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Abstract 

Compressed Sensing (CS) and parallel imaging are two promising techniques that accelerate the MRI acquisition pro-
cess. Combining these two techniques is of great interest due to the complementary information used in each. In this 
study, we proposed a novel reconstruction framework that effectively combined compressed sensing and nonlinear 
parallel imaging technique for dynamic cardiac imaging. Specifically, the proposed method decouples the recon-
struction process into two sequential steps: In the first step, a series of aliased dynamic images were reconstructed 
from the highly undersampled k-space data using compressed sensing; In the second step, nonlinear parallel imag-
ing technique, i.e. nonlinear GRAPPA, was utilized to reconstruct the original dynamic images from the reconstructed 
k-space data obtained from the first step. In addition, we also proposed a tailored k-space down-sampling scheme 
that satisfies both the incoherent undersampling requirement for CS and the structured undersampling requirement 
for nonlinear parallel imaging. The proposed method was validated using four in vivo experiments of dynamic cardiac 
cine MRI with retrospective undersampling. Experimental results showed that the proposed method is superior at 
reducing aliasing artifacts and preserving the spatial details and temporal variations, compared with the competing 
k-t FOCUSS and k-t FOCUSS with sensitivity encoding methods, with the same numbers of measurements.
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Introduction
Dynamic Magnetic resonance imaging (dMRI) is an 
important medical imaging modality for the diagno-
sis of cardiovascular diseases. Due to its excellent tissue 

contrast, MRI can effectively evaluate cardiac functions 
and vascular abnormalities by acquiring a time series of 
images at a high frame rate during cardiac motion. To 
obtain an artifact-free image series using conventional 
Fourier reconstruction, the Nyquist sampling require-
ment must be satisfied in both spatial and temporal direc-
tions. However, due to the low data acquisition speed, 
dynamic MRI does not always meet this criterion. Hence, 
dynamic MRI often suffers from aliasing or motion arti-
facts. The acquisition speed is hence of primary impor-
tance for achieving high spatial-temporal resolution in 
dynamic MRI applications. A range of techniques have 
been developed to reconstruct a high-quality image series 
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from the undersampled MRI data by exploiting spa-
tial and/or temporal correlations in the dynamic image 
series. These spatial and temporal correlations render it 
feasible to estimate the missing data from undersampled 
measurements. Typical methods for the reconstruction 
of undersampled single-coil measurements include RIGR 
[1], keyhole [2], view-sharing [3], UNFOLD [4], Partially 
Separable Function (PS) [5–7], Kalman filter [8], PARA-
DIGM [9], k-t BLAST [10] and so on.

Two promising techniques for speeding up acquisi-
tion are parallel imaging and compressed sensing, which 
downsample the k-space below the Nyquist rate. Paral-
lel imaging [11–14] uses information from multiple coil 
signals to estimate the unacquired k-space data, such as 
the classical SENSE [12] and GRAPPA [13]. Theoreti-
cally, the maximum acceleration rate of parallel imaging 
can be up to the number of physical channels under ideal 
conditions. However, noise and imperfect coil geometry 
limit the achievement to the maximum acceleration in 
practice. Compressed sensing (CS) [15–17] exploits the 
sparseness of the signal in a certain domain as the prior 
constraint and recovers the accurate signal using non-
linear optimization algorithms. The success of apply-
ing CS to dynamic cardiac MRI greatly accelerates the 
acquisition process [18–26]. Such success is based on 
two important properties of the dynamic cardiac images: 
firstly, the dynamic cardiac images exhibit strong correla-
tions between frames which guarantee the sparse repre-
sentation of the sequence in a specific transform domain; 
secondly, the sampling pattern can be easily designed to 
satisfy the incoherence requirement of CS theory.

