
History, Teaching, and Public Awareness

NEST Desktop, an Educational Application for
Neuroscience
Sebastian Spreizer,1,2,3,4 Johanna Senk,3 Stefan Rotter,1,2 Markus Diesmann,3,5,6 and
Benjamin Weyers4

https://doi.org/10.1523/ENEURO.0274-21.2021

1Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany, 2Bernstein Center Freiburg, University of
Freiburg, 79104 Freiburg, Germany, 3Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced
Simulation (IAS-6) and Jülich Aachen Research Alliance (JARA)-Institute Brain Structure-Function Relationships (INM-
10), Jülich Research Centre, 52428 Jülich, Germany, 4Department of Computer Science, University of Trier, 54296
Trier, Germany, 5Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, Rheinisch-
Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany, and 6Department of Physics,
Faculty 1, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany

Abstract

Simulation software for spiking neuronal network models matured in the past decades regarding per-
formance and flexibility. But the entry barrier remains high for students and early career scientists in
computational neuroscience since these simulators typically require programming skills and a complex
installation. Here, we describe an installation-free Graphical User Interface (GUI) running in the web
browser, which is distinct from the simulation engine running anywhere, on the student’s laptop or on a
supercomputer. This architecture provides robustness against technological changes in the software
stack and simplifies deployment for self-education and for teachers. Our new open-source tool, NEST
Desktop, comprises graphical elements for creating and configuring network models, running simula-
tions, and visualizing and analyzing the results. NEST Desktop allows students to explore important con-
cepts in computational neuroscience without the need to learn a simulator control language before. Our
experiences so far highlight that NEST Desktop helps advancing both quality and intensity of teaching in
computational neuroscience in regular university courses. We view the availability of the tool on public
resources like the European ICT infrastructure for neuroscience EBRAINS as a contribution to equal
opportunities.

Key words: code generation; graphical user interface; NEST simulator; neuronal dynamics; teaching; web-based
application

Significance Statement

The Graphical User Interface (GUI) NEST Desktop makes neuronal network simulations accessible to non-
programmers. It facilitates the interactive exploration of neuronal network models by integrating the whole
workflow of wiring up the network, simulating the neuronal dynamics, and analyzing the recorded activity
data into a single tool. NEST Desktop effectively supports teaching the concepts and methods of computa-
tional neuroscience. Because of its installation-free web-based implementation, it is particularly suitable for
online courses.

Received May 21, 2021; accepted September 19, 2021; First published
November 11, 2021.
The authors declare no competing financial interests.

Author contributions: S.S. designed research; S.S. performed research; S.S.
unpublished reagents/analytic tools; S.S. analyzed data; S.S., J.S., S.R., M.D.,
and B.W. wrote the paper.

November/December 2021, 8(6) ENEURO.0274-21.2021 1–13

Research Article: Methods/New Tools

https://orcid.org/0000-0002-7720-9211
https://orcid.org/0000-0002-6304-062X
https://orcid.org/0000-0003-3534-6530
https://orcid.org/0000-0002-2308-5727
https://orcid.org/0000-0003-4785-708X
https://doi.org/10.1523/ENEURO.0274-21.2021


Introduction
Complementary to experiment and theory, simulations

of computational models represent an essential research
tool in neuroscience. Neuronal network models integrate
available knowledge of the brain’s individual constituents
and their complex interactions with the aim to simulate
neuronal activity matching data observed experimentally
(Tikidji-Hamburyan et al., 2017). Dedicated open-source

software tools, partially with decades of ongoing devel-
opment and maintenance (Brette et al., 2007), promote
the reproducibility of simulations, reuse and extension
of code, and efficient usage of hardware. Many of these
tools rely on textual, general-purpose programming lan-
guages (Einevoll et al., 2019) primarily designed for rou-
tine use by specialized researchers. Computational
neuroscience, however, is an interdisciplinary field, and
scientists without strong background in programming
often struggle to get started with the concepts and
usage of simulators. Often enough, they shipwreck be-
cause of the complex installation of the software. To
lower the entry barrier for these tools, and to provide ac-
cess for non-programmers, a number of simulation en-
gines has been equipped with Graphical User Interfaces
(GUIs) to easily control simulations or explore network
activity (for an overview, see Table 1).
With our present work, we focus on college and univer-

sity students as a specific user group where significant
programming skills cannot be assumed. We present a
web-based software tool, which has been specifically
developed to support education and training of basic
computational neuroscience for individual learners and
classroom teaching. In addition, it is suited for online
courses. The main educational objective is to develop
solid understanding of how numerical simulations can be
employed as a meaningful research tool in neuroscience.
The methodological question is how the anatomy, physi-
ology, and biophysics of neuronal systems should be
translated into specific algorithmic components of a nu-
merical simulation. Our didactic strategy is to enable ex-
citing hands-on experience and rewarding results without
delay and without big effort. The concept appeals to

Table 1: History of GUI development in computational neuroscience

Development GUI Simulator Environment Reference
1992 GENESIS GUI GENESIS x11 Bower and Beeman (2012)
1993 NEURON GUI NEURON x11 Hines (1993), Hines and Carnevale (1997)
1995 SLIDE NEST x11 Matyak (1996), Gewaltig et al. (1996)
2007 neuroConstruct multiple x11 Gleeson et al. (2007)
2008 SNN3DViewer none x11 Kasi�nski et al. (2009)
2009 Neuronvisio NEURON x11 (qt4) Mattioni et al. (2012)
2011 nuSPIC NEST HTML Vlachos et al. (2013)
2012 The Virtual Brain (TVB) TVB HTML Sanz Leon et al. (2013)
2013 N2A (Neurons to Algorithms) multiple x11 (qt5) Rothganger et al. (2014)
2013 SpineCreator PyNN x11 (qt5) Cope et al. (2017)
2013 VisNEST none (NEST) VR Nowke et al. (2013)
2014 Neuronify Neuronify x11 (qt5) Dragly et al. (2017)
2014 Open Source Brain (OSB) PyNN HTML Gleeson et al. (2019)
2015 Nengo GUI Nengo HTML https://github.com/nengo/nengo-gui
2015 ViSimpl none x11 (qt5) Galindo et al. (2016)
2016 NEST Desktop NEST HTML https://github.com/nest-desktop/nest-desktop
2016 VIOLA none HTML Senk et al. (2018)
2016 Visbrain none x11 (qt5) Combrisson et al. (2019)
2017 NESTInstrumentationApp NEST HTML https://github.com/compneuronmbu
2017 NetPyNE UI NetPyNE HTML Dura-Bernal et al. (2019)
2017 NEURON UI NEURON HTML https://github.com/MetaCell/NEURON-UI
2018 CellExplorer none x11 (qt5) Petersen et al. (2021)

GUIs are ordered chronologically according to the estimated beginning of their development phase (mentioned in a paper or first commit in a public repository).
Most GUIs are coupled with a simulation engine in a specific front end environment. If a GUI is independent of specific simulators, the respective entry is “none”.
“none (NEST)” in the case of VisNEST means that the application has full operational function without the simulator NEST but it can be connected to it. For more
information, the last column lists the corresponding publications or refers to the source code.

