Skip to main content
. 2021 Nov 16;10:e68015. doi: 10.7554/eLife.68015

Table 12. Best prediction models of outcome.

Model predicting AIS improvement:l=β0+β11x1+β12x12+β2x2+β3x3+β4x4+β5x5
Model predicting AIS A:l=β0+β11x1+β12x12+β2x2+β3x3+β4x4+β5x5+β6x6+β7x7
Model predicting AIS D:l=β0+β2x2+β3x3+β4x4+β5x5+β8x8+β9x9
where x1: average MAP; x2 : AIS admission A (‘yes’, ‘no’); x3 : AIS admission B (‘yes’, ‘no’); x4 : AIS admission C (‘yes’, ‘no’); x5 : AIS admission D (‘yes’, ‘no’); x6 : NLI non-cervical; x7 : Time MAP out 76–117; x8 : Length of surgery; x9 : Age; (AIS admission E and NLI cervical were set as the reference levels for the corresponding variable and are part of the intercept). All metrics are on LOOCV prediction (n = 93)
Model AIS improv. Model AIS A Model AIS D
Predictor Coef. estimate (logit) Coef. estimate (logit) Coef. estimate (logit)
Intercept β0= –16.24 β0= 20.466 β0= 1.558
Average MAP (x1) β11= 7.374 β11= 27.031
Average MAP (Cohn et al., 2010) (x1) β12= –8.215 β12= –17.138
AIS admission A (x2) β2= 15.54 β2= –22.814 β2= 2.324
AIS admission B (x3) β3= 16.1818 β3= –20.38 β3= 0.41
AIS admission C (x4) β4= 16.752 β4= –19.01 β4= –2.591
AIS admission D (x5) β5= 14.828 β5= 0.217 β5= –2.624
NLI non-Cervical (x6) β6= –1.228
Time MAP out 76–117 (x7) β7= 0.017
Length of Surgery (x8) β8= –0.0044
Age (x9) β9= 0.03
Model performance metric Metric value Metric value Metric value
Accuracy (95% CI) 0.73 (0.629, 0.818) 0.82 (0.735, 0.898) 0.806 (0.71, 0.881)
AUC 0.743 0.88 0.87
Kappa 0.45 0.629 0.573
Sensitivity 0.71 0.812 0.793
Specificity 0.74 0.836 0.812
Positive predicted value 0.658 0.72 0.657
Negative predicted value 0.788 0.89 0.896