Since the sampling scheme of CS and parallel imaging 
exploit complementary redundancy information in MRI, 
it is of great interest to combine these two techniques so 
that a higher reduction factor could be achieved. Several 
studies attempted to combine parallel MRI (pMRI) and 
CS for static imaging [27–39]. Conventionally, the multi-
coil information was incorporated into the CS framework 
by replacing the Fourier encoding with sensitivity encod-
ing in the data consistency term [25, 27, 35], together 
with any sparsifying transform such as the low-rank 
model [31, 32], the dictionary learning [33, 34]. In addi-
tion, the recent development of deep learning techniques 
also attempted to combine the CS and pMRI frameworks 
into various cardiac MRI applications [37–39]. However, 
few studies explored how to efficiently combine CS and 
pMRI approaches to maximize accelerations, given the 
different sample requirements of the two approaches.

In this paper, we proposed a novel reconstruction 
framework that efficiently combines compressed sens-
ing and non-linear parallel imaging technique to accel-
erate dynamic cardiac imaging, extending results in our 
conference papers [40, 41]. The proposed framework 

decouples the reconstruction process into two sequential 
steps. In the first step, the highly undersampled k-space 
data is used to recreate a series of aliased dynamic car-
diac images using a CS approach; In the second step, 
nonlinear GRAPPA [42–44] was used to remove the 
aliasing artifacts and recover the desired dynamic cardiac 
cine images. In addition, the sampling pattern for each 
step is also designed accordingly, allowing for simultane-
ous satisfaction of the incoherent undersampling need 
for CS and the structured undersampling requirement 
for parallel imaging. The proposed method was vali-
dated on four in  vivo human cardiac cine MR datasets. 
Experimental results indicated that the proposed joint 
reconstruction framework could effectively combine the 
CS and parallel imaging to improve the reconstruction 
quality of dynamic cardiac MRI, comparing to the con-
ventional methods.

Theory and method
In the data acquisition process, the k-t space is under-
sampled by taking a random subset of the already uni-
formly undersampled k-space data at each time point. 
Mathematically, let Mu represent the uniform undersam-
pling operation, Mr represents the operation of taking a 
random subset in k-space. The data acquisition process 
can be expressed by:

where du,r is the acquired data, and dfull is the fully sam-
pled reference data in k-t space. The uniform undersam-
pling has a reduction factor of R1, and the random subset 
has a reduction factor of R2 for the CS requirement. As 
a result, the total acceleration is R1 × R2. For all time 
frames, additional auto calibration signals (ACS) are also 
acquired at the center k-space.

Based on the decoupled undersampling operations Mu 
and Mr , the reconstruction is carried out in two sequen-
tial steps. The CS reconstruction framework is utilized in 
the first stage, with the goal of reconstructing a uniformly 
undersampled k-space by “inverting” the operation Mr . 
Let the aliased image series to be reconstructed in the 
(x-f ) domain is represented by ρu . The data consistency 
term is then given by

where F is the Fourier transform along both x and f direc-
tions. The reconstruction of the signal ρu in x-f domain 
can be modeled as a truncated ℓ1 minimization problem

Here we use the k-t FOCUSS [21] algorithm 
to reconstruct the aliased image sequence in the 

(1)du,r = MrMudfull

(2)du,r = Fρu

(3)min
ρu

�ρu�1 s.t. �du,r − Fρu�2 ≤ ε
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temporal-frequency (x-f) domain, although other meth-
ods are also applicable.

The solution to Eq. (3) is computed by iteratively solv-
ing a reweighted ℓ2 minimization problem defined as

such that q is the solution to

where W is a diagonal weighting matrix that is updated 
iteratively. Equation (4) can be converted into an uncon-
strained optimization problem by introducing the 
Lagrangian multiplier λ,

which has a closed-form solution

Conjugate gradient is used to solve Eq.  (6) to avoid 
the large matrix inversion. So the x-f image is given by

Specifically, in the l-th iteration, the diagonal ele-
ments of the matrix W(l) are the square root of the 
absolute value of the solution ρ(l−1)

u  from the previous 
iteration,

find ρu = Wq

(4)min
q

�q�2 s.t. �du,r − FWq�2 ≤ ε

(5)min
q

�du,r − FWq�22 + ��q�22

(6)q = WHFH
(

FWWHFH + �I
)−1

d

(7)ρu = Wq = WWHFH
(

FWWHFH + �I
)−1

d
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where ρ(l−1)
n

 is the nth element of ρ(l−1)
u  . The recon-

structed ρu is then Fourier transformed along both spatial 
and temporal frequency directions to obtain the uni-
formly undersampled data in k-t space.