This work was supported by the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under Specific Grant Agreement No.
785907 (Human Brain Project SGA2) and No. 945539 (Human Brain Project SGA3),
the Helmholtz Association Initiative and Networking Fund Project Number SO-092
(Advanced Computing Architectures), and the Deutsche Forschungsgemeinschaft
(DFG) Excellence Cluster BrainLinks-BrainTools Grant EXC 1086. The High-
Performance Computing (HPC) facilities are funded by the state of Baden-
Württemberg through bwHPC and DFGGrant INST 39/963-1 FUGG.
Acknowledgements: We thank Jens Buchertseifer for the collaboration in

code development and review of NEST Desktop; Jochen Martin Eppler for
discussion and development of NEST Server; and Sara Konradi, Jessica
Mitchell, Dennis Terhorst, Steffen Graber, and the community of NEST
developers for discussion, review of the user documentation, and the web
page on EBRAINS. At Freiburg, we thank tutors and students of the Bernstein
Center for beta-testing NEST Desktop, enduring the early days, and valuable
feedback. We also thank the service of the HBP Support Team for deployment
on EBRAINS as well as the operators at the Rechenzentrum of University of
Freiburg for the deployment on statewide bwCloud infrastructure, Thomas
Matyak and his aunt for uncovering the thesis on SLIDE, and the research
assistant (HiWi) Peter Bouss for finding Thomas.
Correspondence should be addressed to Sebastian Spreizer at spreizer@

uni-trier.de.
https://doi.org/10.1523/ENEURO.0274-21.2021

Copyright © 2021 Spreizer et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: Methods/New Tools 2 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org

https://github.com/nengo/nengo-gui
https://github.com/nest-desktop/nest-desktop
https://github.com/compneuronmbu
https://github.com/MetaCell/NEURON-UI
mailto:spreizer@uni-trier.de
mailto:spreizer@uni-trier.de
https://doi.org/10.1523/ENEURO.0274-21.2021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


common sense and scientific intuition. It makes students
enjoy the lessons, and invites independent creative re-
search. For a successful implementation, we seek a
framework that fulfills the following requirements. First,
the tool needs to offer functionality that enables students
to create a neuronal network model visually and interac-
tively. Thus, there is no need for programming at this
stage and the focus lies more on the neuroscientific
questions. Second, there is the need to inspect the simu-
lation results, in the sense of a constructive approach in
learning (Clark and Mayer, 2011; de Jong et al., 2013).
For this purpose, a simulator needs to be loaded with the
model and executed, and it should then offer an easy-to-
understand presentation of the results. This can then be
the basis of a new iteration with an adapted model. Third,
the tool should offer the use of standard models, storing
and loading previous models as well as the creation of re-
ports. Finally, the tool needs a high level of usability, should
be easy to install, and scale up to a classroom size number
of users.
The tool presented in this work is called NEST Desktop

and aims to convey the structural and dynamical behavior
of biological neuronal networks by addressing the re-
quirements listed above. Building on what students with a
general background in neuroscience are already familiar
with, virtual experiments are conducted in similar steps,
and described with similar terminology as known from bi-
ological experiments. Designed around the concept of
constructivistic experimenting and fast prototyping, NEST
Desktop allows users to explore key aspects of neuronal
network modeling via a GUI: network construction and

parameterization, running simulations, data analysis, and
documentation can all be performed by means of interac-
tive visualization (Fig. 1). In the background, NEST Desktop
uses the NEural Simulation Tool (NEST; Gewaltig and
Diesmann, 2007) as a reference simulation engine. NEST
focuses on small to large networks of spiking neurons and
comprises a collection of simple and more biophysically
detailed neuron models. NEST Desktop is installation-free
and requires only a modern web browser.
In Materials and Methods, we elucidate technical details of

NEST Desktop. In Results, we describe the main components
and functionality of NEST Desktop and exemplify its usage
with a use case about teaching in a classroom and supporting
research. We have previously employed NEST Desktop in
university courses and were able to make the experience
that NEST Desktop successfully supports students to
complete the course also in times of online courses be-
cause of the COVID-19 pandemic. The Discussion embeds
the work in the state of research and reflects on general
achievements, current limitations, and potential future de-
velopments. Preliminary results have been published in ab-
stract form (Spreizer, 2018; Spreizer et al., 2019, 2020).

Materials and Methods
Client-server architecture
NEST Desktop uses a client-server architecture (Fig.

2A,B): the client provides the GUI as front end and han-
dles network construction, simulation-code generation,
and analysis of activity data (Fig. 2B, purple row); the
server runs the simulation engine NEST (Gewaltig and

Figure 1. NEST Desktop workflow enables fast prototyping of neuronal network simulations. The GUI allows the user to control net-
work construction, simulation, data analysis, and archiving via graphical elements. All these steps can be executed consecutively
and repeatedly to explore model properties and resulting network dynamics. Constructing a network involves the selection and con-
nection of nodes as well as their parameterization (“construct”, left). After the simulation of a constructed network (“simulate”, top),
recorded analog signals and spiking activity can be assessed in various charts (“analyze”, right). The user is also able to export and
archive networks and results for documentation and later use (“archive”, bottom).

Research Article: Methods/New Tools 3 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



Diesmann, 2007) as back end and executes the simula-
tion code (Fig. 2B, yellow row). This separation enables a
lightweight and platform-independent implementation of
NEST Desktop as a web application. The deployment of a
NEST installation and an execution environment with suf-
ficient computational resources is provided by the running
infrastructure and is therefore outside of the user’s re-
sponsibility. However, this architecture requires the back
end to remain stateless, which means that the data of the
simulation (network model and simulation results) are
stored only on the client side.
Standard data formats are used for communication to

ensure compatibility of these front end and back end sys-
tems. NEST 3 (Hahne et al., 2021) offers “API server” as a
server-side wrapper of NEST Simulator in Python, which en-
ables the communication of NEST Desktop as GUI on the cli-
ent side (i.e., in the browser) and “NEST Simulator” (or just
“NEST”) as simulation engine on the server side. NEST
Desktop and NEST Simulator use JSON for the server-to-
browser (stateless) communication over standard HTTP as
communication protocol. JSON is a language-independent
data format which can be applied in JavaScript, enabling in-
teractive web pages, and is interpretable by most program-
ming languages including Python.

Front end implementation
The GUI as a front end (Fig. 2, purple rows) makes use of

modern web technologies (e.g., responsive design) and ex-
ternal open-source libraries based on HTML5 and
JavaScript. NEST Desktop 3 is based on the open-source
web application framework Vue.js (https://vuejs.org), which
provides a collection of standard GUI widgets and compo-
nents. The GUI styles offered by Vuetify (https://vuetifyjs.
com) are already used in many other applications and, thus,
offer a certain level of consistency in the GUI design for NEST
Desktop. The application NEST Desktop runs solely in the
web browser of the user. Data of projects, models, and app
settings are stored on the local system running the browser.
The visual components of NEST Desktop rely on vari-

ous JavaScript libraries (Fig. 2C). Graphical representa-
tions of neuronal networks use D3.js (https://d3js.org).
Interactive charts to display simulated activity are realized
with Plotly.js (https://plot.ly/javascript). 3D animated ren-
derings of activity data resulting from simulations of spa-
tially structured networks use Three.js (https://threejs.org).
For data handling, NEST Desktop uses PouchDB to store

data in IndexDBwhich is by default built into the web browser.
PouchDB is a JavaScript-based library for CouchDB andman-
ages databases with a version-control system.

