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Abstract

Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and 

accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally 

quiescent, endothelial cells have a hemodynamic set point and become “activated” in response 

to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial 

cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, 

are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical 

forces, endothelial signaling transforms in response, resulting cellular changes that herald 

pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate 

pathway that undergirds cellular transformation. In this review, we discuss the various mechanical 

forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how 

changes in environmental mechanical forces result in changes in metabolism, which ultimately 

influence cell physiology, cellular memory, and ultimately disease initiation and progression.
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Introduction

The plasticity of cell types is a fundamental concern in biology, from differentiation of stem 

cells to tissue and organ specialization. Each of these processes relies on a combination of 

pre-programmed differentiation timing, paracrine chemical gradients, or membrane receptor 

clustering due to differential tension. This review is focused on the mechanical forces 

involved in metabolic signaling in endothelial cells especially as they relate to vascular 

disease and endothelial plasticity. Mechanical forces are involved in development but also 

in disease progression. In general, mechanical forces can be divided based on the tissue 

bed or the type of force, such as hemodynamic, stretch, and stiffness forces. As endothelial 

cells contract, migrate, signal inflammation, and possibly transdifferentiate into other cell 

types, they usually do so as a response to changes in mechanical forces, and coordinate 
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their metabolism to meet this plasticity need (Table 1). This underscores the significance of 

cellular metabolism to coordinate genetic changes with phenotypic changes.

Mechanotransduction in large vessels: blood flow and stiffness in the aorta

Macrovascular flow (vessels > 10 μm in diameter) is complex, varying in both space 

and time as vessel boundary conditions continuously change and heart pump strength 

is modulated dynamically by both neural and volumetric fluid inputs in a beat to beat 

fashion. Endothelial cells are subjected to shear stress from 10 to 50 dyne/cm2 in large 

arteries (Paszkowiak & Dardik, 2003). Arterial flow can be classified into two classes: 

“atheroprotective” and “atheroprone” (Davies, 1995). Atheroprotective flow is unidirectional 

(“unidirectional flow”, UF) whereas atheroprone has no time-averaged direction but is 

instead chaotic and reminiscent of eddy currents or vortexes (“disturbed flow”, DF).

Aortic hemodynamics have been the most studied in the context of development (Combs 

& Yutzey, 2009; O’Donnell & Yutzey, 2020; Vermot et al., 2009) and atherosclerosis, as 

arterial branch points and vessel curvature result in disturbed flow, leading to coronary artery 

disease, aortic atherosclerosis, and carotid artery disease (Chiu et al., 2009; Davies et al., 

2013) (Figure 1). Aortic and carotid hemodynamics have been modeled based on magnetic 

resonance imaging studies of flow, which are used in clinical practice (Ferdian et al., 2020), 

making in vitro study of flow-related changes in endothelial cell biology possible (Dai et al., 

2004; Krause et al., 2018; Maurya et al., 2021; Parmar, 2005; C. Wu et al., 2015). In general, 

unidirectional flow results in elaboration of nitric oxide, barrier protection, and is protective 

against inflammation and thrombosis, whereas disturbed flow results in vessel constriction, 

permeable barriers, thrombotic pathways, and inflammatory signaling – hallmarks in the 

development of atherosclerosis. Although not discussed in detail here, vascular endothelial 

cells are also subjected to significant circumferential cyclic stretch (Fang et al., 2019). For 

instance, heart propulsions result in cyclic stretch in arterial endothelium and spontaneous 

respiration (or mechanical ventilation in critically ill patients) causes mechanical stretch of 

lung microvascular endothelium. Mechanotransduction through hemodynamics is mediated 

by transcriptional, posttranscriptional and epigenetic mechanisms and flow-sensitive 

transcription factors are instrumental to the endothelial responses to blood flow (Andueza 

et al., 2020; Krause et al., 2018; Ku et al., 2019; Nagel et al., 1999; Partridge et al., 2007; 

Peghaire et al., 2019; Zhou et al., 2014).

Microenviroemntal stiffness also plays a fundamental role in cell differentiation. Matrix 

stiffness properties per se can cause mesenchymal stem cell differentiation (Engler et al., 

2006)- neuronal differentiation programs are activated on soft surfaces (0.1–1 kPa), whereas 

muscle or bone differentiation programs are activated by hard surfaces (10–100 kPa). Tissue 

culture plastic is in the ~106 kPa range. Thus, if not properly considered stiffness may 

cause experimental artifacts. Endothelial cells produce fold-changes in actin with increasing 

substrate stiffness (Byfield et al., 2009) and affects, for instance, leukocyte transmigration 

in in vitro studies (Stroka & Aranda-Espinoza, 2011). Like flow, mechanotransduction by 

stiffness sensors causes nuclear translocation of transcription factors.

Matrix stiffness and disturbed flow work in tandem, amplifying disease processes. Stiffer 

vessels could lead to increased flow and/or reduced pulsatility, which is particularly harmful 
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to endothelial cells in the brain vascular bed. Vascular stiffening is by itself sufficient to 

explain primary hypertension (Pettersen et al., 2014). In the systemic arterial circulation, 

increased vascular stiffness is associated with and precedes systemic hypertension (Beltran, 

2001; Pettersen et al., 2014), and is a predictor of cardiovascular morbidity (Benetos et al., 

2012; Smulyan et al., 2016) and mortality (Laurent et al., 2001).

Vascular stiffening is also pathological in the pulmonary circulation and microvasculature. 

Increased macrovascular stiffness promotes microvascular damage (Cardoso & Salles, 2016; 

Cooper et al., 2018; Mitchell, 2008) and therefore end-organ damage through dysregulated 

transmission of hemodynamics from large vessels and stiffness-dependent control of RhoA 

GTPase activity, permeability, and inflammation (Birukova et al., 2013; Mambetsariev et 

al., 2014; Meng et al., 2015). Besides arterial hypertension, microvascular stiffness in the 

pulmonary circulation has been identified as an independent cause of mortality in pulmonary 

hypertension (Campo et al., 2010; Gan et al., 2007; Hunter et al., 2008; Mahapatra et 

al., 2006; Thenappan et al., 2016). Current standard of care antihypertensive treatment is 

thought to have an anti-stiffness component (Y. Chen et al., 2017) and improves mortality 

(Brunström & Carlberg, 2018).

Mechanotransduction in microvasculature and lymphatics.

The microvasculature is composed of capillaries. The lung has the most microvasculature 

(vessel diameter 10 μm or less) in the body, as its estimated capillary surface area is roughly 

50–70 m2, which is 20-times that of all other vessels (Albertine, 2016; Weibel, 1973). 

