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Abstract
A barrier to the adoption of genomic prediction in small breeding programs is the ini-

tial cost of genotyping material. Although decreasing, marker costs are usually higher

than field trial costs. In this study we demonstrate the utility of stratifying a narrow-

base biparental oat population genotyped with a modest number of markers to employ

genomic prediction at early and later generations. We also show that early genera-

tion genotyping data can reduce the number of lines for later phenotyping based on

selections of siblings to progress. Using sets of small families selected at an early

generation could enable the use of genomic prediction for adaptation to multiple tar-

get environments at an early stage in the breeding program. In addition, we demon-

strate that mixed marker data can be effectively integrated to combine cheap dominant

marker data (including legacy data) with more expensive but higher density codomi-

nant marker data in order to make within generation and between lineage predictions

based on genotypic information. Taken together, our results indicate that small pro-

grams can test and initiate genomic predictions using sets of stratified, narrow-base

populations and incorporating low density legacy genotyping data. This can then be

scaled to include higher density markers and a broadened population base.

1 INTRODUCTION

The adoption of affordable genetic markers in breeding pro-

grams has expanded the use of accelerated, genomic-based

breeding approaches from genome-wide information (Loren-

zana & Bernardo, 2009; Morrell, Buckler, & Ross-Ibarra,

Abbreviations: BLUP, Best linear unbiased prediction; CV,

Cross-validation; DArT, Diversity Array Technology; DiPR, Differentially

penalized ridge regression; GBS, Genotyping-by-sequencing; GEBV,

Genomic estimated breeding value; GS, Genomic selection; LD, Linkage

disequilibrium; MCCV, Monte Carlo cross-validation; RIL, Recombinant

inbred line; RR-BLUP, Ridge regression-BLUP; SSD, Single-seed descent;

SNP, single nucleotide polymorphism.
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2011). Genomic selection (GS) based on the selection of indi-

viduals using a genomic estimated breeding value (GEBV)

can enable faster, more intense and more accurate selection

(Heffner, Sorrells, & Jannink, 2009; Meuwissen, Hayes, &

Goddard, 2001).

Ongoing research in crops has progressed beyond improv-

ing prediction accuracy and now centers on how best to

employ GS within breeding programs (Arruda et al., 2015;

Bassi, Bentley, Charmet, Ortiz, & Crossa, 2015; Jarquín et al.,

2016; Norman, Taylor, Edwards, & Kuchel, 2018; Vivek et al.,

2017), although the transition to practical implementation in

small programs remains a challenge (Voss-Fels, Cooper, &

Hayes, 2019). This is predominantly due to the initial expense
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of genotyping existing germplasm. Recent work has shown

that a modest number of markers can be sufficient to achieve

accurate predictions in small populations with high linkage

disequilibrium (LD; Gonen et al., 2018; Norman et al., 2018).

It is necessary to consider how to gain value from the upfront

cost of genotyping material that may not be progressed within

an active breeding program. Additionally, training sets should

logically be developed from breeding lines or populations

(Akdemir & Isidro, 2019; Akdemir, Sanchez, & Jannink,

2015; Asoro, Newell, Beavis, Scott, & Jannink, 2011; Isidro

et al., 2015; Ou & Liao, 2019; Rincent et al., 2012). There-

fore, in small programs, the gradual generation and use of

genotypic data in narrow-based populations can support the

longer-term adoption of GS.

In a biparental crossing scheme, high levels of LD can

be exploited to minimize genotyping cost. In cultivated oat

(Avena sativa L.), high levels of long-range LD (Esvelt

Klos et al., 2016) and large haplotype blocks have been

reported (Bekele, Wight, Chai, Howarth, & Tinker, 2018),

along with clustering of Diversity Array Technology (DArT)

markers (Tinker et al., 2009). Selfing limits the amount of

recombination per generation, reducing LD dissipation, and

increasing genetic variance between the resulting recombi-

nant inbred lines (RILs), thus promoting the emergence of

superior transgressive segregants (McClosky, LaCombe, &

Tanksley, 2013). These factors make within-cross GS feasi-

ble to assess performance relative to the other lines in the

same (rather than different) subpopulations (Asoro et al.,

2013; Gonen et al., 2018; Gorjanc et al., 2017a, 2017b). Pre-

vious work has tested biparental prediction approaches via

simulation in a maize (Zea mays) genome (McClosky et al.,

2013), concluding that gains attributable to selfing are achiev-

able across different population sizes, trait heritabilities, and

selection intensities. Lorenzana and Bernardo (2009) evalu-

ated GS in two double haploid biparental barley (Hordeum
vulgare) populations using historical trial data on produc-