Figure 2. Workflow in client-server architecture and technical challenges. A, Simplified relationship of the client (front end) and the
server (back end). B, The front end handles network construction and data analysis, whereas the back end executes simulations
with NEST (Gewaltig and Diesmann, 2007). C, Problem formulations regarding the software architecture (left column) together with
the technical solutions implemented in NEST Desktop (center column) and associated examples (right column).

Research Article: Methods/New Tools 4 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org

https://vuejs.org
https://vuetifyjs.com
https://vuetifyjs.com
https://d3js.org
https://plot.ly/javascript
https://threejs.org


Back end implementation
The back end (Fig. 2, yellow rows) hosts first and fore-

most the simulation engine NEST and it is programmed in
Python 3 in conjunction with generic C11. The interface
is set up such that the user can directly communicate with
NEST via NEST Desktop. NEST Simulator predefines mod-
els for neurons, devices, and synapses that are directly se-
lectable in the GUI. Detailed model descriptions can be
requested from the NEST Simulator via a RESTful API.

Development, installation, and documentation
The development of NEST Desktop (Fig. 3) follows a

community approach. The source code is open-source
and available on the GitHub platform (Fig. 3, middle left,
https://github.com/nest-desktop/nest-desktop) under the
MIT License. The software development follows the GIT
workflow and ESLint enforces that style, formatting, and
coding standards of the code base are adhered to.
Running NEST Desktop requires the installation of both

the front end NEST Desktop itself and the NEST Simulator
as the back end. Both components need to work to-
gether. The main reference for installation instructions is
the online documentation on the ReadTheDocs platform
(Fig. 3, bottom left, https://nest-desktop.readthedocs.io).
Here, we limit ourselves to an overview and highlight some
alternative approaches for setting up NEST Desktop.
For the easiest local installation, we provide virtual

Docker containers (Fig. 3, top right) for NEST Desktop and
NEST Simulator which can be installed together using

Docker Compose with the configuration file docker-com-
pose.yml and a single command: docker-compose up.
Since Docker is available for different operating systems
(Linux, Windows, and Mac), this approach allows to pro-
vide and use the Linux-based ecosystem of NEST Desktop
not only on a local laptop but also on a wide range of other
infrastructures (Fig. 3, middle right). NEST Desktop has al-
ready been deployed on EBRAINS (https://ebrains.eu/
service/nest-desktop), the European research infrastruc-
ture developed by the Human Brain Project (https://
humanbrainproject.eu). Everyone with an EBRAINS ac-
count can use NEST Desktop there online without any in-
stallation. Furthermore, NEST Desktop was temporarily
deployed on bwCloud (https://www.bw-cloud.org), a uni-
versity-internal cloud computing resource for teaching pur-
poses. NEST Desktop is installation-free in the sense that a
computer center can provide NEST Desktop as a service
such that the user only requires a web browser.
As an alternative, NEST Desktop and NEST Simulator

can be obtained separately. On Docker Hub, there is a
dedicated image for NEST Desktop (https://hub.docker.
com/r/nestdesktop/app). NEST Simulator can also be ob-
tained from Docker Hub via the official NEST repository
(https://hub.docker.com/r/nestsim/nest). For advanced users,
the front end NEST Desktop is in addition available as a
Python Package (https://pypi.org/project/nest-desktop) pub-
lished on Python Package Index (PyPI), a third-party software
repository for Python, and can be installed with the pip package
manager (Fig. 3, top left): pip3 install nest-desktop.
Since NEST 3, a full installation of NEST Simulator on the
host system will also provide the API server for RESTful re-
quests. If NEST Desktop and NEST Simulator are installed
separately, they can be started with nest-desktop start
and nest-server start, respectively, after which the
GUI opens in the web browser and is connected to the sim-
ulation engine.
Beyond installation instructions, the documentation

of NEST Desktop on ReadTheDocs explains the usage
of NEST Desktop by step-by-step examples using
text, animations, and video tutorials. The documenta-
tion is organized in separate sections for users,
lecturers, deployers, and developers. The user docu-
mentation guides users to build networks, parameter-
ize nodes and connections, and perform simulations.
Lecturers learn how to deliver course material using
NEST Desktop. Deployers find instructions to set up
NEST Desktop on a machine via the Python Package
or using Docker or Singularity installations instead.
Developers get first insights into the code base of
NEST Desktop and are welcome to contribute. To facil-
itate getting started with NEST Desktop, a few exam-
ple projects with simple network models are also
integrated into the tool and can directly be inspected
and modified by a new user.

Results
NEST Desktop implements the whole conceptual work-

flow of neuronal network simulations (Fig. 1) in a common
GUI running in the web browser (Fig. 4). Users can seam-
lessly switch between three views with different

Figure 3. Software development and documentation of NEST
Desktop. The code is open source and available on GitHub. The
development of NEST Desktop makes use of PyPI and Docker
Hub. An associated docker image containing NEST Desktop to-
gether with the simulator NEST can be pulled on any local ma-
chine or server infrastructure. The ReadTheDocs platform
provides detailed information about NEST Desktop for users,
lecturers, deployers, and developers.

Research Article: Methods/New Tools 5 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org

https://github.com/nest-desktop/nest-desktop
https://nest-desktop.readthedocs.io
https://nest-desktop.readthedocs.io
%20https://ebrains.eu/service/nest-desktop
%20https://ebrains.eu/service/nest-desktop
https://humanbrainproject.eu
https://humanbrainproject.eu
https://www.bw-cloud.org
https://hub.docker.com/r/nestdesktop/app
https://hub.docker.com/r/nestdesktop/app
https://hub.docker.com/r/nestsim/nest
https://pypi.org/project/nest-desktop


functionality: the “network editor” (Fig. 4A) for graphical
network construction and parameterization, the “activity
explorer” (Fig. 4B) for analyzing activity data after a simu-
lation run, and the “lab book” (Fig. 4C) for the project
overview. The following provides details on these views
and their related functionality, then illustrates a fictive use
case about the tool’s employment in the classroom and
beyond.

Graphical construction of neuronal networks in the
network editor
The network editor allows the visual construction of a

network graph by selecting and assembling node and
connection elements (Fig. 5A). The appearance of those
elements is inspired by the graphical notation proposed
by Senk et al. (2021).

Clicking the right mouse button in the network graph
area triggers the creation of a new node (Fig. 5B, left). A pie
menu shows the available node types to choose from. Node
types are distinguishable by unique shapes. Stimulator (S)
nodes have a hexagon shape; they act as input devices that

Figure 5. Visual network construction. A, The network editor is
the main work space to graphically construct a network graph
(left) and adjust network properties with the controller panel
(right). Stacks of node and connection parameters associated
with the chosen models are displayed in colored panels. B, A
right click with the mouse in the blank space of the editor
opens a creation panel (left) to add a node to the network.
Node types are stimulator (S), neuron (N), and recorder (R).
Connections between nodes are drawn with the mouse cursor
(top right). A minimal network may consist of a stimulator, a
neuron, and a recorder (bottom right). C, The network controller
to the right of the network graph allows users to select and pa-
rameterize models. Clicking once on the model name (top left)
opens a popup for selecting parameters via checkboxes (mid-
dle); clicking there twice allows the user to select a different
model from a drop-down menu (bottom left). When a subset of
model parameters is selected, the corresponding values can be
modified (right) by moving sliders, incrementally increasing and
decreasing the value, or by directly entering the value. A restart
of NEST Desktop is also possible.

