorter 

solation times of 1 or 1.5 weeks a split is only beneficial for in-

ection probabilities of at least 21% or 15%, correspondingly. Vice 

ersa, a lower infection probability of 9% requires long isolation 

imes of at least 3 weeks to make a split beneficial ( Fig. 2 ). When

oubling the share of suspected and known cases, the thresholds 
250 
or the isolation time and infection probability making a split fa- 

orable are lower ( Fig. 3 ). 

Figure 5 presents the average response times for all possible 

ombinations for an infection probability of 9%, 12% and 15% com- 

ined with an isolation time of 2.5 weeks and decreasing the share 

f suspected and known cases by 50%. For an infection probability 

f 9%, applying no split is beneficial. For an infection probability of 

2%, the flexible split is outperformed by the fixed split for all ex- 

mined combinations except for the combination {22,21}. Increas- 

ng the infection probability to 15% decreases the average response 

ime achieved by the flexible split , making it beneficial. 

esult 5. Compared to not splitting, the mean infection probabil- 

ty for ambulances designated to unsuspicious cases can be de- 

reased by 72%, on average, when applying a fixed split . However, 

he mean infection probability for ambulances assigned to sus- 

ected and known cases is, on average, more than a seventy-fold 

igher. Thus, when weighting the infection probabilities of the two 

mbulance categories according to their assigned number of ambu- 

ances, the fixed split leads to a higher mean infection probability 

han the flexible split or no split . 

Thus, if a certain share of personnel must be protected from 

nfection and a higher infection risk for the remaining personnel 

an be accepted, the fixed split can be beneficial for EMS operators. 
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Fig. 4. Optimal split for 92.97% unsuspicious, 3.48% suspected and 3.55% known cases. 
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owever, the mean infection probabilities over all splits remain be- 

ow 0.03%. 

.4.2. Ebola and Influenza A 

We conduct a sensitivity analysis for two additional instances 

arameterized by specific disease characteristics. We focus on dis- 

ases which, apart from Covid-19, accounted for the highest num- 

er of infections and deaths between 1967 and 2020 worldwide: 

bola, and Influenza A (ScienceAlert, 2021). 

Ebola. Since 1976, Ebola outbreaks were reported in the Demo- 

ratic Republic of the Congo, the Republic of the Congo, South 

udan, Uganda, and Gabon. The biggest outbreak has been docu- 

ented for West-Africa. However, in 2014–2016, less than 1% of 

he population has been suspected or confirmed to be infected 

The World Bank, 2021; Centers for Disease Control and Preven- 

ion, 2019). Ebola is transmitted from animals to humans and from 

umans to humans. Contaminated objects as well as having direct 

ontact with infected individuals or their body fluids can lead to a 

ransmission of the virus (World Health Organization, 2020b). Ac- 

ording to Skrip et al. (2017) , a single contact with an infected 

erson poses a transmission risk of 2.70%. A similar approxima- 

ion procedure as for Covid-19 leads to infection probabilities and 

f 2.70%, 0.07%, and 0.01% for known, suspected cases and unsus- 

icious cases, correspondingly. Lacking more precise data for Ger- 

any, we assume the isolation period for an Ebola infection to 
251 
e 16 days which is the average isolation period of infected pa- 

ients ( Fode et al., 2018 ). The preceding sensitivity analysis indi- 

ates that for such a low number of suspected and known cases, 

nd an infection probability of 6% or less, a split will not be benefi- 

ial ( Fig. 2 ). Thus, we inspect the case of an Ebola outbreak having

he same incident share, similar infection numbers and undetected 

ases as during the Covid-19 pandemic. 

Influenza A. Although the number of infected people (more 

han 762 million) was higher during the swine flu in 2009 than 

or the Covid-19 pandemic (252 million until November 2021), 

ewer people died (ScienceAlert, 2021). Looking at the emergency 

all volume, we assume that the higher emergency call volume 

esulting from an increased number of infections is compensated 

y a reduction in emergency calls due to the fact that less indi- 

iduals got seriously ill and died. Based on this assumption and 

acking emergency call data for Influenza A, we assume having 

he same incident share, similar infection numbers and undetected 

ases as during the Covid-19 pandemic. For Influenza A (H1N1), 

obert Koch Institut (2010) observed a transmission probability of 

0% in households leading to laboratory-confirmed cases despite 

he availability of hand disinfectants and face coverings. Thus, we 

onsider this probability for the case study. Again, approximating 

he infection probabilities similarly to Covid-19, we derive values 

f 10.0 0%, 1.0 0%, and 0.04% for known, suspected, and unsuspicious 
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Fig. 5. Extract of avg. response times for 96.48% unsusp., 1.74% susp. and 1.78% known cases. 