tion and quality traits and 223 polymorphic markers. They

reported that the simple and computationally efficient best lin-

ear unbiased prediction (BLUP) approach was ideally suited

to biparental GS. Additionally, extensive LD and large link-

age blocks meant that fewer markers were needed for accurate

predictions (Lorenzana & Bernardo, 2009).

Cultivated hexaploid oat is a cereal crop used to produce

grain in temperate regions and forage in the subtropics

(Hoffman, 1995). The allopolyploid oat genome is large

(12.5 gigabases) and highly repetitive, making the large-scale

adoption of genomics-based breeding methods difficult (Yan

et al., 2016). Recent advances in genomic resources (e.g.,

Chaffin et al., 2016; Huang, Poland, Wight, & Jackson,

2014) mean GS is now more tractable for uptake within oat

breeding programs. Previous work to evaluate the application

of GS in elite-cultivated North American oat lines for both

production and quality traits demonstrated that GS could

Core Ideas
• Predictions based on low coverage genotyping can

recover missing phenotypes in early generations.

• Mixed data types can be effectively integrated to

improve prediction accuracy in oat.

• Differentially penalized regression can optimally

weight mixed data.

be effective even at modest marker density (∼every 2cM;

Asoro et al., 2011), although no plateau was reached with

low density DArT marker numbers. Comparison of GS to

traditional phenotypic and marker-assisted selection for the

complex quality trait β-glucan showed that the benefits of GS

could be realized based on a per cycle basis via the scaling

of selection to two cycles per year (Asoro et al., 2013).

More recently, Bekele et al. (2018) described the prediction

of heading date in a large cultivated oat panel, reporting

a minimal increase in accuracy from increasing marker

density. However, their results showed that prediction from

genotyping-by-sequencing (GBS) derived single nucleotide

polymorphisms (SNPs) gave higher prediction accuracy than

using tag-level haplotype markers (Bekele et al., 2018).

Here we report the implementation of genomic prediction

within a biparental cross between two cultivated winter oat

varieties, ‘Buffalo’ and ‘Tardis’. The population has been pre-

viously used to update the oat consensus map based on GBS-

derived, tag-level haplotypes (Bekele et al., 2018). In this

study the population was stratified for both genotyping (at

the F2 and F7 generation) and phenotyping (segregated at the

F3 generation with one stream of material progressed to field

assessment and the other undergoing rapid single seed descent

[SSD] to the F7 generation). Using low-coverage genotypic

information in the early generation, we investigate the recov-

ery of missing phenotypes via genomic prediction, which is

required for accurate representation of true phenotypic value

and variance. We also extend this to the F7 generation to test

prediction of missing yield data. We demonstrate that using

mixed marker data is feasible—with both low cost dominant

markers and more expensive co-dominant markers integrated

to improve accuracy.

2 MATERIALS AND METHODS

2.1 Plant material, genotyping and
phenotyping

An F2 mapping population of 194 individuals was pro-

duced from a cross between the two winter oat varieties

‘Buffalo’ and ‘Tardis’ at Aberystwyth University, United
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F I G U R E 1 The stratification of within-population advance of material in the ‘Buffalo’ × ‘Tardis’ population, including derivation of

phenotyping and genotyping data used in this study

Kingdom. The population was created to capture key dif-

ferences between the parents; ‘Buffalo’ is a dwarf variety

with low kernel content and small grains and ‘Tardis’ is a

conventional-height variety with high kernel content and

large grains. The DNA was extracted from the seedling leaves

of F2 plants and the parents using a QIAGEN DNeasy 96

Plant Kit (QIAGEN, Crawley, United Kingdom) and geno-

typed using 121 polymorphic microsatellites (Dumlupinar

et al., 2016; Jannink & Gardner, 2005; Li, Rossnagel, &

Scoles, 2000; Pal, Sandhu, Domier, & Kolb, 2002; Wight,

Yan, Fetch, Deyl, & Tinker, 2010; Wu, Zhang, Chen, &

He, 2012) and with the oat DArT array (Tinker et al., 2009;

Diversity Arrays Technology Pty, Canberra, Australia) which

identified a further 424 polymorphic (dominant) loci.