The missing k-space lines in the reconstructed uni-
formly undersampled data in k-t space from the CS 
step are then further reconstructed using parallel imag-
ing techniques. To avoid the computation of sensitivity 
maps and to  minimize the error/noise amplification, 
here we employed nonlinear GRAPPA technique [42]. 
However, it should be noted that any  advanced paral-
lel imaging methods could also be easily integrated 
into the proposed framework. The pre-acquired ACS 
lines are used to normalize the reconstructed k-space 
to correct any mismatch. Specifically, we assume the 
reconstructed and the acquired data differ by a scaling 
complex constant:

where β is the scaling factor. The k-space for each frame is 
then scaled based on the overlapping locations of recon-
structed and acquired data.

Nonlinear GRAPPA [42–44] is conducted after nor-
malization. In nonlinear GRAPPA, the missing data is 
represented by a nonlinear combination of the acquired 
data. Here we apply a truncated second-order polynomial 
whose efficiency and effectiveness have been demon-
strated in [42–44]. The missing k-space signal Sj in drecon 
is obtained by

where Sl represents the acquired k-space data, w is the 
coefficient set, R is the outer reduction factor, j is the tar-
get coil, l counts all coils, b and h transverse the acquired 
neighboring k-space data in ky and kx directions respec-
tively, and kx and ky represent the coordinates along the 
frequency- and phase-encoding directions, respectively. 
The final image is obtained by combining images from 

(9)drecon = βdacq

(10)
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all coils using root of sum-of-squares after the missing 
k-space data for all coils has been recovered. The pro-
posed framework is demonstrated in Fig. 1.

Validation of the proposed method was performed on 
four sets of cardiac cine data from dynamic MRI, each 
covering a complete cardiac cycle. The imaging param-
eters were shown in Table  1. Informed consent was 
obtained from all volunteers in accordance with the insti-
tutional review board policy. The fully sampled data were 
uniformly undersampled with a reduction factor of R1 
and furthermore randomly undersampled with a reduc-
tion factor of R2 using a zero-mean random Gaussian 
distribution whose density tapers off toward the outer 
k-space retrospectively.

The proposed method, k-t FOCUSS [24] and k-t 
FOCUSS with sensitivity encoding [20] were used to 
reconstruct the desired image sequence. The code for 
k-t FOCUSS [24] was obtained from http://​bisp.​kaist.​ac.​
kr. Same net reduction factor was used for all methods. 
For the reconstruction using k-t FOCUSS, images were 
reconstructed for each coil separately and then combined 
using square-root of sum-of-squares. The center k-space 
was fully sampled to estimate the low-resolution image 
for FOCUSS algorithm, to estimate the sensitivity map 
for k-t FOCUSS SENSE and the Auto Calibration Data 
(ACS) for the proposed method. The net reduction factor 
R is defined as,

Fig. 1  Reconstruction flowchart of the proposed method

Table 1  Data acquisition parameters for imaging experiments

Data 1 Data 2 Data 3 Data 4

Scanner 3T Siemens 3T Siemens 3T Siemens 3T Siemens

Sequence SSFP 2D true FISP SSFP SSFP

Flip angle 44 50 50 44

Echo time/repetition 
time (ms)

1.5/3.0 1.87/29.9 1.89/56.6 1.22/42.5

Matrix size (FE × PE × 
Frame × Coil)

166 × 130 × 15 × 5 256 × 216 × 20 × 4 256 × 224 × 14 × 4 304 × 165 × 26 × 12

http://bisp.kaist.ac.kr
http://bisp.kaist.ac.kr
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The images reconstructed from the full k-t data were 
used as the reference for comparison. All image data 
presented in Fig. 2 were zero-padded, normalized, and 
displayed on the same scale, representing the original 

(11)R =
number of phase encoding lines

number of PE lines
R1×R2

+ fully sampled center phase encoding lines
.