Lung microvascular ECs are subjected to shear stress, which has profound consequences to 

microvascular barrier function (Adamson et al., 2013; R.-T. Huang et al., 2017; Ostrowski et 

al., 2014) and production of reactive oxygen species (Milovanova et al., 2006). Shear stress 

in the microvasculature can theoretically be higher than in large vessels since shear stress 

is inversely proportional to the 3rd power of vessel radius and only linearly dependent on 

flow rate. However, shear stress is not a precisely measured quantity in the microvasculature 

since vessel diameter can be equal to or even smaller than the diameter of a red blood 

cell. Besides subjected to shear stress, ECs in the lungs are also exposed to copious – and 

possibly injurious stretch during mechanical ventilation – due to the respiratory cycle.

Lymphatic flow is even slower than microvascular flow, averaging 0.64 dyn/cm2 with peaks 

of 4–12 dyn/cm2 (Dixon et al., 2006). Mechanotransduction and mechanosensation are 

less well-developed in understanding compared to the microvasculature and large vessels. 

However, mechanotransduction is important in lymphatic development especially valve 

formation and lymphatic plexus development (Sweet et al., 2015).

Lung endothelial cells are also subject to regulation of substrate stiffness. Traction forces are 

estimated to be much higher – typically ~5 kPa (Balaban et al., 2001) and artery wall strains 

~100 kPa (Humphrey et al., 2014). This is important in pulmonary hypertension and chronic 

fibrotic lung diseases.
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Macrovascular flow and metabolism

Cross-talk between mechanotransduction, metabolism, and disease has been most studied 

using in vitro models of large vessel hemodynamics and animal model correlates. 

Endothelial cells are mostly glycolytic with a relatively small contribution of ATP 

generation from oxidative phosphorylation, and exhibit the Warburg effect, or, utilization 

of glycolysis in the presence of high concentrations of oxygen (De Bock et al., 2013; 

Doddaballapur et al., 2015; B. Kim et al., 2017; D. Wu et al., 2017). However, mechanical 

forces including shear stress and surface stiffness are able to dynamically modulate 

metabolism by changing the proportion of ATP produced by oxidative phosphorylation 

(Feng et al., 2017; D. Wu et al., 2017). The metabolic activity and throughput of glycolysis 

and the TCA cycle have profound effects on endothelial cell physiology. In this section, we 

will mainly focus on atherosclerosis as the disease phenotype to summarize the metabolic 

regulation due to blood flow and shear stress in arterial beds. We will divide these 

metabolism pathways/substrates into glycolysis, mitochondria, fatty acids, and amino acids. 

Veins and valve formation are less well studied, especially in the context of endothelial 

metabolism; however, venous valve formation is under the control of lymphangiogenesis 

genes (Bazigou et al., 2011).

Glycolysis

Blood flow/shear stress regulates glycolysis through, at least partially transcription factors 

Krüppel-like factor-2 (KLF2), hypoxia inducible factor-1α (HIF-1α) and Yes-associated 

protein (YAP) with PDZ-binding motif (TAZ). KLF2 expression is significantly up

regulated by arterial-levels of shear stress and is anti-angiogenic, barrier protective, and 

anti-inflammatory and protective against atherosclerosis and acute lung injury (Atkins & 

Jain, 2007; Dekker et al., 2002; R.-T. Huang et al., 2017; Lin et al., 2005, 2010). HIF 

family of transcription factors are regulated by targeting for degradation via hydroxylation 

by prolyl hydroxylases (PHDs), which are sensitive to oxygen concentration (Prabhakar & 

Semenza, 2012; Semenza, 2012) as well as the shear stress (D. Wu et al., 2017). The Hippo 

pathway involving transcriptional co-activators YAP/TAZ are also flow responsive (K.-C. 

Wang et al., 2016; L. Wang et al., 2016) and stimulate metabolism (refs). Glycolysis is 

reduced by unidirectional flow in a KLF2-dependent manner, while induced by disturbed 

flow mainly in a HIF-1α (Doddaballapur et al., 2015; Feng et al., 2017; D. Wu et al., 

2017) and YAP/TAZ -dependent manner (K.-C. Wang et al., 2016; L. Wang et al., 2016). 

Microvascular endothelial KLF2 expression was markedly reduced in critically ill acute 

respiratory distress syndrome (ARDS) patients infected with SARS-CoV-2 (Lee et al., 

2021, p.). COVID-19-induced inflammation is also reported to suppress endothelial KLF2 

expression, possibility contributing to the endothelialitis (S. Xu et al., 2021).

KLF2 reduces endothelial glycolysis through transcriptional repression of 
HK2 and PFKFB3—KLF2, induced by unidirectional flow, inhibits endothelial glucose 

uptake and glycolysis (Doddaballapur et al., 2015; Parmar, 2005; D. Wu et al., 2017). Both 

RNA silencing of KLF2 in cultured human umbilical vein endothelial cells (HUVECs) 

and endothelial-specific KLF2 deletion in mouse increased glycolysis as measured 

by extracellular acidification rate, whereas KLF2 overexpression reduced extracellular 
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acidification rate (Doddaballapur et al., 2015) and recapitulated the inhibitory effect 

of unidirectional flow on EC glycolysis (D. Wu et al., 2017). Glycolytic-suppression 

due to KLF2 is mainly through transcriptional suppression of key glycolytic enzymes 

including hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 

(PFKFB3) (Doddaballapur et al., 2015). HK2 catalyzes the phosphorylation of glucose, the 

rate-limiting and first committed step in glycolysis. PFKFB3 is an allosteric activator of 

phosphofructokinase (PFK) in the second rate-limiting reaction of glycolysis. Both of these 

steps are the ATP consuming reactions constituting the “investment” phase of glycolysis 

prior to the ATP producing steps. Decreasing HK2 (P. Yu et al., 2017) and PFKFB3 (Schoors 

et al., 2014; Y. Xu et al., 2014) in endothelial cells both led to reduced glycolysis and 

impaired proliferation. In addition to reducing proliferation, endothelium-specific PFKFB3 

knockout suppressed the development of pulmonary hypertension by reducing inflammation 

and leukocyte adhesion (Cao et al., 2019). Also, pharmacological inhibition of PFKFB3 in 

high fat diet-fed LDLR−/− mice attenuated atherosclerosis progression and increased plaque 

stability, indicating an atherogenic role of this DF-induced glycolytic gene (Poels et al., 

2020). In addition to KLF2, KLF4 was recently reported to suppress glycolysis in vascular 

endothelium under pulsatile shear stress (Y. Han et al., 2021).