From each F2 plant, families of F3 seed were harvested and

multiplied in the field to produce F4 bulks to enable sufficient

seed for replicated field trials. Each F2-origin plant there-

fore defines a lineage with the resulting progeny forming a

family and F3 and F4 genotypes are inferred from the F2. A

RIL mapping population of 227 individuals was derived by

SSD from individual seeds of the F3 plants, giving a slightly

larger number of individuals than the initial 194-line F2 pop-

ulation. The population size was increased by selecting single

seeds from individual F3 dwarf and tall plants. Progeny were

advanced through SSD to the F7 generation where leaf mate-

rial was sampled for DNA extraction as previously described

(Figure 1). In addition to microsatellites and DArT mark-

ers, GBS libraries were constructed following the oat proto-

col developed and described by Huang et al. (2014) and pro-

cessed as reported in Bekele et al. (2018). In this analysis,

1,046 markers were used for the RILs, and between the F2

and RIL datasets there were 401 common markers, of which

100 were codominant and 301 were dominant. Genotype calls

and map locations are integrated into The Triticeae Tool-

box oat platform (http://triticeaetoolbox.org/oat/genotyping)

as reported in Bekele et al., 2018. Stratification of the popu-

lation for both phenotyping and genotyping is summarized in

Figure 1. Phenotypic assessment for production-related traits

(maturity, ear emergence, Internode 1 length, kernel content,

panicle length, panicle extrusion, winter hardiness, height,

grain yield, mildew, hullability, grain length, grain width, and

grain area) was conducted in either the field or polytunnel at

the F2 (2005), F3 (2006), and F4 (2007–2010) generation. In

addition, the F7 RILs were phenotyped (2010–2014) for both

the production characteristics (as previously) and the quality

trait grain β-glucan content at the RIL (F7; 2010–2014) gen-

eration (Table 1). All field trials were conducted in Aberyst-

wyth, United Kingdom (52.43 lat, 4.02 long) and used stan-

dard pre-emergence and early spring weed control with no

fungicides or growth regulators applied. Nitrogen fertilizer

(70 kg ha−1) was applied in a split dose at GS31 and GS35

(Zadoks, Chang, & Konzak, 1974). The traits were assessed

using a range of standard phenotyping methods, summa-

rized in Supplemental Table S1. The number of individuals

phenotyped for each trait varied, and data was averaged across

trial entries to derive phenotypic means (Table 1).

2.2 Genomic prediction models

Two genomic prediction methods were used: ridge regression-

BLUP (RR-BLUP; Piepho, 2009) and differentially penalized

regression (DiPR; Bentley et al., 2014; Ward, Rakszegi, Bedő,

Shewry, & Mackay, 2015). The use of two methods allowed

http://triticeaetoolbox.org/oat/genotyping
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T A B L E 1 Within generation predictions of traits assessed on the ‘Buffalo’ × ‘Tardis’ population with different generations of phenotyping

(GenP) and genotyping (GenG) assessed in a range of years in field (F) or polytunnel (PT) trials. The ridge regression best linear unbiased predictor

(RR-BLUP) predictions are made across the full set of available lines (All), and within Dw6 classes (Tall, Dwarf). SD, standard deviation