FOV. All the computations were carried out on a work-
station with Intel i7-3770 3.40  GHz CPU and 64  GB 
RAM running MATLAB 2019a (Mathworks, Natick, 
MA).

Fig. 2  A representative image frame reconstructed from the fully sampled data for all four datasets

Fig. 3  Reconstructions of the 6th frame of Data 1 using the proposed method (second column), k-t FOCUSS (third column) and k-t FOCUSS SENSE 
(fourth column). Center 32 phase encoding lines were fully sampled. For the proposed method, the acceleration combination was 3 for CS and 2 for 
Nonlinear GRAPPA. The net reduction factor was 2.89 for all methods
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Results
Image quality assessment of proposed framework
Figure  3 shows the reconstruction result and the cor-
responding error images compare with the reference 
at the sixth frame of the first dataset. The difference 
images were scaled appropriately to highlight the dif-
ferences between the reconstructions and the refer-
ence images. For the proposed method, the reduction 
factor was 2 for parallel imaging and 3 for CS. For k-t 
FOCUSS [24] and k-t FOCUSS SENSE [20], the outer 
reduction factor was 6. The center 32 phase encoding 
lines were fully sampled as the ACS data and estimat-
ing the coil sensitivity, which makes the net reduction 
factor R = 2.89 for all methods. It is seen in Fig. 3 that 
the reconstruction using k-t FOCUSS [24] presented 
aliasing artifacts along the undersampled phase encod-
ing direction. By incorporating sensitivity encoding, 
the aliasing artifacts were suppressed but presented 
noise in both cardiac region and background as indi-
cated by arrowheads. The advantage of proposed meth-
ods on suppressing aliasing and noise artifacts can be 

better appreciated in the difference images. Figure  4 
shows the reconstruction result of the 16th frame of 
the second dataset at a net reduction R = 4.11. For the 
proposed method, the  acceleration combination was 4 
for CS and 2 for Nonlinear GRAPPA. Center 36 phase 
encoding lines were fully sampled. The results of data 2 
lead to the same conclusion that the proposed method 
can suppress more aliasing artifacts and preserve more 
details than either k-t FOCUSS or k-t FOCUSS SENSE. 
It is worth noting that although adding sensitivity 
encoding could significantly remove the aliasing arti-
facts, it over-smoothed the image, resulted in a loss of 
details in the cardiac region. It was mainly due to the 
inaccurate estimation of the sensitivity map.

To quantitatively evaluate the performance of the 
proposed method, the normalized mean-square error 
(NMSE) of the region of interest (ROI) between the 
reconstruction and the reference were calculated and 
plotted as a function of time in Fig. 5. The NMSE was 
calculated by

Fig. 4  Reconstructions of the 16th frame of Data 2 using the proposed method (second column), k-t FOCUSS (third column) and k-t FOCUSS SENSE 
(fourth column). Center 36 phase encoding lines were fully sampled. For the proposed method, the acceleration combination was 4 for CS and 2 for 
Nonlinear GRAPPA. The net reduction factor was 4.11 for all methods
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It can be seen that the proposed method has a lower 
NMSE comparing to the other two competing methods 
at all frames.