KLF2 shunts glycolytic intermediates for production of glycocalyx—Besides its 

transcription suppression on these glycolytic enzymes, KLF2 also reduces glycolysis by 

inducing the biosynthesis of hyaluronan, the major structural component of glycocalyx on 

endothelial cell surface (G. Wang et al., 2020). Glycocalyx serves as an important structure 

on the surface of endothelial cells for sensation of shear stress generated by blood flow (Fu 

& Tarbell, 2013; Pries et al., 2000; Tarbell & Ebong, 2008; Zeng & Tarbell, 2014). The 

thickness of endothelial glycocalyx is associated with local shear stress (Lewis et al., 1982; 

van den Berg et al., 2006). Using both cultured HUVECs and Apoe−/− mouse model, Wang 

et al., showed that laminar shear stress induces endothelial cells to produce thicker coating 

of glycocalyx on the luminal surface. Specifically, this shear stress-induced hyaluronan 

production is through KLF2-dependent hyaluronan synthase 2 (HAS2) expression and 

UDP-sugar availability. KLF2 not only directly induced the transcription of HAS2, but 

also indirectly shuttles the glycolysis pathway (by inhibition of PFKFB3) into hexosamine- 

and glucuronic acid biosynthesis pathways (G. Wang et al., 2020). Consequently, the 

biosynthesis of UDP-GlcA and UDP-GlcNAc was increased, serving as substrates for 

hyaluronan production (G. Wang et al., 2020). In addition to acting as a mechano-sensor, 

glycocalyx also prevents endothelial permeability (Curry & Adamson, 2012; Tarbell, 2010), 

suppresses leukocyte-endothelium adhesion (Lipowsky, 2011; Tarbell & Ebong, 2008), and 

maintains potassium channel activation by blood flow (Fancher et al., 2020).

Disturbed flow-induced HIF-1α increases endothelial glycolysis—HIF-1α is 

associated with atherosclerosis formation by enhancing endothelial cell inflammation, 

proliferation, and monocytes adhesion (Akhtar et al., 2015; Feng et al., 2017; D. Wu et 

al., 2017, p. 1). Disturbed flow (DF) activates HIF-1α to increase endothelial metabolism 

beyond its baseline high glycolysis (Feng et al., 2017; D. Wu et al., 2017). There are 

three mechanisms which have been demonstrated related to DF-induced HIF-1α activation: 

(1) transcriptionally, HIF-1α is upregulated by nuclear factor NF-κB (Feng et al., 2017); 
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(2) post-translationally, HIF-1α protein is stabilized by deubiquitinating enzyme Cezanne 

(Feng et al., 2017), and also (3) post-translationally, HIF-1α is stabilized by reactive oxygen 

species (ROS) produced by NAD(P)H Oxidase-4 (NOX4) (D. Wu et al., 2017). HIF-1α 
promotes endothelial glycolysis by upregulating a cohort of glycolytic genes including 

lactate dehydrogenase A (LDHA), glucose transporter-1 (SLC2A1/GLUT1), HK2, PFKFB3, 

and probably additional glycolytic genes as the glycolysis and angiogenesis gene sets 

have a high degree of overlap (Feng et al., 2017; D. Wu et al., 2017). Furthermore, 

DF-induced HIF-1α can shift the fate of pyruvate towards glycolysis away from TCA 

cycle by enhancing the transcription of pyruvate dehydrogenase kinase-1 (PDK1) (J. Kim 

et al., 2006; D. Wu et al., 2017). HIF-1α-driven glycolytic reprogramming is required for 

the disturbed flow-induced endothelial inflammation and excessive proliferation, leading 

to atherosclerosis formation (Feng et al., 2017; D. Wu et al., 2017). Endothelial specific 

knockout of HIF-1α suppressed DF-induced atherosclerosis in Apoe−/− mice (Feng et al., 

2017); similarly, knockdown of SLC2A1 reduced DF-induced HIF-1α expression and EC 

inflammation (D. Wu et al., 2017). Interestingly, HIF-1α and KLF2 are counter-regulated: 

KLF2 has been shown to disrupt binding between HIF-1α and its chaperone HSP90 

(Kawanami et al., 2009). This suggests that there are possibly two exclusionary metabolic 

poles which define the metabolic state of aortic endothelial cells.

Disturbed flow-induced YAP/TAZ increases EC glycolysis—YAP/TAZ are 

transcriptional co-activators that bind primarily to enhancer elements by interacting with 

TEAD factors, effectors of the Hippo dependent pathway (or Hippo independent). YAP/TAZ 

plays a major role in transduction of mechanical signals from actin to the nucleus. YAP and 

TAZ have been shown to be activated in epithelial, fibroblast, endothelial cells, oncogenesis, 

neurons, and stem cells (Y.-A. Chen et al., 2019; Furukawa et al., 2017; Lian et al., 2010; F. 

Liu et al., 2015; Totaro et al., 2017).

YAP/TAZ are regulated by mechanical stimuli including shear stress (Halder et al., 2012; 

K.-C. Wang et al., 2016; L. Wang et al., 2016; Zhu et al., 2021). Disturbed flow increases 

while unidirectional flow reduces YAP/TAZ activity in endothelial cells (K.-C. Wang et al., 

2016; L. Wang et al., 2016). High shear stress activates endothelial integrin and promotes 

integrin-Gα13 interaction, which inhibits RhoA, leading to YAP/TAZ phosphorylation 

thus inactivation (L. Wang et al., 2016, p.). Reduced endothelial YAP/TAZ activity has 

been further suggested to downregulate the expression of pro-inflammatory genes, reduce 

monocytes adhesion and infiltration (K.-C. Wang et al., 2016; L. Wang et al., 2016) and 

retard endothelial proliferation (K.-C. Wang et al., 2016), one mechanism of which is 

through suppression of Jun Kinase (JNK) activity (L. Wang et al., 2016). Furthermore, both 

in vivo blockade of YAP/TAZ activity either by CRISPR-Cas9-mediated endothelial-specific 

YAP knockdown (L. Wang et al., 2016) or by translational inhibition using morpholino 

oligo (K.-C. Wang et al., 2016) can reduce the atherosclerotic plaque size in hyperlipidemic 

Apoe−/− mice. These findings indicate that YAP/TAZ activity is partially responsible for the 

disturbed-flow induced atherosclerosis.

YAP/TAZ is also a key regulator of metabolism. YAP/TAZ plays an important role in the 

metabolism of many cell types, and acts both as an energy-sensor and energy-regulator (Koo 

& Guan, 2018). In brief, YAP/TAZ activity is activated when nutrient supply is sufficient, 
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and YAP/TAZ activity will in turn promote glycolysis, glutaminolysis, anapleurosis, and 

lipogenesis to regulate cell growth and homeostasis (Koo & Guan, 2018). YAP/TAZ 

has also been shown to regulate endothelial metabolism. RNA interference of YAP/TAZ 

in HUVECs decreases both glycolysis and mitochondria oxidative phosphorylation. In 

addition, brain endothelial cells from YAP/TAZ endothelial cell-specific knockout mice 

showed downregulation of genes that are involved in glycolytic and the OXPHOS pathway 

(J. Kim et al., 2017). Furthermore, YAP/TAZ induced endothelial glycolysis is dependent 

on MYC, another potent glycolysis transcription factor (J. Kim et al., 2017). Moreover, in 

addition to disturbed flow, YAP/TAZ is activated by increased matrix stiffness (see below, 

section on pulmonary vasculature). Notably, atherosclerosis lesions are also very stiff (Kohn 

et al., 2015).