Figure 4. Network editor, activity explorer, and lab book share
a common user interface. The steps of NEST Desktop’s con-
ceptual approach for rapid prototyping (right; adapted from Fig.
1) correspond to the distinct views of the tool. A, The network
editor provides interactive construction and modification of the
neuronal network. B, The activity explorer visualizes network
activity. C, The lab book gives users a complete picture of a
constructed network. The project manager is shown on the left.

Research Article: Methods/New Tools 6 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



produce signals to be transmitted toward target nodes.
Recorder (R) nodes have a parallelogram shape; they repre-
sent devices that record signals emitted by other nodes.
Neuron (N) nodes integrate the input they receive from other
nodes and transform them to recordable outputs. Per de-
fault, neuron nodes are of a general type and depicted as
squares. The neuron node type can be refined further when
nodes are connected. Nodes get distinct colors, which help
to associate them with their respective parameter settings
and simulated activity throughout the tool.
A directed connection between two nodes is estab-

lished by clicking first on the connector of a source node
and then on a target node (Fig. 5B, right). Selecting the
same node both as source and target is also allowed. The
arrow representing the connection has the same color as
the source node. If all connections from a particular
source neuron node to other neuron nodes are parame-
terized with positive weights, the type of the source neu-
ron node gets refined to be excitatory; if all outgoing
weights are negative, the node is inhibitory. Excitatory
neuron nodes have triangular shapes resembling pyrami-
dal neurons, and inhibitory ones have a circular shape.
Nodes and connections are configured via the control-

ler panel to the right of the network graph area (Fig. 5A,
right). The user can specify properties of the graph ele-
ments by choosing predefined models, selecting a pa-
rameter subset for these models, and modifying their
values (Fig. 5C). One mouse click on the header with the
current model name enables the parameter selection for
that model, and a second click opens a menu for chang-
ing the model. The available models depend on the node
type (stimulator, neuron, or recorder), and each of them
has its own set of parameters. The models are all part of
NEST, and the user can query the available model descrip-
tions from the NEST source code. A neuron node, for in-
stance, may represent a whole population of individual
neurons sharing the same model. The parameters can then
either be the same for all neurons of the population or
sampled from an array or from a random distribution (in
“expert mode”). Optionally, users can also assign spatial
positions to neurons or stimulating devices in the network.

The user can specify properties of the graph elements
by, first, choosing predefined models via a drop-down
menu and, second, adjusting its parameter values with
sliders or by directly typing the numbers (Fig. 5C). A neu-
ron node, for instance, may represent a whole population
of individual neurons sharing the same model. Each of the
available models is part of NEST and has its own set of
parameters and the user can query the available model
descriptions. Optionally, users can assign spatial posi-
tions to neurons or stimulating devices in the network.
During editing, each change of the network is logged

such that the user can go back in history and undo and
redo changes.

Code generation from the network graph
The network graph is automatically rendered into exe-

cutable PyNEST (Eppler et al., 2009) code with a direct
correspondence between graphical elements and textual
code snippets (Fig. 6). PyNEST is the Python interface to
the simulation engine NEST (Gewaltig and Diesmann,
2007). The script is structured in blocks that are produced
in the same order as they are executed in the back end
when a simulation run is inquired. First, the technical
setup of the simulator is added to the script: modules are
imported and further parameters can be defined to be
passed to the simulation kernel. The following code lines
in Figure 6 account for creating and connecting the nodes
as defined by the user in the network editor. Afterwards,
the command for initiating the state-propagation phase is
defined, which is the actual simulation. The last block
contains the code for collecting the recorded network ac-
tivity data for subsequent visualization and analysis in the
activity explorer. Clicking the “Simulate” button triggers
the execution of this code with NEST.

Interactive data analysis with the activity explorer
Dependent on properties and parameterization of re-

cording devices in the constructed network, different
types of activity data are returned from NEST for inspec-
tion in the activity explorer. The data comprises unique

Figure 6. Code generation through visual network construction. The graphically composed network (Fig. 5) is automatically trans-
lated into textual source code. Visual elements in the network graph (shapes for nodes and arrows for connections) are associated
with generated code lines. The resulting script is a complete definition of a simulation experiment in PyNEST with code blocks to be
executed in succession: Create nodes, Connect nodes, Start simulation, and Get activity. The sketched network of only three con-
nected nodes (stimulator to neuron to recorder) is a minimal example for illustration; further details such as parameter values set via
the GUI are also turned into code.

Research Article: Methods/New Tools 7 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



Figure 7. Data analysis and visualization. The NEST simulator executes the network simulation and returns recorded activity data to
be analyzed and visualized (top left). Quasi-analog signals like membrane potentials and discrete spike times can be displayed
across time (bottom left). Such visualization is accompanied by basic analysis like the computation of spike counts. If the neurons
in the simulated network are arranged in space, a 2D or 3D animation offers a view of the ongoing activity at the respective neuronal
positions (bottom right). Calculated quantities are presented in table format (top right).

Figure 8. Project archiving and image export. A, Previously constructed networks (Fig. 5) can be stored in a database within NEST
Desktop or exported to a file for later reloading. An example list of saved, loadable projects is shown. B, The network graph and its
description can be captured as screenshot. C, Charts visualizing activity data (Fig. 7) allow for export to either a rendered image
(.png) or a vector graphic (.svg).

Research Article: Methods/New Tools 8 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



IDs of sending neurons and so-called events, which are
either spikes (discrete time stamps) or quasi-analog sig-
nals, e.g., membrane potentials (sampled in given time in-
tervals). The charts in Figure 7, bottom left panel, show
vertically arranged traces of membrane potentials as line
graphs, a spike raster as scatter plot, and computed
spike counts across time as histogram. If the data addi-
tionally contains neuron positions in 2D or 3D space, the
activity can also be animated in a 3D graph (Fig. 7, bottom
right). Beside the visual analysis, NEST Desktop also has
the possibility to display basic spike-train statistics in
table format. Figure 7, top right panel, demonstrates such
a table with statistics calculated from the raw data.

Project management and image export
NEST Desktop sessions are treated as projects and

handled by the project manager (Fig. 8A, top): one can ei-
ther start a new project and construct a network from
scratch or load a previously saved project to extend an
existing network structure. Existing projects, set up and
saved at another time or on another machine, can be du-
plicated, updated, or deleted. Projects are synchronized
with a built-in database in the browser on the client-side,
but they can also be exported to and loaded from file (Fig.
8A, bottom).
Apart from saving the status of a project, NEST

Desktop also encourages the export of figures showing
network definitions or activity charts to protocol observa-
tions. Particularly suitable for this purpose is a view that
resembles a lab book (Fig. 8B): the graphical representa-
tion of the network is here displayed above a two-column
table specifying nodes and connections to provide a com-
pact overview. For capturing the graph and its parame-
ters, we recommend using an external screenshot tool or
printing to file from the browser (Fig. 8B). For saving activ-
ity charts, however, NEST Desktop provides internal func-
tionality: those figures can be exported directly as high-
quality vector-graphics or as pixelated images (Fig. 8C).