Trait value RR-BLUP prediction
Trait GenP GenG Year assessed Trial n Mean SD All Tall Dwarf
Internode 1 length,

cm

F2 F2 2005 F 180 25.97 10.92 0.79 0.21 0.10

F4 F2 2007, 2008 F 92 34.81 10.06 0.34 0.25 0.00

F7 F7 2011, 2014 PT 227 36.36 12.51 0.83 - -

Kernel content, % F4 F2 2007, 2008, 2010 F 180 63.53 3.99 0.60 0.40 0.26

F7 F7 2012 F 156 62.60 4.60 0.66 - -

Maturity, d after

1 April

F4 F2 2008 F 180 112.12 1.22 0.33 0.32 0.33

F7 F7 2013 F 156 95.96 1.62 0.79 - -

Mildew F3 F2 2006 F 180 0.54 1.29 0.40 0.23 0.40

F7 F7 2011 PT 227 0.42 0.50 0.72 - -

F7 F7 2014 PT 91 0.53 0.50 0.86 - -

Panicle extrusion,

cm

F4 F2 2007, 2008 F 92 8.47 9.98 0.35 0.24 0.00

F7 F7 2011 PT 227 12.02 12.42 0.87 - -

Winter hardiness F3 F2 2006 F 148 8.10 0.58 0.09 0.10 0.10

F4 F2 2007–2009 F 180 7.28 0.44 0.70 0.60 0.67

F7 F7 2011 F 184 1.81 1.13 0.47 - -

F7 F7 2012 F 227 7.29 0.64 0.77 - -

Grain yield, t ha−2 at

85% dry matter

F4 F2 2007, 2008, 2010 F 180 1.07 0.34 0.63 0.00 0.30

F7 F7 2014 F 227 4.91 2.19 0.66 - -

Ear emergence, d

after 1 April

F2 F2 2005 F 180 61.96 3.62 0.64 0.00 0.44

F4 F2 2007, 2008, 2010 F 87 66.42 1.94 0.79 0.34 0.00

F7 F7 2010, 2011 PT 227 78.65 16.60 0.72 - -

F7 F7 2010–2013 F 227 70.44 5.23 0.71 - -

Height, cm F2 F2 2005 F 180 101.38 28.00 0.81 0.00 0.44

F4 F2 2007, 2008, 2010 F 180 113.59 19.81 0.88 0.00 0.76

F7 F7 2010–2014 F 222 110.60 27.13 0.88 - -

F7 F7 2011, 2014 PT 222 137.68 32.56 0.89 - -

Grain length, mm F4 F2 2008 F 177 11.10 0.50 0.45 0.54 0.42

F7 F7 2013 F 150 13.22 0.70 0.61 - -

Grain width, F4 F2 2008 F 177 3.40 0.10 0.61 0.50 0.59

F7 F7 2013 F 150 3.07 0.14 0.65 - -

Hullability, % F4 F2 2008 F 180 75.01 6.40 0.36 0.34 0.37

F7 F7 2012 F 156 91.70 6.63 0.47 - -

Panicle length, cm F2 F2 2005 F 180 21.52 2.73 0.52 0.34 0.22

F4 F2 2007, 2008 F 92 26.49 2.21 0.04 0.00 0.05

β-glucan, % F7 F7 2012 F 155 4.16 0.29 0.68 - -

F7 F7 2013 F 146 4.10 0.28 0.47 - -

Grain area, mm2 F7 F7 2013 F 150 28.68 2.13 0.61 - -

for validation of models, including testing the use of marker

information in a single matrix against differential weighting

of the dominant (DArT) and codominant (microsatellite and

GBS) marker data combined using DiPR. The RR-BLUP

analysis used the package rrBLUP v4.6 (Endelman, 2011)

in R v3.3.3 for Windows (R Core Team, 2016). Predictions

were compared within a generation between lineages and

between generations using an integrated data matrix. For

the integrated data matrix, genotype data for dominant

markers were attributed half scores to account for their

uncertainty, akin to an imputed marker (i.e., AA or AB: 0.5;

AB or BB: −0.5), whereas whole value scores were used for
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codominant marker data (i.e., AA: 1; AB: 0; BB: −1). Impu-

tation of further missing marker data was performed using

the random forest algorithm implemented with the R package

missForest v1.4 (Stekhoven & Buhlmann, 2012) with 1,000

trees and using Chi-squared tests for parameterization of the

missForest model with artificially removed data. Five-fold

cross-validation (CV) within generations was performed with

100 replications via Monte Carlo cross-validation (MCCV;

Xu & Liang, 2001). Cross-validation between generations,

between and within lineages, was performed with k-fold CV

(k = 2, 3, 4, and 5) to examine differential sampling depths

from the available population (i.e., simulating a breeder

having genotyped and phenotyped 0.50, 0.33, 0.25, or 0.20

of the early generation, respectively). Within generation

predictions were made independently on Tall and Dwarf

classes (as determined by F2 genotyping) to account for the

known segregating Dw6 gene (Molnar et al., 2012) when the

training set size was greater than 30 individuals. In the full

dataset, 27% of lines were classified as Tall.