In bone endothelial cells, YAP1/TAZ was found to repress the pro-angiogenic activity of 

HIF-1α, suggesting that the relationship between YAP/TAZ and HIF-1α is tissue-specific 

or dependent on the local chemical/mechanical microenvironment (Sivaraj et al., 2020), as 

in cancer cells, YAP/TAZ helps stabilize HIF-1α, preventing the latter’s degradation (see 

below). Furthermore, whereas HIF-1α in HAECs was found to drive glycolysis and suppress 

oxidative phosphorylation (D. Wu et al., 2017), YAP/TAZ was found to stimulate both 

glycolysis and oxidative phosphorylation (Bertero et al., 2016), which suggests that HIF-1α 
may specifically reprogram endothelial cell metabolism for migration or inflammation, 

whereas perhaps YAP/TAZ stimulates endothelial cells for both migration and growth.

In cancer cell types, YAP/TAZ has been shown to increase glycolysis by binding 

to transcription factors and promoting glucose transporter expression. YAP/TAZ drives 

glycolysis by increasing lncRNA BCAR4 to increase Hedgehog signaling which promotes 

HK2 and PFKFB3 transcription (Zheng et al., 2017). YAP/TAZ also recruits HIF-1α at 

pyruvate kinase M2 (PKM2) gene promoter to enhance its transcription (Jia et al., 2019), 

and binds to HIF-1α to prevent HIF-1α degradation (X. Zhang et al., 2018). Transcriptomics 

data suggested that zebrafish embryos lacking YAP has reduced mRNA of glucose 

transporters SLC2A1 and SLC2A2, causing decreased glucose uptake to support nucleotide 

synthesis (Cox et al., 2018). In cancer cells, YAP/TAZ enhances SLC2A1 membrane 

translocation in an AKT-dependent manner (White et al., 2019). Additionally, YAP/TAZ/

TEAD complex can promote HEK293A cells glycolysis via increasing the transcription of 

the SLC2A3. Knocking down SLC2A3 in cells with constitutively active YAP can partially 

reverses glucose uptake and lactate production (W. Wang et al., 2015).

It is noteworthy that SLC2A1 and SLC2A3 are the most highly transcribed glucose 

transporters in human aortic endothelial cells (D. Wu et al., 2021). SLC2A3 regulates 

thrombin-induced endothelial glycolysis burst and its endothelial-specific overexpression 

results in mouse aorta leakiness (D. Wu et al., 2021). Therefore, it would be reasonable 

to hypothesize and interesting to explore if disturbed flow-induced YAP/TAZ also acts as 

a transcriptional activator of SLC2A1/3 in endothelial cells, contributing to the glycolysis

driven atherosclerosis burden.

Endothelial cell glycolysis can play pro- and anti-atherogenic roles—Although 

many of the abovementioned studies revealed that disturbed flow-induced endothelial 
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glycolysis is detrimental to vascular health, interestingly, Yang et al. demonstrated a 

beneficial role of a glycolytic regulator protein kinase AMP-activated (AMPK) in protection 

against atherosclerosis (Q. Yang et al., 2018). Disturbed flow increased the expression 

of AMPK in endothelial cells both in vitro and in vivo. Selectively deleting endothelial 

PRKAA1, the major catalytic subunit of AMPK in vascular cells, reduced endothelial cell 

glycolysis and proliferation, while aggravating atherosclerosis formation in hyperlipidemic 

mice. In addition, overexpressing SLC2A1 rescued the impaired glycolysis in PRKAA1

deleted endothelial cells and reversed the severity of atherosclerosis, suggesting that reduced 

endothelial glycolysis was partially responsible for promoting atherosclerosis (Q. Yang et 

al., 2018). However, excessive glycolysis also triggered atherosclerosis as evidenced by 

overexpression of SLC2A1 in PRKAA1-intact endothelium, which increased plaque size 

in the partial ligation mouse model (Q. Yang et al., 2018). Thus, disturbed flow-induced 

endothelial glycolysis can play a double-edged sword in atherogenesis, emphasizing the 

importance of metabolic tuning in endothelial phenotype and therapeutic targeting. It 

is also important to note that the completed deletion of a metabolic enzyme, although 

instrumental to demonstrate the causality in animal models, rarely occurs in humans during 

the pathophysiological processes.

Oxidative phosphorylation

Studies from our lab and others have collectively shown that disturbed flow reduces, 

whereas unidirectional flow increases oxidative phosphorylation in cultured HAECs (B. 

Kim et al., 2014; D. Wu et al., 2017, p. 1). This is in accordance with in vivo data which 

demonstrated that increased vascular shear stress boosted mitochondrial health in rodents 

(B. Kim et al., 2014; J.-S. Kim et al., 2015). The unidirectional flow-induced OXPHOS 

in endothelial cells could be dependent on transcription factors KLF2/4. KLFs may be 

responsible for the unidirectional flow-increased mitochondria biogenesis in endothelial 

cells and other cell types (B. Kim et al., 2014; Liao et al., 2015). In addition to KLFs, the 

expression and activity of deacetylase sirtuin 1 (SIRT1) is also enhanced by unidirectional 

flow and induces mitochondria biogenesis (Z. Chen et al., 2010; J.-S. Kim et al., 2015). 

Unidirectional flow may also induce endothelial OXPHOS through degrading HIF-1α, as 

HIF-1α has been shown to promote the transcription of PDK1, which phosphorylates and 

suppresses pyruvate dehydrogenase (PDH) to catalyze glucose-derived pyruvate into acetyl

CoA entering TCA cycle (J. Kim et al., 2006; D. Wu et al., 2017, p. 1). Furthermore, 

HIF-1α has also been shown to attenuate OXPHOS through inhibiting mitochondria 

complex 1 activity (Tello et al., 2011).

YAP signaling also induces OXPHOS in endothelial cells. Inhibition of YAP/TAZ in 

HUVECs markedly reduced OXPHOS along with decreased glycolysis (J. Kim et al., 2017). 

YAP/TEAD1 complex enhanced mitochondria biogenesis and oxygen consumption to 

support HUVECs angiogenesis, which is through promoting the transcription of peroxisome 

proliferator-activated receptor gamma co-activator 1-alpha (PGC1α) (Mammoto et al., 

2018).

A recent paper reported that plasma membrane cholesterol also plays a role linking shear 

stress to OXPHOS in cultured human pulmonary aortic endothelial cells (Yamamoto et 
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al., 2020). Shear stress reduced plasma membrane cholesterol both through efflux and 

internalization, leading to increased OXPHOS. Similarly, depleting membrane cholesterol 

using methyl-β-cyclodextrin (MβCD) mimicked shear stress-induced mitochondria ATP 

production, whereas addition of cholesterol to cells suppressed this shear stress-induced 

OXPHOS, suggesting a novel flow-activated OXPHOS mechanism mediated by membrane 

cholesterol (Yamamoto et al., 2020).