Use case: NEST Desktop in the classroom
Here, we illustrate how NEST Desktop may be employed

as a learning and teaching tool in a hands-on session of an
introductory course of computational neuroscience. The
students are expected to have only limited prior knowledge
in the field and the lessons are supposed to teach them the
principles of spiking neuronal networks. Computer simula-
tions are intended to help them develop an intuitive under-
standing of the network dynamics. The lesson discussed
here aims to construct a network of two interconnected
populations of leaky integrate-and-fire (LIF) neurons driven
by an external input. The activities of the excitatory and in-
hibitory neuron populations should be balanced. This sce-
nario describes a classical example of an emergent property
in a rather simple network configuration (Vreeswijk and
Sompolinsky, 1996; Brunel, 2000). Our fictional student
Noel is highly motivated to learn about this topic and the
method of neuronal network simulations, but he is inexper-
ienced in programming. We will explain how NEST Desktop
helps Noel to achieve the goal nevertheless.

The course takes place in the university’s computer lab
and has been prepared by the tutor Juno. She consulted
the documentation of how to deploy NEST Desktop in a
virtual machine on computer resources provided for stu-
dents (Fig. 3, ReadTheDocs) and found a prebuilt contain-
er with the tool (Fig. 3, whale, Docker). After following a
few steps, NEST Desktop is ready to be used by the stu-
dents without the need of manual installation or configura-
tion (Fig. 3, laptop/cloud).
Noel opens the network editor (Fig. 5A) and begins to

set up the network. In the two-dimensional scratch panel,
he creates one neuron node and one recording device per
population to track the neuronal activity (Fig. 5B, left). He
adds a single stimulus device to provide external input to
both populations. The next step is to connect the neuron
and device nodes (Fig. 5B, right). The connectivity be-
tween network nodes can be defined with different deter-
ministic and probabilistic rules selectable from a drop-
down menu. Each neuron node is connected to the other
one and to itself; the neurons are connected randomly
(pairwise Bernoulli) with a given connection probability.
Noel notes that the nodes are differently labeled and col-
ored which helps matching nodes and connections with
the information shown in the other panels (Fig. 5).
Subsequently, Noel opens the network controller and

specifies the models represented by the nodes. He finds
the neuron model he is looking for: “IAF PSC alpha”, a
current-based LIF neuron with alpha-shaped postsynap-
tic currents (Fig. 5C, left bottom). As an alternative to this
LIF neuron model, a Hodgkin–Huxley neuron model is
also available, which has more biophysical details. Noel
chooses model parameters which are relevant for the ex-
ercise (Fig. 5C, middle). These selected parameters can
then be modified from their preset default values by either
using sliders, or by typing the intended values into the
input field (Fig. 5C, right).
An important parameter is the number of elements in a

node, which is also referred to as population size. In this
example, the excitatory population is larger than the inhib-
itory one, but inhibitory connections are stronger for com-
pensation. Noel sets the population sizes of both neuron
nodes accordingly and also modifies other parameter val-
ues where necessary.
In the code editor, Noel finds the scripting code that is

automatically generated from the graphically constructed
network (Fig. 6). Every visual element has its respective
counterpart in the script and Noel recognizes the model
names and the parameters he has set earlier via the GUI.
Noel finds out that he can modify the code in the editor di-
rectly. Just for testing this option, he changes the value of
one parameter. Noel learns that the programming lan-
guage of this script is called PyNEST. As the network is
now completely defined, Noel clicks the “Simulate” but-
ton, which triggers the transmission and the execution of
the PyNEST script in the background.
After the simulation, which only took a few seconds,

Noel starts exploring the recorded network dynamics in
the activity explorer. During network construction before
the simulation, he has chosen spike recording devices
and focuses now on analyzing the spiking activity. A

Research Article: Methods/New Tools 9 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



raster plot shows the spike times of both neuronal popula-
tions (Fig. 7, bottom left). In this plot, Noel registers noise-
like activity of both neuronal populations. He pans the plot
window to the episode of interest, zooms in on some indi-
vidual neurons in the network and observes that they emit
spikes at non-synchronous, seemingly random time
points. The subjacent histogram displays the spike count
in time bins, accounting for all neurons in each population.
Noel interactively changes the bin width and observes
how the spike count adjusts. Although individual neurons
only occasionally contribute a spike, the population spike
counts are stationary over time reflecting the balance be-
tween excitation and inhibition. Via the side navigation,
Noel opens a table showing statistical measures of the
spike data of individual neurons (Fig. 7, top right). The co-
efficient of variation of the inter-spike interval (CVISI) is just
below one for most neurons, indicating that the spiking
activity in the network is almost as irregular as a Poisson
process (Softky and Koch, 1993). Noel concludes that
both neuronal populations operate in the asynchronous-
irregular (AI) dynamical regime (Brunel, 2000).
Next, Noel returns to the network editor, adds a stimu-

lus device to apply negative currents to the inhibitory pop-
ulation during a defined period of time. He also adds
multi-purpose measurement devices (“multimeter”) to re-
cord the neurons’ membrane potentials as quasi-analog
signals. He re-simulates and observes changes in the net-
work activity: during the stimulation phase, both popula-
tions exhibit highly synchronous and oscillatory behavior,
visible in the membrane potential traces, the spike raster,
and the population spike count histogram (Fig. 7, bottom
left). As a last test, he randomly assigns positions to the
neurons and observes the animated activity resolved in
space (Fig. 7, bottom right).
Noel finishes the exploration and analysis of network

dynamics and saves the project with a descriptive name
(Fig. 8A). The project management panel allows him to re-
load the project later to resume the exploration at the
point where it was stopped. He also exports the project to
a file to load it on his home computer later, or to share it
with another student. Noel’s final task is to document his
exploration of the balanced network model and he writes
a report about the simulation setup and the analysis of the
simulated network activity. To enhance the protocol with
graphics, Noel first uses the built-in screenshot option to
capture the lab book as an overview of the network (Fig.
8B). A display of the simulated data should have high
quality to resolve important details of the spiking activity.
Noel finds that he can export the charts as Scalable
Vector Graphics (.svg), which meets that requirement (Fig.
8C). Ultimately, Noel includes the figures into his protocol
and moves on to the next lesson.

NEST Desktop beyond teaching
Here, we provide a short outlook on the potential usage

of NEST Desktop beyond its major teaching purpose.
Juno is a researcher and, apart from teaching courses,
she studies spiking network models for her own scientific
work. NEST Desktop has proven useful more than once in
quickly investigating certain features of the simulator

NEST, or testing the dynamics of a toy network before in-
tegrating the insights into larger models expressed in
scripted code. If she is not familiar with the correct NEST
syntax, she has even found herself constructing the re-
spective network parts graphically in NEST Desktop and
obtaining the executable PyNEST code from the built-in
code-generation functionality. But NEST Desktop does
not only help Juno to acquire a better intuition for her
models, she also uses the tool for explaining her work to
others. She finds that the audience can better grasp net-
work structures and mechanisms behind activity dynam-
ics if presented interactively. After her talks, she shares
network configuration files with interested members of
the audience who can then continue exploring the shown
networks with NEST Desktop on their own machines.
Thus, NEST Desktop can also support the daily routine of
researchers in various aspects.