All prediction accuracies are reported as pairwise Pearson

correlations. In the within-generation models, Fisher’s

Z-transformation was used to convert Pearson correlations to

a normal distribution (as Z is normally distributed whereas

r is not) before averaging and back-conversion. In the

between-generation models, where all available marker and

phenotype data common to both generations were used

to train and predict from the early generation (F2, F3 and

F4) to RILs, accuracy is reported as the pairwise Pearson

correlation within a family. In the between-generation,

between-lineage models, genotypes were randomly sampled

without replacement 100 times according to that k-fold

CV analysis (where k = 2–5). Accuracy is reported for

both within and between family Fisher’s Z-transformed

mean Pearson correlations with back-conversion across the

100 per-k iterations.

To implement DiPR, the common marker data from F2

to RIL genotypes were divided into dominant (DArT) and

codominant (microsatellite and GBS) marker types. Markers

were thinned at an r2 value of .90 to prevent oversampling and

an additive relationship matrix was derived for each marker

type. These were linearly combined into a single matrix with

separate weighting factors (w and 1−w), between w = 0 and

w = 1 in 0.01 steps, to produce a single input to RR-BLUP,

as previously described (Bentley et al., 2014; Ward et al.,

2015). Model fitting used the R package ‘RR-BLUP’ (Endel-

man, 2011) and the optimal w-value was determined as the

maximum cross-validation correlation. At w = 0, only the

codominant markers contributed to the prediction and at w

= 1, only the dominant markers contributed. The intervening

weights use differential penalization consistent between

matrices but with the two marker sets contributing to the

additive relationship matrix proportional to their weighting

(Bentley et al., 2014).

3 RESULTS

Across the early generation (F2) genotypes, there were 545

genotyped markers, of which 424 were dominant and 121

codominant. For the RIL (F7) population there were 1,046

codominant genotyped markers. Between the two datasets

there were 401 common markers, of which 100 were codom-

inant and 301 were dominant.

3.1 Within-generation predictions

In order to determine the added value of early generation

genotyping, within-generation models were tested. Predic-

tions were made using F2 genotype data to predict phenotypes

at the F2, F3, and F4 level, while RIL genotype data (F7) was

used to predict phenotypes at the RIL level (F7). A total of

15 phenotypes were predicted with 12 predicted at both the

early and later RIL generation, and all data are presented in

Table 1. At the F2 genotype level, all the phenotypes were

compared across all lines as well as within Dw6 genotypic

Tall and Dwarf classes. The accuracy of prediction varied

across traits and generations. The traits that were predicted to

the highest levels of accuracy across generations were height

(range .81–.89), ear emergence (.64–.79), and kernel content

(.60–.66). For the majority of traits, the accuracy of predic-

tion was higher when using F7 genotypic and phenotypic data

compared to predicting in early generations (kernel content,

maturity, mildew, panicle extrusion, grain yield, grain length,

grain width, and hullability). Variation was observed for the

accuracy of trait prediction when using different phenotyp-

ing generations or trial years for some traits including Intern-

ode 1 length (.34 from F4 compared to .79 from F2 and .83

from F7 phenotypes) and winter hardiness (.09 from F3, .47

in 2011 F7 trials to .70 from F4, and .77 from F7 in 2012 phe-

notypes). Predicting within Dw6 classes gave generally low

predictions for all traits when compared to predicting across

the full dataset, with the exception of height, grain length, and

width in the F4 and the overall low prediction traits (maturity,

mildew, winter hardiness, and panicle length).

