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ABSTRACT Pseudomonas aeruginosa is a major public health concern, as drug-resistant
strains increase mortality in hospital-acquired infections. We report the isolation and com-
plete genome sequences of four lytic bacteriophages that target clinical multidrug-resistant
P. aeruginosa strains.

seudomonas aeruginosa is an important nosocomial opportunistic pathogen that is

able to live in a wide range of environments (1). The motile rod-shaped bacterium
can cause lethal infections, such as sepsis in immunocompromised hosts and hospitalized
patients (e.g., burn wounds), and infects a wide range of organs, including the lungs, urinary
tract, and kidneys. Some strains of P. aeruginosa exhibit extensive drug resistance to available
antibiotics, and the species has hence been listed as a priority 1 pathogen by the WHO (2, 3).
Therefore, novel antibiotics or clinical therapeutic options are needed. One strategy is the
use of therapeutic bacteriophages (4, 5). Here, we report the complete genome sequences of
four lytic bacteriophages (Kaya, Guyu, Kopi, and TehO) that have been isolated using clinical
multidrug-resistant strains of P. aeruginosa.

Water was collected in January 2020 from a river in Haining, China (120.605111°E,
30.481146°N). The water was filtered (pore size, 0.45 um) before phage enrichment using
cultures of P. aeruginosa. P. aeruginosa host strains were grown in lysogeny broth
(LB) at 37°C overnight with agitation; the strains used to isolate each phage are pro-
vided in Table 1. Phages were obtained from clear single plaques and grown in the
presence of the bacterial host in LB overnight. Bacterial cells were removed by centrifu-
gation, and the supernatant was filtered through a 0.22-um membrane (6). Nucleic acids
were extracted using the Biomed virus rapid DNA/RNA kit (Beijing, China) according to
the manufacturer’s instructions. Sequencing libraries were prepared using the NEBNext
Ultra Il DNA library prep kit for lllumina, and the genomes were sequenced using the
lllumina HiSeq platform. The average read length obtained was 150 bp. The assembly
pipeline Unicycler v0.4.8 (7) was used to conduct quality control of raw reads, assemble
the genomes, and determine the completion of the assembled genomes. Genome anno-
tation was completed using the CPT Galaxy and Web Apollo interfaces (8). tRNAs were pre-
dicted using ARAGORN v2.36 (9) and tRNA-scan-SE v2.0 (10). Open reading frames (ORFs)
were predicted using GeneMarkS v4.28 (11), Glimmer v3.0 (12), and MetaGeneAnnotator
v1.0 (13) and were then manually validated using BLAST v2.9.0 searches (14) against the
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TABLE 1 Characteristics of Pseudomonas phage genomes

Accession no.

Pseudomonas Total no. of reads Genome Genome GC No. of
Isolate host strain (forward/reverse) coverage (X) length (bp) content (%) ORFs GenBank SRA
Kaya 2081 11,290,334 2.56 43,067 54 60 MZ927745.1 SRR16248205
Guyu 2072 13,776,770 89.19 43,141 55 56 MZ927746 SRR16248204
Kopi 2072 7,620,976 142.96 42,820 53 55 0OK330455.1 SRR16248203
TehO 2081 8,705,734 86.39 43,015 54 56 0OK330456.1 SRR16248202

NCBI nonredundant and Swiss-Prot databases (15). Pairwise nucleotide alignments between
the phages were evaluated using NCBI blastn. Default parameters were used unless stated

otherwise.

The characteristics of all four phage genomes are listed in Table 1. The phages are
novel but are close relatives of each other, with their genes showing the mosaicism
typical of bacterial viruses (Fig. 1). No genes were found to encode toxins or antibi-
otic resistance factors according to blastn searches against the Bacterial Virulence
Factor Database (VFDB) (16). The phages were categorized as lytic using PhageAl
(17). The most closely related phages of Kaya and Guyu are Xanthomonas phage
Samson (GenBank accession number MN062187) and Pseudomonas phage PaMx42
(JQ067092), with genome coverage between 90% and 92% at sequence identities
between 85% and 97%. Kopi and TehO are most closely related to Stenotrophomonas
phage vB_SmaS-DLP2 (KR537871) and Pseudomonas phage vB_Pae-Kakheti25 (JQ307387),
with sequence coverage between 91% and 95% at 95.48% to 97.89% sequence identity.
With these sequence similarities, Kaya, Guyu, Kopi, and TehO are predicted to be Siphoviridae
of the order Caudovirales.

Data availability. The sequencing data for bacteriophages Kaya, Guyu, Kopi, and TehO
are available in GenBank under BioProject accession number PRINA751744. The accession
numbers for the genomes and sequencing reads are listed in Table 1.
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FIG 1 Genome sequence coverage (top number in each cell) and nucleotide identity (bottom number) of
Pseudomonas phages with their closest relatives. The green and brown boxes indicate phages from this study.
The gray boxes indicate phages from other studies: Samson (Xanthomonas phage; GenBank accession number
MNO062187), PaMx42 (Pseudomonas phage; JQ067092), SmaS-DLP2 (Stenotrophomonas phage; KR537871), and
Kakheti25 (vB_Pae-Kakheti25) (Pseudomonas phage; JQ307387).
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