Discussion
NEST Desktop is an interactive, web-based GUI to the

neuronal network simulation code NEST, primarily devel-
oped for teaching the fundamentals of computational
neuroscience. Students can choose from a number of
available neuron, device and synapse models, combine
them into network structures, and set custom parameters.
The graphically constructed network is automatically con-
verted into scripted code which the simulation engine NEST
executes in the background. Simulation results are returned
to the GUI, where the students can explore neuronal activity
with a selection of analysis tools. Hence, our approach dem-
onstrates a conceptual marriage of a powerful simulation en-
gine and an intuitive, user-friendly GUI.
The use case “NEST Desktop in the classroom”, which

is described in Results, is based on the actual use of
NEST Desktop for teaching computational neuroscience
as part of the university education of bachelor and master
students and in independent tutorials. Particular chal-
lenges of these courses are the very heterogeneous levels
of programming skills and background knowledge in neu-
roscience among the participants. NEST Desktop has al-
ready proven to support teaching successfully both in the
classical classroom setting with physical attendance and
in online formats. Online formats have been boosted be-
cause of the COVID-19 pandemic and NEST Desktop has
shown itself to be a valuable tool in this situation. In online
courses, the students have the chance to contact the tu-
tors and lecturers using video conference tools or via a
messenger channel to get answers to their questions and
discuss problems regarding the course content or NEST
Desktop usage. All these teaching events put NEST
Desktop to the test. Gathering feedback from students
helps to identify shortcomings and drives the develop-
ment of the tool. We have observed that the students gen-
erally show a reasonably fast learning success making a
one-week course feasible. They are typically able to oper-
ate NEST Desktop independently already on the first day.
The experience they gain from exploring networks using
the tool helps them to answer questions from computa-
tional neuroscience posed to them in the course script. In
an informal round of feedback, students attested NEST

Research Article: Methods/New Tools 10 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



Desktop a good level of usability and they gave various
positive comments on their user experience. However,
there is still room for improvement because of the limited
feature set of NEST Desktop as exposed by the students’
feedback.
Here, we contrast NEST Desktop to the standalone ap-

plication NEST Simulator. NEST Desktop builds on the
PyNEST interface of NEST Simulator and can therefore
provide access to most of its functionality. The translation
of Python commands into elements of the GUI includes
manual steps for the developers of NEST Desktop. For
reasons of clarity and comprehensibility, not the whole
multitude of neuron and synapse models and lower level
commands available in NEST Simulator have a GUI coun-
terpart, but only a representative subset that can be ex-
tended if needed. Multi-compartment neuron models and
synaptic plasticity, for example, are currently not accessi-
ble. The set of models in NEST Simulator itself can be ex-
tended with NESTML (Plotnikov et al., 2016).
Furthermore, each simulation experiment defined in

NEST Desktop is self-contained and comprises all steps
(network construction, simulation phase, and retrieval of
activity data) of a digitized scientific workflow. Plain NEST
is in that sense more flexible, as a running simulation can
be interrupted to change parameters and resumed if de-
sired. The PyNEST code can also be combined with ge-
neric Python code in case that a required functionality is
not yet available in NEST but can be achieved by combin-
ing low-level commands of the PyNEST API.
Besides, the size and complexity of networks which can

be simulated with NEST Desktop are limited by the hard-
ware resources accessible to the NEST Simulator back
end; typically, these resources are laptop-equivalent or
correspond to one compute node. While NEST Simulator
lends itself to simulations of large networks with millions
of neurons using high-performance compute clusters and
parallelization with MPI and OpenMP, NEST Desktop cur-
rently only supports pure multi-threading for NEST
Simulator. The attempt to simulate too large networks
leads to inconveniently long simulation times and eventu-
ally even exhausts main memory. On that account, the
GUI provides reasonable default ranges for population
sizes. Although generally valid numbers cannot be given,
we can conservatively state that networks on the order of
a few thousand neurons can routinely be simulated with
NEST Desktop. The visualization performance of the net-
work activities is also limited by data size.
Although theoretically not forbidden in NEST Desktop,

it may become impractical to construct complex networks
in the GUI that consist of a large number of distinct and
differently parameterized neuron populations. To address
these problems and alleviate the procedures, NEST
Desktop provides the possibility to clone nodes during
network construction and to customize which nodes and
connections are shown for setting parameters.
Regarding data analysis, both NEST Desktop and NEST

Simulator provide only basic plotting routines to check
simulation results. Given its interactivity and simple statis-
tical analysis, the GUI provides more features than plain
NEST. For reasons of modularity, detailed analyses are

outsourced to separate, specific tools. NEST Desktop has
been designed for learning the fundamentals of simulation
and for small proof-of-concept simulation studies. In this
spirit, NEST Desktop facilitates the daily routine of a re-
searcher. However, for advanced simulations of large net-
works, full access to all features of the simulation engine
and more flexibility may be required; here the script-
based approach of NEST Simulator is recommended.
Based on the useful feedback from given courses and

beyond, we identify the following concrete directions in
which the development of NEST Desktop may continue:
while NEST Desktop already strictly separates the GUI
from the simulation engine, one could even expand on the
modularity. A possible next step would be to separate
GUI and data analysis, as well as storage. The front end
engine obviously has limited capability for advanced
mathematical operations, like computing spike train cor-
relations or the power spectrum using the fast Fourier
transform (FFT). An interface to the Python-based data
analysis community toolbox Elephant (Denker et al.,
2018), which offers such functionality, therefore seems to
be a more appropriate and general solution.
In computational neuroscience, several GUIs have al-

ready been developed over the last two decades, mostly
linked to a specific simulation engine (see Table 1). Most
modern GUIs run in a web-browser (HTML) and are there-
fore platform-independent and installation-free. Table 2
identifies which features of NEST Desktop are available to
some extent also in the other tools existing. The design

Table 2: Characterization of GUIs

Network Simulation Activity
Visualize Edit Code Run Visualize

NEST Desktop x x x x x
CellExplorer x
GENESIS GUI x x x
N2A x x x
Nengo GUI x x x (x) x
NESTInstrumentationApp x x x
NetPyNE UI x x (x) x x
neuroConstruct x x x x
Neuron GUI (x11) x x (x) x
Neuron UI (HTML) x x (x) x x
Neuronify x x x x
Neuronvisio x x x
nuSPIC x x x x
Open Source Brain (OSB) x x (x) x x
SLIDE x x (x)
SNN3DViewer x x x
SpineCreator x x
The Virtual Brain (TVB) x x x x
VIOLA x
Visbrain x x x x
ViSimpl x x x
VisNEST x x

The GUIs from Table 1 (here sorted alphabetically after NEST Desktop) are
compared based on which steps of network construction, simulation, and ac-
tivity analysis they cover. The network aspect is split up into visualizing net-
works and the possibility to edit them by means of the GUI. For the simulation
step, the table distinguishes between a feature to generate and display simu-
lation code and the option to actually run a simulation. The marker (x) in the
simulation column means that (executable) code is provided but rather debug
code or console instead of the actual simulation code.