3.2 Between generation predictions

To examine whether between-lineage predictions were pos-

sible from early to late generations, predictions were made

within and between lineages as well as across all available

data. The phenotypic correlation between early generation

and RIL phenotypes was used as a proxy for the accuracy of

imposing selection on phenotype alone at the F4 generation

for comparative purposes. Nine traits were selected for com-

parison to assess differences in predictive accuracy between

the early and late generations and all data are presented in
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Table 2. In general, this showed that low-level genotyping

(combined with phenotyping) in the early generation was

sufficient to allow relatively accurate predictions to be made

for later generation (F7) phenotypes with the exception of

kernel content (.66 for all markers, dropping to .39 with 50%

of individuals). High prediction accuracies were maintained

for Internode 1 length for predictions from the F2 to F7

(.58–.76) and F4 to F7 (.54–.77) across genotyping coverage

as well as for panicle extrusion, grain yield, and height

(Table 2). Where predictions overall were low (maturity,

mildew, and winter hardiness), accuracies were maintained

or slightly reduced with coverage. For ear emergence, the

predictions from early generation to field grown F7 lines were

high overall (.62) and showed a slow pattern of reduction with

genotyping density, but predictions from early generations

to F7 polytunnel phenotypes were low (.29 for F2, .12 for

F3). This was not the case for height, with predictions stable

across both field and polytunnel trials (Figure 2).

3.3 Comparing methods for handling mixed
marker data

Dominant markers provide less information than codominant

markers but are cheaper to generate, meaning that a greater

number are likely to be available (or required) to generate

accurate predictions. The DiPR was implemented across nine

traits (Table 3) to assess the predictive advantage of propor-

tionally combining marker types in a single additive relation-

ship matrix. When compared to predictions based on a single

marker type using RR-BLUP, the DiPR method performed as

well or better than a RR-BLUP model using a single matrix

with results summarized in Table 3. Low RR-BLUP predic-

tions for maturity (.36), mildew (.49), and winter hardiness

(F3 predictions .43) were all improved through the implemen-

tation of DiPR (.47, .52, and .48, respectively) although their

optimal weighting factors varied. Differential weighting for

these low-prediction traits showed that only using codominant

markers (DiPR wopt = 0.00) improved maturity and winter

hardiness predictions whereas using only dominant markers

(wopt = 1.00) optimized prediction of mildew.

4 DISCUSSION

As genotyping costs fall, there is an opportunity to use

genomic prediction to reduce the number of individuals phe-

notyped in within-cross breeding populations. We demon-

strate that it is feasible to use the genotypic information from a

full set of biparental lines to make within generation, between-

lineage genomic predictions. This can recover information on

missing phenotypic data to improve selection resilience repre-

senting an added value to early generation genotyping beyond

deselection of unfavorable alleles, as previously described

for wheat (Triticum aestivum; He et al., 2016) and soybean

(Glycine max; Ma et al., 2016). Early generation genotypic

data can also be used to reduce the number of lines required

in later generation phenotyping based on siblings progressed

to generate stable, genotyped homozygous lines. Our results

demonstrate that early generation genotyping need not cover

the full population in order to attain accuracies in line with

true trait correlation between early and late generation pheno-

types (a proxy for selecting on early generation phenotypes

alone), as has been previously shown in small populations

(Wong & Bernardo, 2008). We therefore propose that strong

within-cross selection could be imposed early in a breeding

cycle whilst retaining accuracy of selection. Prior simula-

tions of within-cross genomic prediction have been reported

in maize, suggesting that gains plateau with selfing rounds,

with the F4 capturing 90% of the F8 gains due to an increase

in the maximal breeding value of the population (McClosky

et al., 2013). If these gains can be identified within lineages

in the early stages, then accurate selection could be imposed

before phenotypic selection.

In this study we performed predictions with F2 and F7

(RIL) genotype data. In the first instance, F2 genotypes were

employed to make models with early generation (F2, F3, and

F4) phenotypes with 80% of available phenotype data as the

training set and 20% as the test set. This simulates lost data

in early generation phenotyping when an accurate representa-

tion of the cross’ phenotypic value is required for selection.

A major limitation to the implementation of GS within small

breeding programs is the high upfront genotyping cost (Varsh-

ney et al., 2012). Our results indicate that there is an advantage

to early generation genotyping, and that this need not be at

high coverage in order to provide value to between-generation

RIL performance prediction.