Nevertheless, cultured endothelial cells only generate ~15% ATP through oxidative 

phosphorylation, indicating that instead of as a major energy source, mitochondria in 

endothelial cells may play a more vital role as an organelle for signaling and metabolic 

intermediates production (Quintero et al., 2006). These signaling functions of endothelial 

mitochondria include maintaining Ca2+ homeostasis and regulating oxidative stress (X. Tang 

et al., 2014). It is worthwhile to note that multiple in vivo studies have suggested that 

increased shear stress in major vessels improves mitochondrial function (B. Kim et al., 2014; 

J.-S. Kim et al., 2015).

Shear stress regulates mitochondrial fusion and fission

Mitochondria are highly dynamic organelles that frequently undergo fusion and fission. 

Fusion and fission are important for their proper cellular distribution, inheritance of 

mtDNA, energy production and removal of their dysfunctional companions by mitophagy 

(Westermann, 2010), and are highly responsive to environmental stress (Youle & van 

der Bliek, 2012). In general, fusion is beneficial to complement partially dysfunctional 

mitochondria by mixing their contents to meet increased energy demands, whereas fission 

helps quality control by eliminating damaged mitochondria and promotes apoptosis (H. 

Chen & Chan, 2009; Y. J. Liu et al., 2020; Suárez-Rivero et al., 2016).

Shear stress has also been shown to regulate mitochondria dynamics in endothelial cells. 

Unidirectional flow promotes mitochondria health often by inducing mitochondria fusion, 

compared to disturbed flow (Chehaitly et al., 2021; L.-H. Wu et al., 2018). Unidirectional 

flow upregulates mitochondria fusion protein optic atrophy protein 1 (OPA1) and mitofusin 

2 (MFN2) (Chehaitly et al., 2021; L.-H. Wu et al., 2018) while downregulates mitochondria 

fission dynamin-related protein 1 (DRP1) (Chehaitly et al., 2021) and mitochondria fission 

1 (FIS1) protein (L.-H. Wu et al., 2018). Consistently, the translocation of fission protein 

DRP1 from cytosol to mitochondria is decreased in response to laminar shear stress. In 
vivo studies reported in an abstract seem to support this observation in mouse aorta; when 

compared to aortic area subjected to high shear stress, inner curvature exposed to disturbed 

flow had reduced OPA1 and increased DRP1 (Chehaitly et al., 2021). On the contrary, short

term laminar shear stress promoted mitochondria fission in both HUVECs and bovine aortic 

endothelial cells (BAECs) compared to static conditions (Bretón-Romero et al., 2014). This 

UF-induced mitochondria fission is dependent on enhanced translocation of DRP1 to the 

mitochondria membrane and the increased intracellular Ca2+ level (Bretón-Romero et al., 

2014). Interestingly, this transient mitochondria fission induced by UF is also accompanied 

by reduced mitochondria bioenergetics and increased ROS production (Bretón-Romero et 

al., 2014). Whether the degree or time-dependence is a factor in these conflicting results is 

unclear.
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DRP1 inhibition reduces endothelial inflammation. Interestingly, in the diabetic Apoe−/− 

mouse model, inhibiting DRP1 using mitochondria division inhibitor 1 improved endothelial 

function, reduced inflammatory makers (VCAM-1 and ICAM-1) expression and attenuated 

the development of diabetic-induced atherosclerosis, suggesting mitochondria fission 

contributes to atherogenesis in diabetes (Q. Wang et al., 2017). Moreover, inhibiting 

DRP1 in cultured rat aortic endothelial cells reduced TNFα-induced NF-κB activation, 

VCAM-1 expression and leukocyte adhesion (Forrester et al., 2020). Heterozygous DRP1

deficient mice and endothelial-specific DRP1 silencing showed reduction in inflammatory 

leukocyte adhesion (Forrester et al., 2020). Chehaitly et al also reported that in high fat 

diet-fed LDLR−/− mice with OPA1 or DRP1 heterozygous deletion, LDLR−/− OPA1−/+ 

mice aggravated while LDLR−/− DRP1−/+ attenuated atherosclerosis plaque formation when 

compared to wildtype mice (Chehaitly et al., 2021). Beyond global knockout model, it 

would be interesting to adopt mice with endothelium-specific mitochondria dysregulation, to 

further dissect the role of mitochondria fusion and fission in the context of atherogenesis in 

response to hemodynamic forces.

Ca2+ signaling—Intracellular calcium ion, or [Ca2+]i, acts as a key second messenger in 

endothelial cells in regulation of migration, proliferation, inflammation, vasodilation and 

cell survival (Antoniotti et al., 2003; Dalal et al., 2020; Fiorio Pla et al., 2012, p. 4; Sessa, 

2005; Tsai et al., 2014; Yokota et al., 2015). An irregular endothelial [Ca2+]i could lead to a 

variety of pathological consequences including impaired angiogenesis, barrier integrity and 

vasodilation (Dalal et al., 2020; Seeley et al., 2013; Yokota et al., 2015). It has been widely 

accepted that shear stress regulates intracellular calcium level in endothelium (James et al., 

1995; Scheitlin et al., 2016; Yamamoto et al., 2000, 2018). One contributing mechanism is 

mediated by shear-sensitive potassium channels. In endothelium, unidirectional shear stress 

significantly increased the activity of inwardly rectifying potassium channels (Kir) which 

maintain the endothelial membrane potential, the major driving force of endothelial Ca2+ 

influx (Fancher & Levitan, 2020, p.; Fang et al., 2005, p. 2, 2006; Hoger et al., 2002; Olesen 

et al., 1988). Impairments of endothelial Kir channels resulted in endothelial dysfunction 

and vascular pathology in vitro and in vivo (Ahn et al., 2017; Boriushkin et al., 2019; 

Fancher et al., 2020; Mohler et al., 2007).

Shear stress was shown to induce [Ca2+]i, which was mainly from the uptake of 

extracellular Ca2+(Mendoza et al., 2010, pp. 4-; Yamamoto et al., 2000), release from the 

endoplasmic reticulum (Jafarnejad et al., 2015; Melchior & Frangos, 2012), and release 

from mitochondria (Scheitlin et al., 2016), the second largest Ca2+ storage organelles in 

the cell. Besides their direct role in calcium release and uptake, mitochondria may also 

control endothelial calcium level through releasing ATP to induce the extracellular Ca2+ 

entry (Yamamoto et al., 2000) or ER-stored Ca2+ flux (C. Wilson et al., 2019).

The presence of ATP has been shown to be required for sustained induction of intracellular 

calcium in cultured BAECs in response to shear stress (James et al., 1995). When exposed 

to shear stress, cultured human pulmonary artery endothelial cells (HPAECs) induced 

mitochondria ATP production, which triggered caveolae ATP release, thus activating 

P2X4 and P2Y2 receptors-mediated extracellular calcium uptake (Yamamoto et al., 2000, 

2018). This purinergic receptors-regulated calcium influx was shown to be required for 
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shear stress-mediated eNOS activation, PECAM-1 and VEGFR-2 phosphorylation. Mice 

with endothelial-specific P2Y2 deficiency showed impaired flow-induced vasodilation and 

hypertension (S. Wang et al., 2015).