Research Article: Methods/New Tools 11 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org



focus, i.e., whether they target rather the visualization of
the network graph or the activity, is different between
these tools, although many show some functionality of
both. The earlier graphical interface SLIDE (Gewaltig et
al., 1996; Matyak, 1996) for NEST has not been developed
further but next to network structure and activity intro-
duced a third aspect: the protocol of a virtual experiment.
These ideas were inspired by visual programming at the
time. To our knowledge they have not been picked-up
again in the context of neuronal network simulation, but
movie editing software like Blender (Bruns, 2020; the simi-
larity was pointed out by Marc-Oliver Gewaltig in private
communication) has aspects of this. Because of the prob-
lems in stabilizing and maintaining GUIs in the middle of
the 1990s (Senk et al., 2018; contains some review) NEST
development has primarily focused on the independent
simulation engine. Open Source Brain (Gleeson et al.,
2019), Neuron UI, and NetPyNE UI (Dura-Bernal et al.,
2019) are extensions of Geppetto (Cantarelli et al., 2018)
framework, but Neuron UI appears to be no longer in de-
velopment. From the user perspective, the tools Open
Source Brain, NetPyNE UI, and Nengo GUI (Bekolay et al.,
2014) follow a similar approach as NEST Desktop. NEST
Desktop, however, is unique in the separation of the client
and server systems: The front end NEST Desktop runs on
a web infrastructure and is controlled in the user’s web
browser, while NEST Simulator can be served as a back
end independently on any compute infrastructure, for ex-
ample on an high-performance computing system. This
software architecture makes NEST Desktop well suited
for a classroom setting. Furthermore, the GUI enables the
user to directly access the script showing a one-to-one corre-
spondence between graphical elements and textual code
snippets. This not only enables additional modification to the
generated code before sending to the back end (as described
in the use case) but also gives the learner the opportunity to
gather first-hand experience with the actual code. This facili-
tates the later step to programming PyNEST scripts without
the need of NEST Desktop and, thus, enables the creation
and simulation of highly complex models with NEST as is the
case in most scientific use cases of NEST. Finally, in contrast
to the other outlined projects, the primary motivation of our
work is to create a self-contained educational tool using the
language and symbols of the problem domain.
NEST Desktop supports teaching of computational

neuroscience by making computer simulations intuitively
accessible. The use of NEST Desktop actually reverses
the sequence of skills to be learned. Courses can now di-
rectly start with scientific content, without students having
to learn scientific programming first. Once the students
have developed their intuition for neuronal network mod-
els, it is much easier for them to get started with the actual
scripting of simulations and conduct more sophisticated
research projects in the field on their own.

References

Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC,
Rasmussen D, Choo X, Voelker AR, Eliasmith C (2014) Nengo: a
Python tool for building large-scale functional brain models. Front
Neuroinform 7:48.

Bower JM, Beeman D (2012) The book of GENESIS: exploring realis-
tic neural models with the GEneral NEural SImulation System. New
York: Springer.

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM,
Diesmann M, Morrison A, Goodman PH, Harris FC, Zirpe M,
Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A,
Rochel O, Vieville T, Muller E, Davison AP, et al. (2007) Simulation
of networks of spiking neurons: a review of tools and strategies. J
Comput Neurosci 23:349–398.

Brunel N (2000) Dynamics of sparsely connected networks of excita-
tory and inhibitory spiking neurons. J Comput Neurosci 8:183–
208.

Bruns N (2020) Blender: universal 3D processing and animation soft-
ware. Unfallchirurg 123:747–750.

Cantarelli M, Marin B, Quintana A, Earnshaw M, Court R, Gleeson P,
Dura-Bernal S, Silver RA, Idili G (2018) Geppetto: a reusable mod-
ular open platform for exploring neuroscience data and models.
Philos Trans R Soc Lond B Biol Sci 373:20170380.

Clark RC, Mayer RE (2011) e-Learning and the science of instruction.
San Francisco: Pfeiffer.

Combrisson E, Vallat R, O’Reilly C, Jas M, Pascarella A, Saive AL,
Thiery T, Meunier D, Altukhov D, Lajnef T, Ruby P, Guillot A, Jerbi
K (2019) Visbrain: a multi-purpose GPU-accelerated open-source
suite for multimodal brain data visualization. Front Neuroinform
13:14.

Cope AJ, Richmond P, James SS, Gurney K, Allerton DJ (2017)
SpineCreator: a graphical user interface for the creation of layered
neural models. Neuroinformatics 15:25–40.

de Jong T, Linn MC, Zacharia ZC (2013) Physical and virtual labora-
tories in science and engineering education. Science 340:305–
308.

Denker M, Yegenoglu A, Grün S (2018) Collaborative HPC-enabled
workflows on the HBP Collaboratory using the Elephant frame-
work. Neuroinformatics 2018:P19.

Dragly SA, Mobarhan MH, Vavang Solbra A, Tennøe S, Hafreager A,
Malthe-Sørenssen A, Fyhn M, Hafting T, Einevoll GT, Våvang
Solbrå A, Tennøe S, Hafreager A, Malthe-Sørenssen A, Fyhn M,
Hafting T, Einevoll GT (2017) Neuronify: an educational simulator
for neural circuits. eNeuro 4:ENEURO.0022-17.2017–13.

Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A,
Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin
SA, McDougal RA, Hines M, Shepherd GMG, Lytton WW (2019)
NetPyNE, a tool for data-driven multiscale modeling of brain cir-
cuits. Elife 8:e44494.

Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M,
Migliore M, Ness TV, Plesser HE, Schürmann F (2019) The scien-
tific case for brain simulations. Neuron 102:735–744.

Eppler JM, Moritz H, Eilif M, Markus D, Marc OG (2009) PyNEST: a
convenient interface to the NEST simulator. Front Neuroinform
2:12.

Galindo SE, Toharia P, Robles OD, Pastor L (2016) ViSimpl: multi-
view visual analysis of brain simulation data. Front Neuroinform
10:44.

Gewaltig MO, Diesmann M (2007) NEST (NEural Simulation Tool).
Scholarpedia 2:1430.

Gewaltig MO, Matyak T, Diesmann M, Aertsen A (1996) SLIDE: a
graphical environment for neural simulations. In: Brain and evolu-
tion. Proc 24th Göttingen Neurobiol Conference (Schnitzler HU
and Elsner N, eds), p 2475. Stuttgart; New York: Thieme.

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron 54:219–235. s

Gleeson P, Cantarelli M, Marin B, Quintana A, Earnshaw M, Sadeh S,
Piasini E, Birgiolas J, Cannon RC, Alex Cayco-Gajic N, Crook S,
Davison AP, Dura-Bernal S, Ecker A, Hines ML, Idili G, Lanore F,
Larson SD, Lytton WW, Majumdar A, et al. (2019) Open source
brain: a collaborative resource for visualizing, analyzing, simulat-
ing, and developing standardized models of neurons and circuits.
Neuron 103:395–411.e5.