Prediction within the F7 RILs had generally high accuracy

and demonstrates potential savings in later stage phenotyp-

ing costs. Where seed is generated for RIL phenotyping in

a shuttle breeding framework (Borlaug, 1968; Forster et al.,

2015), there is a requirement to transfer substantial quanti-

ties of seed between environments. Our data indicates that an

alternative to the movement of large amounts of seed could

be to use separate sets of families to be tested in multiple tar-

get environments and to use within-generation prediction for

the missing environment performance. However, this would

need to be empirically tested as the effect of environmental

variability on robustness of prediction are well documented

(Burgueño, de los Campos, Weigel, & Crossa, 2012; Jarquín

et al., 2014). This would be particularly attractive in Europe

where out-of-season multiplication takes place in climatically

matched environments in the southern hemisphere, represent-

ing a major cost. Using sets of small families could also enable

the use of GS for adaptation to multiple target environments

at an early stage in the breeding program. This is currently
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F I G U R E 2 Comparison of changes in ridge regression best linear unbiased prediction accuracy from the F2 to F7 generation in ‘Buffalo’ ×
‘Tardis’ recombinant inbred lines for height and ear emergence in the field (F) and polytunnel (PT) based on varying proportions of genotyped

F2 individuals

limited by seed availability and would have both cost and

logistical advantages in using sibling predictions to avoid phy-

topathological quarantine requirements.

Our data indicate that between family predictions across

generations could allow for earlier lineage selection. Early

selection is currently limited due to high levels of heterozy-

gosity and uncertain phenotypic value of lineages. However,

if a portion of the F2 lineages are genotyped (as single plants),

and their derived F4 field phenotypes (based on siblings from

F3 rows) are used in conjunction with low-coverage F2 geno-

typing, a genomic prediction model could be developed. Fol-

lowing subsequent production and genotyping of fixed RILs,

a prediction can be used to select which of the cross’ lin-

eages are likely to perform best and reduce the number of

entries into fully replicated field trials, therefore accelerat-

ing the breeding cycle (Jannink, Lorenz, & Iwata, 2010). This

offers the ability to use F2:4 families to predict F7s derived

from different F2s and to rapidly generate F7 lines while pro-

ducing a prediction equation over one or two seasons of yield

testing. Selection among the F7 is then made on the predicted

trait values. This theoretical program design is summarized in

Supplemental Figure S1.

We also compared different proportions of F2 genotyping

as an approximation for a breeder varying the level of finan-

cial investment in F2 genotyping, with all derived RILs then

being genotyped. There was a reduction in predictive accu-

racy as the proportion of F2 genotyping declined although,

even at low representation, some traits could still be predicted

to the same levels as for phenotypic selection at the F4 genera-

tion. Similar results have previously been shown in biparental

maize population simulations (Bernardo & Yu, 2007).

The employment of within-cross predictions reported here

must be tailored to the existing breeding program, particu-

larly with respect to number of crosses per cycle and selection

intensity in order to ensure financial viability. The evaluation

of economic aspects of GS implementation are essential for

wider application (Abed, Pérez-Rodríguez, Crossa, & Belzile,

2018). However, given the ability to achieve rapid genera-

tion time (Watson et al., 2018), our accuracy results sug-

gest that selections could be made much earlier, although this

remains to be empirically tested within breeding programs.

Given that between-lineage accuracies are similar to within-

lineage accuracies, our data suggest that independent families

can be used to predict across lineages. In addition to show-

ing that between-lineage prediction is possible, we also show

that F3 and F4 segregated material (as used in shuttle breeding

or remote testing) can be used to reduce the costs associated

with multi-environment testing. Bekele et al. (2018) recently

demonstrated heading date prediction accuracies of up to .67

in independent training and test populations. The accumula-

tion of data from many crosses also represents a first step

to the full implementation of GS within a program (Gorjanc

et al., 2017a; Sverrisdóttir et al., 2017; Edwards et al., 2019).