To further evaluate the performance of the proposed 
method in clinical diagnosis, the heart region with the 
most dynamic motion were considered as the region of 
interest and zoomed-in for comparison for all methods in 
the third and fourth dataset. Figure  6 shows the recon-
struction in the heart region comparison from different 
frames of the third dataset at a net reduction factor of 
4.14. The acceleration combination of proposed method 
was 4 for CS and 3 for nonlinear GRAPPA [42–44]. The 
center 38 phase encoding lines were fully sampled. It 
can be seen that k-t FOCUSS [24] presented blurring on 
the image and loses details. By incorporating sensitivity 
encoding, k-t FOCUSS SENSE improved the blurring 
but exhibited noise-like artifact. In comparison, the pro-
posed method evidently removed the blurring and the 
noise. Figure 7 shows the comparison between the pro-
posed method with other three methods with Data 4. It 

(12)NMSE
(

Iref , Irecon
)

=
�Iref − Irecon�

2
2

�Iref �
2
2

.
is also suggested that the proposed method is superior at 
removing motion and aliasing artifact, especially at the 
cardiac region than the competing methods.

The ability to capture the temporal variation is another 
important criterion to evaluate the performance of 
dynamic reconstruction methods. The temporal profiles 
of the second data with a net reduction factor of R = 4.11 
and Data 4 with a net  reduction factor of R = 3.6 were 
shown in Fig. 8. It is seen that the k-t FOCUSS method 
[24] smoothed out the rapid temporal changes, while k-t 
FOCUSS SENSE [20] suffered from loss of contrast. In 
comparison, the proposed method preserved most of the 
temporal variations, especially in regions indicated by the 
arrowheads.

Choice of acceleration factor combination for CS and PI
In CS and PI combinations, the error propagating prop-
erty [28] has been proven to be critical to reconstruction 
quality; hence, the choice of the acceleration combina-
tion is critical to the final result. Figure 9 presented the 
comparison of the reconstruction quality of Data 3 with 
different acceleration combinations for CS and PI at the 
same net reduction factors R = 4 (1 × 4, 2 × 2, 4 × 1) and 
R = 12 (2 × 6, 3 × 4, 4 × 3, 6 × 2) with fixed 40 ACS lines. 

Fig. 5  Frame-by-frame plots of NMSE in the ROI for the proposed method, k-t FOCUSS, and k-t FOCUSS with SENSE with net reduction factor 
R = 2.89 for the Data 1, R = 4.11 for the Data 2, R = 4.14 for the Data 3, and R = 3.6 for the Data 4. The blue solid lines are for the proposed method, 
green dotted lines for the k-t FOCUSS with SENSE, and black dashed lines for the k-t FOCUSS
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It can be seen that with a fixed number of ACS lines and 
outer reduction factor (ORF), a small R1 will result in lost 
the de-noised power from CS thus causes large error/
noise amplification, especially at high ORF as shown in 
R1 × R2 = 2 × 6; a small R2, on the other hand, will result 
in more severe aliasing artifacts (e.g. R1 × R2 = 6 × 2). In 
general, if the acceleration factor is evenly distributed, it 
is best to keep the acceleration at CS step slightly higher 
than it at PI step in order to avoid error amplification and 
propagation. This conclusion can be better appreciated at 
the NMSE plot as shown in Fig. 10.

Effect on number of ACS lines
It is very important to carefully choose the number of 
fully sampled ACS lines as it not only affects the per-
formance of nonlinear GRAPPA [33] but also the key 
factor of the overall net reduction factor. We conducted 
an  experiment to evaluate reconstruction quality with 
different combinations of R1, R2,  and ACS lines at a 
fixed net reduction factor. Figure  11 shows the com-
parison of the reconstruction quality in terms of NMSE 

of the third dataset at a fixed net reduction factor of 
4.14. It can be seen that the best performance appears 
when the reduction factor of CS and PI are both low 
(R1 × R2 = 3 × 2, ACS = 28). However, when the reduc-
tion factor is high for PI, even with a  large number of 
ACS, the reconstruction quality was poor as dem-
onstrated in the case of R1 × R2 = 3 × 6, ACS = 48; 
If the reduction factor is evenly distributed and the 
number of ACS lines is fairly large (R1 × R2 = 4 × 3, 
ACS = 38; R1 × R2 = 4 × 4, ACS = 46 and R1 × R2 = 5 × 4, 
ACS = 50), the reconstruction quality is better than 
that of the higher acceleration at either CS or PI 
(R1 × R2 = 4 × 6, ACS = 50; R1 × R2 = 8 × 3, ACS = 52), 
although they have more ACS lines. This observation 
is consistent with that been discussed in the previous 
section. From what has been discussed above, we can 
get the conclusion that to get the best reconstruction 
result, the choice of the number of ACS mainly depends 
on the acceleration factor on PI, when the accelera-
tions for CS and PI are evenly distributed and keep CS 
slightly higher than PI if necessary.