Endothelial mitochondria can mediate [Ca2+]i level through their own Ca2+ flux. In cultured 

HUVECs, mitochondria are important for shear stress-induced [Ca2+]i transients, and are 

essential to induced [Ca2+]i oscillation (Scheitlin et al., 2016). One proposed mechanism of 

mitochondria-controlled [Ca2+]i is due to the Ca2+ uptake/release by mitochondria would 

alter local Ca2+ level to either activate or deactivate the IP3 receptor-mediated ER Ca2+ 

release, leading to subsequent Ca2+ oscillation (Scheitlin et al., 2016). This regulation 

was further shown to be dependent on the mitochondria calcium uptake/release but not 

on ATP production, since knocking down of mitochondria Ca2+ uniporter or inhibiting 

electron transport chain using Antimycin A, but not with ATP synthase inhibitor, was able to 

prevent the shear stress-induced intracellular calcium transients/oscillation (Scheitlin et al., 

2016). However, how this ATP-independent while mitochondria Ca2+-mediated endothelial 

[Ca2+]i homeostasis contributes to vascular dysfunction has not been studied, and it would 

be informative to further investigate the cell signaling role of mitochondria in regulating 

disturbed flow-induced atherosclerosis.

Fatty acid uptake and oxidation—Vascular endothelial cells are exposed to plasma 

free fatty acids, the metabolism of which is regulated by shear stress, and ultimately occurs 

in the mitochondria. Fatty acids play an important role regulating endothelial functions 

such as inflammation, NO production and insulin signaling, contributing to pathologies 

of CVDs including atherosclerosis (A. Ghosh et al., 2017; X. L. Wang et al., 2006). 

Endothelial cells rely on passive diffusion or fatty acid translocase to import fatty acid 

from plasma into the cells for fatty acid oxidation (FAO) (Harjes et al., 2016). Multiple 

unbiased -omics studies suggest shear stress regulates lipid metabolism in endothelial cells. 

Using proteomics approach in HUVECs, it was discovered that high shear stress induced 

proteins participating in lipid metabolism including lipid transport, oxidation, catabolism 

and biosynthesis (Venturini et al., 2019). Specifically, atheroprone low shear stress reduced 

the membrane fraction of LDLR in cultured HUVECs compared to high shear stress 

(Venturini et al., 2019). This reduced membrane localization of LDLR is due to its hypo

glycosylation modification (immaturity) induced by low shear stress, thus causing LDLR 

to accumulate around the nuclei (Venturini et al., 2019). In support of this, metabolomics 

data showed that HUVECs exposed to low shear stress compared to high shear stress had 

downregulation of lipids and lipid metabolites (Venturini et al., 2019). In parallel, untargeted 

lipidomics in cultured HPAECs demonstrated the alteration of global lipid profile induced 

by shear stress (Hirata et al., 2021). Specifically, compared to static conditions, high shear 

stress upregulated ether-containing lipids, which is responsible for attenuating the phorbol 

12-myristate 13-acetate (PMA)-induced VCAM-1 expression (Hirata et al., 2021).

Furthermore, several flow-sensitive genes/pathways regulate fatty acid metabolism in 

endothelial cells. For instance, NOTCH1 signaling is activated by unidirectional flow 

(Mack et al., 2017), and NOTCH1 signaling has been shown to promote FAO through 

transcriptional activation of carnitine palmitoyltransferase 1A (CPT1A) (Kalucka et al., 

2018). On the contrary, DF has been shown to induce endothelial fatty acid synthesis 
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through sustained activation of sterol regulatory element binding transcription factor 1 

(SREBP1), which enhances the transcription of HMG-CoA synthase and fatty acid synthase 

genes (Y. Liu et al., 2002). In concert, SREBP1 can also be increased by YAP/TAZ signaling 

to facilitate lipid accumulation (Aylon et al., 2016, p. 2). Expression of CD36, a scavenger 

receptor and fatty acid transporter, was markedly up-regulated in endothelium subjected to 

disturbed flow (Le Master et al., 2018), although the role of CD36 in flow-regulated fatty 

acid uptake remains to be determined.

In summary, these studies indicated that UF induced FAO while DF preferentially promoted 

lipid synthesis and accumulation in endothelial cells, suggesting a relevant role of lipid 

metabolism in mechanosensing and possibly mechanotransduction. Together, these data 

indicate that lipid metabolism is dynamically regulated in endothelial cells by different types 

of hemodynamic flows, which may contribute to the flow-regulated endothelial phenotypes.

FAO is dynamically modulated in endothelial cells to maintain their functions. Endothelial 

FAO is essential for supplementing dNTP synthesis for maintaining endothelial DNA 

replication and angiogenesis (Schoors et al., 2015). In addition, FAO has also been shown 

to benefit redox homeostasis through NADPH regeneration, thus protecting quiescent 

endothelial cells from oxidative-stress exposure (Kalucka et al., 2018). Inhibiting CPT1A 

has been shown to induce endothelial cell permeability in vitro and blood vessel leakage in 
vivo (Patella et al., 2015).

Another unconventional role of FAO is to regulate endothelial to mesenchymal transition 

(EndMT). EndMT has been considered as an atherogenic phenotype of endothelial cells and 

has been shown to drive atherogenesis (P.-Y. Chen et al., 2015; Evrard et al., 2016). It is 

widely accepted that disturbed flow induces EndMT (Andueza et al., 2020; P.-Y. Chen et 

al., 2015; Moonen et al., 2015), but the specific mechanism has not been well elucidated. 

FAO can restrain EndMT by maintaining the acetyl-CoA pool for the post-translational 

inhibition of the mesenchymal marker SMAD7 (Xiong et al., 2018). Inhibiting FAO in mice 

by endothelium-specific CPT2 deletion promoted EndMT through thickening of heart valves 

and increasing permeability in multiple vascular beds, suggesting the critical role of FAO 

in maintaining EC identity and vascular homeostasis (Xiong et al., 2018). Therefore, it is 

reasonable to hypothesize that FAO also acts as a metabolic link to regulate the DF-induced 

EndMT.

Fatty acid synthesis—In contrast to FAO, fatty acid synthesis is upregulated by DF 

(Y. Liu et al., 2002); however, it has not been elucidated how this DF-induced FA 

synthesis contributes to EC function and the atherogenic phenotype. Nevertheless, studies in 

other cell types have provided possible hypotheses linking FA synthesis to EC function. 