However, we note that further work is required to compare the
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T A B L E 3 Comparison of methods to handle mixed dominant and codominant marker types for predictions in the ‘Buffalo’ × ‘Tardis’

population. The training population consists of early generation phenotyped (GenP) individuals (Phenn) for common traits assessed in the test set

composed of F7 recombinant inbred lines (RILs) in either the field (F) or polytunnel (PT). Prediction is compared between standard ridge regression

best linear unbiased predictor (RR-BLUP) and differentially penalized ridge regression (DiPR), with the associated optimal weight value (DiPR

wopt) given

Training set Test set (F7) Prediction accuracy
Trait GenP Phenn Trial Phenn RR-BLUP DiPR DiPR wopt

Internode 1 length F2 161 PT 213 0.76 0.77 0.29

F4 81 PT 213 0.77 0.76 0.93

Kernel content F4 161 F 152 0.66 0.66 0.22

Maturity F4 161 F 152 0.36 0.47 0.00

Mildew F3 161 F 137 0.49 0.52 1.00

Panicle extrusion F4 81 PT 213 0.82 0.84 0.03

Winter hardiness F3 136 F 213 0.43 0.48 0.00

F4 159 F 213 0.61 0.70 0.00

Grain yield F4 161 F 213 0.63 0.69 0.23

Ear emergence F2 161 PT 213 0.29 0.24 0.90

F3 91 PT 213 0.12 0.09 0.42

F2 161 F 213 0.62 0.60 0.68

F3 91 F 213 0.62 0.63 0.27

Height F2 161 PT 208 0.81 0.82 0.24

F2 161 F 208 0.82 0.86 0.01

F3 161 PT 208 0.86 0.85 0.26

F3 161 F 208 0.87 0.87 0.05

within-cross predictions reported here to wider performance

across a breeding program with analysis of all crosses jointly

(Jannink et al., 2010). The longer-term adoption and imple-

mentation of a multi-subpopulation training population (de

Roos, Hayes, & Goddard, 2009) offers an attractive gradual

adoption model for GS in small programs if LD can be main-

tained with higher marker densities (Asoro et al., 2011).

Finally, we demonstrate that the use of mixed marker data

can be optimized using DiPR. Although dominant marker

use is declining, they still represent the cheapest genotyp-

ing method for low-resource crops and much legacy data

exists. Dominant markers are less informative than codomi-

nant markers and their use can be problematic for GS across

generations because of varying levels of heterozygosity that

cannot be accounted for. We considered an alternative to a

linear combination of dominant and codominant markers that

separately weighted marker types as components of a single

additive relationship matrix. Implemented as DiPR (Bentley

et al., 2014; Ward et al., 2015), this showed that for some

traits an optimized weighted combination of the two marker

types improved prediction accuracy compared to a combined

matrix using all available data. When the weight factor (w)

was zero, only codominant data was used in the prediction.

As the weight tends toward one, more weight is applied to

the dominant marker data. For example, for kernel content

(training: F4 2007, 2008, 2010; test: RIL 2012) an intermedi-

ate optimal solution (wopt = 0.22) was found. This compares

to mildew (training: F3 2006; test: RIL 2012) which had a

dominant marker optimum (wopt = 1.00) and winter hardiness

(training: F3 2006 and F4 2007; test: RIL 2012) which had a

codominant marker optimum (wopt = 0.00). Although dom-

inant markers have been largely superseded by SNP-based

methods of genotyping, our results indicate that for some traits

they provide useful information. The low frequency or uneven

distribution of SNP markers across the oat genome (Bekele

et al., 2018) may explain why the dominant markers used here

made higher, or complete contributions to optimal predictions

for disease (typically a dominant genetic effect, controlled by

a limited number of loci; Okoń & Ociepa, 2018). Conversely,

winter hardiness was optimally predicted from codominant

markers and it is a documented complex, quantitative trait that

has limited tractability in oat breeding programs (Chawade

et al., 2012). Therefore, we propose that the genetic architec-

ture of a trait combined with marker coverage are determi-

nants of optimal DiPR weighting.

Our findings are potentially useful for other studies look-

ing to combine data types in predictions. Asoro et al. (2013)

previously proposed the use of selection criteria to weight

low-frequency favorable alleles in GS to avoid loss of diver-

sity with increasing gains for β-glucan in oat breeding. We

also demonstrate the utility of within- and between-generation

predictions in a narrow-base oat population. The predictions
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reported here would have benefits to a breeding program

where genotyping costs are less than field trial costs. In this

study we use a modest number of individuals and markers, but

scaling to higher density markers, larger numbers of individ-

uals, and broadening the population base are all opportunities

for achieving future breeding gains.
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