Fig. 6  Region of interest of reference (first column), the proposed method (second column), k-t FOCUSS (third column) and k-t FOCUSS with SENSE 
(fourth column) of data 3. Center 38 phase encoding lines were fully sampled. For the proposed method, the acceleration combination was 4 for CS 
and 3 for Nonlinear GRAPPA. The net reduction factor was 4.14 for all methods
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Discussion
In this paper, we proposed a novel reconstruction 
framework that effectively combines compressed sens-
ing and parallel imaging for dynamic MRI reconstruc-
tion. With a novel sequential reconstruction strategy 
together and a tailored sampling scheme, the proposed 
method was shown to be able to better suppress alias-
ing artifacts and noise at high accelerations, compar-
ing to the conventional compressed sensing method 
that incorporated with sensitivity encoding. Although 
the FOCUSS and nonlinear GRAPPA techniques used 
in the presented study was previously proposed, the 
novelty of this study is not to focus on proposing a 
single reconstruction algorithm, but rather to develop 

a reconstruction flowchart that can better combine 
compressed sensing and parallel imaging to ensure the 
capability to recover high-quality images from maxi-
mized acceleration. The reconstruction strategies for 
each step could easily be replaced by more advanced 
techniques, i.e. low-rank model [31, 32], dictionary 
learning [33, 34] for CS reconstruction; E-SPiRiT for 
the parallel imaging reconstruction [35].

There are many researches that attempt to combine 
CS and PI [20, 25, 28]. In [28], it used a very similar 
framework but was  limited to the static images. When 
applying to dynamic MRI, taking  the temporal infor-
mation  into account could further reduce the amount 
of data required for reconstruction. In addition, the 

Fig. 7  Reference (first column), the proposed method (second column), k-t FOCUSS (third column) and k-t FOCUSS with SENSE (fourth column) 
of data 4. Center 32 phase encoding lines were fully sampled. For the proposed method, the acceleration combination was 6 for CS and 2 for 
Nonlinear GRAPPA. The net reduction factor was 3.6 for all methods
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inaccurate estimation of the sensitivity information 
may futher degrade the image quality. In the methods 
mentioned in Refs. [20] and [25], the sensitivity encod-
ing is incorporated into the Fourier encoding in the 
data consistency term. Such algorithm exploits the joint 
sparsity information  from all coils,  representing the 
distributed compressed sensing framework. However, 
such a simple combination is difficult to maximize the 
accelerations that can be achieved by each individual 
method because each method has different sampling 

requirements. In contrary, the proposed framework 
decouples the acceleration into two sequential steps 
to maximize the advantages gain from both PI and 
CS. Experimental results confirmed that the proposed 
framework can better capture the low contrast cardiac 
blood flow and preserve more temporal information 
than the conventional methods. Additionally, employ-
ing nonlinear GRAPPA instead of SENSE may also con-
tribute to better  suppress noise and remove artifacts. 
Jung et al. [45] compared the performance of k-t SENSE 

Fig. 8  The temporal profiles in x-t plane of the different reconstruction methods, the proposed method, k-t FOCUSS and k-t FOCUSS with SENSE, 
for the Data 2 with net reduction factor of R = 4.11 and data 4 with net reduction factor of R = 3.6 (bottom row)
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and k-t GRAPPA applied to cardiac cine and phase-
contrast images. They observed that although both 
methods provide excellent image quality and temporal 
fidelity for different acceleration factors, k-t GRAPPA 
demonstrated less spatially varying noise than k-t 
SENSE. In addition, the sampling trajectory demon-
strated in this study uses the combination of random 
sampling patterns over a uniform undersampling pat-
tern in a  Cartesian manner. However, the proposed 
method could also be applied to non-Cartesian cases, 
i.e. radial or spiral subsampling, so that many advanced 
techniques [35–38] could be applied to the proposed 
framework to achieve better performance.