Table 4 

Disease-specific Data: Ebola, Influenza A. 

Ebola Influenza A 

Infection Probability [%] Unsuspicious case 0.01 0.04 

Suspected case 0.07 1.00 

Known case 2.70 10.00 

Isolation time [days] 16 7 

c

o

p

d

a

a

l

I

t

R

i

p

Table 5 

Basic results applying a flexible, fixed and no ambulance split. 

Ebola Influenza A 

Flexible & No Split Fixed S. Flexible & No Split Fixed S. 

Combination {32,11} {28,15} 

r [min] 7.38 9.06 7.80 9.87 

d [min] 3.62 4.89 4.03 5.57 

w [min] 0.00 0.41 0.02 0.21 

ζ R [%] 0.53 9.29 1.32 13.25 

ζ D [%] 0.53 6.56 1.32 9.53 

P̄ I { U} [ ‰ ] 0.00 0.01 

P̄ I { S,K} [ ‰ ] 1.27 3.70 

P̄ I [ ‰ ] 0.03 0.33 0.10 1.30 

7

r

i

a

fi

l

ases. The Centers for Disease Control and Prevention (2010) rec- 

mmend an isolation period of 7 days or longer in the case that 

atients show any symptoms after this period. All disease-specific 

ata is summarized in Table 4 . 

The results obtained for the data sets parameterized by Ebola 

nd Influenza A confirm the findings of the preceding sensitivity 

nalysis, Table 5 . 

Although Ebola requires a long isolation period of 16 days, the 

ow infection probability of 2.70% does not make a split beneficial. 

n contrast, for Influenza A, the short isolation time of 1 week is 

he decisive for not applying a split. 

esult 6. For Ebola and Influenza A, either the infection probabil- 

ty or the isolation time is below the threshold observed in the 
receding sensitivity analysis, which makes a split favorable. o

252 
. Conclusions 

This paper studied the tradeoffs between reducing the average 

esponse time for patients and protecting the EMS personnel from 

nfection by designating ambulances to serve only infected patients 

nd suspected cases. We introduced a two-stage approach. At the 

rst stage, we solved an optimization model to pre-select ambu- 

ance splits with the highest emergency call coverage. At the sec- 

nd stage, we evaluated how EMS personnel and patients can ben- 
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fit from these ambulance splits by calculating the performance 

easures for the pre-selected splits by applying an adapted AHQM. 

e implemented a discrete-event simulation to investigate the er- 

or made by applying the AHQM instead of the exact HQM, as 

ell as assuming exponential service and interarrival times. Com- 

arisons show that the developed AHQM provides an appropri- 

te estimate for the exact solutions and is stable when inserting 

onstant service times and actual interarrival time data. We fur- 

her conducted a numerical case study for the Covid-19 pandemic 

n Munich (Germany). Results indicate that the average response 

ime, queuing time, and driving time increase when categorizing 

atients and allocating ambulances. However, the sensitivity anal- 

sis shows that a split can outperform the decision not to split 

epending on the disease characteristics. A split can reduce the 

verage response time if the system’s workload exceeds a certain 

hreshold due to longer isolation times or higher infection prob- 

bilities. Moreover, for the examined factors, the mean infection 

robability for personnel does not significantly increase when ap- 

lying a flexible split . When facing long isolation times (2.5 weeks), 

n infection probability of 6% and the same share of suspected and 

nown cases as observed for the Covid-19 data instance, a flexible 

mbulance split can reduce the share of late arrivals regarding the 

esponse time from 68% to 18%. Short isolation times (1 day) or 

ow infection probabilities (1%) do not make a split worthwhile. 

ue to the high risk of infection for personnel designated to sus- 

ected and known cases, the fixed split is predominantly outper- 

ormed regarding the average response time. 

Although we provide numerical support that an ambulance split 

an reduce the average response time, further research is required 

o evaluate the ethical justifiability of applying an ambulance split. 

urthermore, we limit our case study to two ambulance categories. 

n future work, the numerical analysis could be extended to addi- 

ional ambulance and patient categories enabling more flexibility 

hen allocating ambulances. Additionally, we introduce two am- 

ulance splits based on an ambulance reservation strategy. How- 

ver, extending the AHQM to account for these strategies is be- 

ond the scope of this study. Thus, including them in the adapted 

HQM and investigating different cutoff levels and strategies could 

e subject to future research. Moreover, further types of ambulance 

plits could be defined to investigate whether another split would 

mprove the EMS system’s performance. Here, a possible extension 

ould be to introduce flexible and dedicated ambulances that can 

erve all or only defined patient groups, respectively. 
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