Hahne J, Diaz S, Patronis A, Schenck W, Peyser A, Graber S,
Spreizer S, Brekke Vennemo S, Ippen T, Mørk H, Jordan J, Senk J,

Research Article: Methods/New Tools 12 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org

http://dx.doi.org/10.3389/fninf.2013.00048
https://www.ncbi.nlm.nih.gov/pubmed/24431999
http://dx.doi.org/10.1007/s10827-007-0038-6
https://www.ncbi.nlm.nih.gov/pubmed/17629781
https://www.ncbi.nlm.nih.gov/pubmed/10809012
http://dx.doi.org/10.1007/s00113-020-00836-0
https://www.ncbi.nlm.nih.gov/pubmed/32556879
http://dx.doi.org/10.1098/rstb.2017.0380
http://dx.doi.org/10.3389/fninf.2019.00014
https://www.ncbi.nlm.nih.gov/pubmed/30967769
http://dx.doi.org/10.1007/s12021-016-9311-z
https://www.ncbi.nlm.nih.gov/pubmed/27628934
http://dx.doi.org/10.1126/science.1230579
https://www.ncbi.nlm.nih.gov/pubmed/23599479
http://dx.doi.org/10.1523/ENEURO.0022-17.2017
http://dx.doi.org/10.7554/eLife.44494
http://dx.doi.org/10.1016/j.neuron.2019.03.027
https://www.ncbi.nlm.nih.gov/pubmed/31121126
http://dx.doi.org/10.3389/neuro.11.012.2008
https://www.ncbi.nlm.nih.gov/pubmed/19198667
http://dx.doi.org/10.3389/fninf.2016.00044
https://www.ncbi.nlm.nih.gov/pubmed/27774062
http://dx.doi.org/10.4249/scholarpedia.1430
https://www.ncbi.nlm.nih.gov/pubmed/17442244
http://dx.doi.org/10.1016/j.neuron.2019.05.019
https://www.ncbi.nlm.nih.gov/pubmed/31201122


Konradi S, Weidel P, Fardet T, Dahmen D, Terhorst D, Stapmanns
J, Trensch G, van Meegen A, et al. (2021) Nest 3.0.

Hines M (1993) The NEURON simulation program. In: Neural network
simulation environments, pp 147–163. New York: Springer.

Hines ML, Carnevale NT (1997) The NEURON simulation environ-
ment. Neural Comput 9:1179–1209.

Kasi�nski A, Pawłowski J, Ponulak F (2009) ‘SNN3DViewer’ - 3D visu-
alization tool for spiking neural network analysis. In: Computer vi-
sion and graphics (Bolc L, Kulikowski JL, and Wojciechowski K,
eds), pp 469–476. Berlin; Heidelberg: Springer.

Mattioni M, Cohen U, Le Novère N (2012) Neuronvisio: a graphical
user interface with 3D capabilities for NEURON. Front Neuroinform
6:20–28.

Matyak T (1996) SLIDE: Konzeption und Realisierung einer graphi-
schen Benutzeroberfläche für SLI. Diplomarbeit, Bochum, Institut
für Neuroinformatik, Ruhr-Universität Bochum.

Nowke C, Schmidt M, Van Albada SJ, Eppler JM, Bakker R,
Diesrnann M, Hentschel B, Kuhlen T (2013) VisNEST - interactive
analysis of neural activity data. 2013 IEEE Symposium on
Biological Data Visualization (BioVis), 2013, pp 65–72. 13–14
October, 2013, Atlanta, GA, USA.

Petersen PC, Siegle JH, Steinmetz NA, Mahallati S, Buzsáki G (2021)
CellExplorer: a graphical user interface and a standardized pipe-
line for visualizing and characterizing single neurons. Neuron.
Advance online publication. Retrieved 29 September, 2021.
doi:10.1016/j.neuron.2021.09.002.

Plotnikov D, Rumpe B, Blundell I, Ippen T, Martin Eppler J, Morrison
A (2016) NESTML: a modeling language for spiking neurons. arXiv
1606.02882

Rothganger F, Warrender CE, Trumbo D, Aimone JB (2014) N2A: a
computational tool for modeling from neurons to algorithms. Front
Neural Circuits 8:1–12.

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J,
McIntosh AR, Jirsa V (2013) The virtual brain: a simulator of pri-
mate brain network dynamics. Front Neuroinform 7:10.

Senk J, Carde C, Hagen E, Kuhlen TW, Diesmann M, Weyers B
(2018) VIOLA—a multi-purpose and web-based visualization tool
for neuronal-network simulation output. Front Neuroinform 12:75.

Senk J, Kriener B, Djurfeldt M, Voges N, Jiang H-L, Schüttler L,
Gramelsberger G, Diesmann M, Plesser HE, van Albada SJ
(2021) Connectivity concepts in neuronal network modeling.
arXiv:2110.02883.

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J Neurosci
13:334–350.

Spreizer S (2018) NEST Desktop: an educational GUI application.
Bernstein Conference 2018. 25–28 September 2018. Berlin,
Germany.

Spreizer S, Senk J, Rotter S, Diesmann M, Weyers B (2019) NEST
Desktop: a web-based GUI for the NEST simulator. Bernstein
Conference 2019. 17–20 September, 2019. Berlin, Germany.

Spreizer S, Senk J, Rotter S, Diesmann M, Weyers B (2020) NEST
Desktop: a web-based GUI for the NEST simulator. Bernstein
Conference 2020.er, 29 - October, 1, 2020. Berlin, Germany.

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA (2017)
Software for brain network simulations: a comparative study.
Front Neuroinform 11:46.

Vlachos I, Zaytsev YV, Spreizer S, Aertsen A, Kumar A (2013) Neural sys-
tem prediction and identification challenge. Front Neuroinform 7:43.

Vreeswijk CV, Sompolinsky H (1996) Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science 274:1724–
1726.

Research Article: Methods/New Tools 13 of 13

November/December 2021, 8(6) ENEURO.0274-21.2021 eNeuro.org

http://dx.doi.org/10.1162/neco.1997.9.6.1179
https://www.ncbi.nlm.nih.gov/pubmed/9248061
http://dx.doi.org/10.3389/fninf.2012.00020
https://www.ncbi.nlm.nih.gov/pubmed/22685429
http://dx.doi.org/10.1109/BioVis.2013.6664348
http://dx.doi.org/10.3389/fncir.2014.00001
https://www.ncbi.nlm.nih.gov/pubmed/24478635
http://dx.doi.org/10.3389/fninf.2013.00010
https://www.ncbi.nlm.nih.gov/pubmed/23781198
http://dx.doi.org/10.3389/fninf.2018.00075
http://dx.doi.org/10.1523/JNEUROSCI.13-01-00334.1993
http://dx.doi.org/10.3389/fninf.2017.00046
https://www.ncbi.nlm.nih.gov/pubmed/28775687
http://dx.doi.org/10.3389/fninf.2013.00043
https://www.ncbi.nlm.nih.gov/pubmed/24399966
http://dx.doi.org/10.1126/science.274.5293.1724
https://www.ncbi.nlm.nih.gov/pubmed/8939866

	NEST Desktop, an Educational Application for Neuroscience
	Introduction
	Materials and Methods
	Client-server architecture
	Front end implementation
	Back end implementation
	Development, installation, and documentation

	Results
	Graphical construction of neuronal networks in the network editor
	Code generation from the network graph
	Interactive data analysis with the activity explorer
	Project management and image export
	Use case: NEST Desktop in the classroom
	NEST Desktop beyond teaching

	Discussion
	References