The proposed method was demonstrated using cardiac 
cine imaging in this study. However, as it was designed 
to maximize the acceleration of the data acquisition 
and improve spatial.-temporal resolution, the proposed 
method is also expected to benefit other dynamic MR 
applications, such as dynamic contrast-enhanced MRI 
and dynamic MR angiography [21, 23]. Nevertheless,  it 
is imperative to choose the best reconstruction strategy 
for each step based on the specific characteristics of the 
signal within the application. For instance, in dynamic 
images whose signal is not periodic, the Fourier transform 
might not be the best choice to sparsifying the images. In 

Fig. 9  The proposed method of the Data 3 with different combinations of reduction factors

Fig. 10  The NMSE plots of the proposed method reconstructions of the Data 3 with different combinations of reduction factors
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the CS step, Karhunen-Loeve transform or principal com-
ponent analysis might have better capability to sparse the 
image thus provides a more accurate k-space reconstruc-
tion for the PI step.

While deep-learning techniques for accelerating MR 
acquisition have gained significant attention in recent 
years, parallel imaging and compressed sensing continue to 
play important roles in both clinical practices and research 
due to their robustness, reproducibility, and repeatability, 
which have been validated by clinical studies. Although 
deep learning holds great potential, few studies have evalu-
ated its reliability in certain clinical applications. In light of 
this, the proposed method still holds great promise for its 
ability to rapidly adapt to current clinical applications.

The proposed method has higher computational 
complexity than the conventional compressed sensing 
based methods with sensitivity encoding. Particularly, 
in the CS step of the proposed method, the  FOCUSS 
algorithm approximates the solution to the ℓ1 minimi-
zation through iteratively reweighted ℓ2 minimization. 
The computational complexity is exactly equivalent to 
that in k-t FOCUSS [24]; In the PI step, the nonlinear 
GRAPPA [42] is about 2–5 times that of the conven-
tional GRAPPA [13]. So overall the proposed method 
has a higher computational complexity than that of k-t 
FOCUSS [24] or k-t FOCUSS with SENSE [20] due to 
the nonlinear GRAPPA process. In our current imple-
mentation, the total computation time is about 323 s of 
the proposed method comparing with 19  s that of k-t 
FOCUSS [24] and 33 s that of k-t FOCUSS with SENSE 
[20]. In addition to this, this study has limitations. First, 
the reconstruction techniques used in this study, i.e. k-t 

FOCUSS and nonlinear GRAPPA, were a bit out of date. 
Some more advanced or state-of-the-art methods could 
be applied. This is warranted in future studies. Second, 
the proposed framework was only demonstrated on a 
limited number of datasets. A more thorough validation 
of the proposed framework should be conducted with 
clinical and patient data before its translation into clini-
cal practice is possible—although the current datasets 
are adequate as the proof-of-concept for the proposed 
method.

Conclusion
We proposed a novel joint framework to sufficiently com-
bines compressed sensing technique with parallel imag-
ing to accelerate dynamic MRI. The proposed method 
decouples the reconstruction process into two sequen-
tial steps: use the CS method to reconstruct a series of 
aliased dynamic images from the highly undersampled 
k-space data, and use the nonlinear GRAPPA method to 
missing k-space data for the original image. The in vivo 
experiments of cardiac cine imaging suggested that the 
proposed method can preserve more spatial details and 
temporal variations of dynamic cardiac images than the 
state-of-the-art dynamic imaging methods such as the 
classical k-t FOCUSS method either with or without sen-
sitivity information.
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