In cardiomyocytes, fatty acids prevented HIF-1α stabilization by decreasing succinate 

concentration thus enhancing HIF-1α hydroxylases (Dodd et al., 2018), suggesting that 

fatty acids synthesis may be beneficial to endothelium exposed to disturbed flow. On the 

other hand, in cancer cells, blocking monounsaturated fatty acids synthesis by inhibiting 

stearoyl-CoA-desaturase 1 (SCD1) reduced YAP/TAZ stabilization and nuclear localization 

(Noto et al., 2017), indicating fatty acid synthesis may also contribute to the hyperglycolytic 

phenotype of endothelium exposed to disturbed flow.
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Amino acids

Glutamine is the most abundant amino acid in human plasma (Newsholme et al., 2003; 

Williamson & Brosnan, 1974). Glutamine serves as a major carbon source for TCA cycle in 

endothelial cells which contributes to EC proliferation both in vitro and in vivo (H. Huang et 

al., 2017; B. Kim et al., 2017). One mechanism on the glutamine-dependent EC proliferation 

is due to it serves as the precursor to synthesize asparagine, which is needed for protein 

synthesis in support of angiogenesis (H. Huang et al., 2017; Pavlova et al., 2018). Besides 

protein synthesis, glutamine is also important for maintenance of EC redox homeostasis 

by producing the antioxidant glutathione (DeBerardinis & Cheng, 2010). In addition, 

glutamate generated by glutamine is subsequently converted to ornithine for the synthesis 

of polyamine and nitric oxide, which is a critical regulator of vasodilation and angiogenesis 

(Kucharzewska et al., 2010; Tousoulis et al., 2012). Although glutamine is an important 

amino acid in ECs, its regulation by shear stress has not been thoroughly investigated. 

Interestingly, stiffness-activated YAP/TAZ has been shown to stimulate the transcription of 

glutaminase (GLS1), the first enzyme that catabolizes glutamine to glutamate and ammonia 

(Bertero et al., 2016). Whether a similar mechanism exists by disturbed flow-activated 

YAP/TAZ is unclear.

L-arginine can be converted by eNOS to synthesize NO and citrulline in vascular endothelial 

cells (Palmer et al., 1988). eNOS can be both transcriptionally activated (Davis et al., 

2001, 2004; Tao et al., 2006), stabilized (Davis et al., 2001) and post-translationally 

phosphorylated by shear stress at various serine residues (Boo, Hwang, et al., 2002; Boo, 

Sorescu, et al., 2002), leading to increased NO production. Argininosuccinate synthetase 1 

(ASS1) catalyzes the penultimate step of L-arginine synthesis, and ASS1 is transcriptionally 

upregulated in HUVECs subjected to high shear stress, compared to static conditions 

(McCormick et al., 2001; Mun et al., 2009). RNA interference of ASS1 impaired NO 

production in bovine aortic endothelial cells (Goodwin et al., 2004), suggesting that ASS1 

takes on an essential mechano-sensitive role in key endothelial functions.

In summary, unidirectional flow is associated with an oxidative phosphorylation/ 

mitochondrial phenotype – promoting mitochondrial fusion, biogenesis, fatty acid uptake, 

oxidation, and glutamine uptake for anaplerosis and nitric oxide production. In contrast, 

disturbed flow is associated with a glycolytic phenotype, mitochondrial fission, and fatty 

acid synthesis. The metabolic switch in disturbed flow promotes atherosclerosis,

Microvasculature flow and metabolism

Capillary beds

In animal models of sepsis, microvascular flow becomes disturbed or oscillatory (De Backer 

et al., 2002). Microvascular flow is important in brain vascular and ear development (Q. 

Chen et al., 2012; D. Wu et al., 2011). Microvasculature-mitochondrial dysfunction is a 

well-known consequence of sepsis, resulting in dysregulated NO production, glycocalyx 

shedding, and barrier dysfunction (Miranda et al., 2016). Clinical therapies are focused on 

restoring appropriate blood flow to the capillary beds, but whether flow has a direct effect on 

microvascular metabolism remains poorly understood.
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Brain and kidney endothelial cells—In addition to capillaries and lymphatics, 

different organs have distinct microvascular beds with their own metabolic specialization 

(Kalucka et al., 2020). Liver ECs have discontinuous basement membranes for passage 

of macromolecules whereas brain ECs have a tight blood brain barrier. Kidney ECs 

are specialized for blood filtration. Unsurprisingly, EC shear stress responsiveness in the 

various tissue beds has a different shear stress set point (Baeyens et al., 2015). In the 

brain microvasculature, physiologic shear (10–20 dyn/cm2) upregulates expression of tight 

junction markers such as ZO1 and Claudin-5. However, excessive shear (40 dyn/cm2) and/or 

pulsatility decreased their expression to basal levels and altered EC junctions morphology 

(Colgan et al., 2007; Garcia-Polite et al., 2017). This suggests a mechanism whereby 

atherosclerosis (increased stiff vessels) and hypertension predispose the microvasculature 

to endothelial dysfunction. In the brain, this would manifest as strokes. From a metabolic 

standpoint, measurements of glucose consumption versus lactate production showed 

that shear stress negatively modulated the glycolytic bioenergetic pathways of glucose 

metabolism in favor of the more efficient aerobic respiration and increased synthesis of 

TCA cycle genes (Cucullo et al., 2011). Thus, shear stress’ effect on brain endothelial cells 

metabolism seems similar to HAECs (Doddaballapur et al., 2015; D. Wu et al., 2017).

Renal endothelial cells are very metabolically heterogeneous depending on their proximity 

to arterial oxygen and water deprivation (Dumas et al., 2020). The metabolism of renal 

endothelial cells is likely dominated by limited delivery of oxygen. Much like other 

endothelial cell types, nitric oxide production and permeability of glomerular endothelial 

cells are regulated by laminar shear stress (Bevan et al., 2011). In contrast to lymphatic ECs 

(discussed below), renal endothelial cells may be subjected to true hypoxia with pO2 < 20 

mm Hg (Neuhofer & Beck, 2005). Mixed venous pO2 never reaches below 75 mm Hg in 

normal situations; thus, venous blood is rarely truly hypoxic. Interestingly, whereas HAECs 

are to some degree HIF-1α dependent for increased glycolysis in response to hypoxia in 

large vessels (D. Wu et al., 2017), renal ECs (and perhaps other microvasculature) also are in 

part dependent on SIRT3-dependent HIF-2α, in addition to HIF-1α, for glycolysis (He et al., 

2017; Nauta et al., 2017).

Pulmonary vasculature—Microvascular flow dysfunction is probably prevalent in 

the lung. Lung diseases such as pulmonary fibrosis, acute lung injury in addition to 

pulmonary hypertension all have microvascular dysfunction involving pressure changes 

in the pulmonary vasculature due to either chronic hypoxic vasoconstriction, chronic 

thromboembolism, vascular obliteration due to plexiform lesions, vascular apoptosis, or 

heart failure causing pressure back up.

In human pulmonary microvasculature, metabolism through the HIF-2α pathway plays a 

role in the development of pulmonary hypertension and resolution of acute lung injury 

(Cowburn et al., 2016; M. C. Ghosh et al., 2021; Gong et al., 2015; C.-J. Hu et al., 

2019; H. Tang et al., 2017); however, the role of HIF-2α in pulmonary microvascular 

mechanotransduction is unknown (in HAECs, disturbed flow also induces HIF-2α, although 

the consequence of this has not been studied (D. Wu et al., 2017)). Activation of HIF-2α 
also leads to upregulation of arginase II and ultimately lowers arginine availability for NO 

production, which probably occurs in the kidney microvasculature (Krotova et al., 2010).
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Impairment of fatty acid synthase leads to HIF-1α de-stabilization, a reduction in HIF-1α

mediated changes in glucose transport and metabolism, and eNOS function restoration, 

suggesting that the inhibition of fatty acid synthesis may be beneficial for EC function 

in hypoxia (Singh et al., 2017). Other impacts of hypoxia, such as activation of HIF-1α, 

dysregulated nitric oxide and pulmonary artery metabolism, and endothelial-mesenchymal 

transition can be found in this review (D. Wu & Birukov, 2019).

Other endothelial beds—Retinal endothelial cells also require some degree of shear 

stress for quiescence involving the nitric oxide pathway (Ishibazawa et al., 2011; 

Lakshminarayanan et al., 2000), with lower shear stress upregulating proinflammatory 

pathways (Ishibazawa et al., 2013). As retinal angiogenesis is a critical factor in diabetic 

retinopathy (and serves as a model for developmental angiogenesis), the role of metabolism 

and flow-limited delivery of oxygen in retinal endothelial cell biology is ongoing (X. 

Han et al., 2019); like in other endothelial beds, disturbed flow likely simulates pathways 

mimicking hypoxia. In liver, sinusoidal endothelial cells are known to be mechanically 

responsive to shear stress (Braet et al., 2004), and express many classical mechano-sensitive 

receptors and transcription factors, but whether there is a connection to metabolism is 

unknown (Soydemir et al., 2020).

Lymphatics

LECs have similar metabolism to arterial-derived endothelial cells and are highly glycolytic 

with low mitochondrial oxidative phosphorylation in culture (De Bock et al., 2013). 

In some respects, this is less surprising than arterial endothelial cells, as lymphatic 

vasculature has about 15–60 mm Hg pO2 compared with 80–110 mm Hg pO2 in arterial 

circulation(Barankay et al., 1976; Witte et al., 1967). Furthermore, lymphatic fluid has 

glucose concentrations that are similar or slightly higher than arterial blood (Hendrix & 

Sweet, 1917). However, pO2 limitations for mitochondria function are thought to be < 1 mm 

Hg and lactate production from end organs (as a sign of oxygen-limited ATP production) 

is thought to occur only below pO2 values of ~15 mm Hg (Koike et al., 1994; Richmond 

et al., 1997; Wasserman, 1999). Therefore, it is likely that in all cases oxygen supply to 

the lymphatic vasculature is enough to power oxidative phosphorylation, suggesting that the 

Warburg effect is indeed present in lymphatic ECs, as in arterial and venous.

LECs are mechano-sensitive to hemodynamics. Low, oscillatory shear stress is sufficient 

to induce GATA2-FOXC2, which is a key transcriptional pathway for lymphatic vessel 

maturation (Sweet et al., 2015) and valve formation (Sabine et al., 2012, 2015). PROX1, 

another transcription factor marker for lymphatic endothelial cells, can be abolished 

with high amounts of shear stress (C.-Y. Chen et al., 2012). Loss of GATA2 results 

in lymphedema (Emberger syndrome) (Kazenwadel et al., 2015, p. 2). In LECs, the 

mechanosensation mechanism is thought to be through PECAM1 sensation of shear stress, 

phosphorylation of VEGFR2/3 which activated PI3K/AKT signaling and are held together 

by VE-Cadherin in the plasma membrane. Deletion of any of these components leads to 

lymphatic valve loss and is dependent on mechanosensation (Hägerling et al., 2018; Tzima 

et al., 2005; Y. Wang et al., 2016; Y. Yang et al., 2019).
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During development, LEC glycolysis is critical for vasculogenesis. HK2 is essential for 

glycolysis. Knockout of HK2 in an endothelial cell-specific manner leads to impaired EC 

proliferation and migration. FGF regulates c-MYC which in cooperates with HIF-1α and 

regulates HK2 (J. Kim et al., 2007; Mathupala et al., 2001; P. Yu et al., 2017).

Lymphangiogenesis is also dependent on fatty acid oxidation. FAO flux in LEC is higher 

than in other endothelial cell types (Wong et al., 2017). Besides for energy supply, FAO 

are used for nucleotide synthesis in ECs (Schoors et al., 2015). Interestingly, PROX1 

regulates lymphatic cell identity by causing epigenetic changes through histone acetylation 

via upregulation of CPT1A expression, which increases acetyl coenzyme A production, 

which is dependent on fatty acid oxidation (Wong et al., 2017).

Study addressing the intersection of metabolism and mechanotransduction in LECs 

is in its infancy. LECs from lambs exposed to increased pulmonary lymph flow 

are hyperproliferative, have increased expression of HIF-1α and its target genes, and 

demonstrate altered central carbon metabolism in vitro (Boehme et al., 2021).

Stretch and metabolism

Stretch is an especially important mechanical factor in lung microvascular endothelial 

cells. Physiologic levels of cyclic stretch are essential for endothelial homeostasis (Lehoux 

& Tedgui, 1998); excessive stretch leads to apoptosis and expression of inflammatory 

factors (Fang et al., 2019). This is an especially important topic in the pandemic era as 

excessive lung distention is still thought to be responsible for excess mortality during 

mechanical ventilation (Li et al., 2011), despite current lung protective strategies (Amato 

et al., 2015; The Acute Respiratory Distress Syndrome Network, 2000). From a metabolic 

standpoint, mitochondria are especially affected by excess stretch. Mitochondria anchor 

to the cytoskeleton and release ROS in response to cytoskeletal strain (Ali et al., 2006). 

This suggests that in endothelial cells, mitochondria and cytoskeleton together serve as a 

united mechanosensor and mechanotransducer (Ali et al., 2004). In a novel cellular glucose 

sensor experiment, it was found that glucose utilization is reduced under stretched state 

in endothelial cells (Peng et al., 2021). New devices that can simultaneously visualize 

externally applied stretch (Poulin et al., 2018) and detect single-cell metabolism (D. Wu et 

al., 2021) can better clarify the relationship between stretch and metabolism.

Mechano-sensitive transcription factors YAP may be active in stretch in addition to 

stiffness (see below). Interestingly, YAP may act to prevent stretch induced cell injury 

of ECs. Surprisingly, YAP knockout exaggerated vascular endothelial (VE)-cadherin 

phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE

PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation, 

causing endothelial barrier failure (Su et al., 2021). Although stretch is a constant feature of 

endothelial cells in the vasculature, its effects on cell metabolism remain under-investigated.

Stiffness and endothelial cell metabolism

As the cytoskeleton is connected to focal adhesions, it is not surprising that they play 

a large role in sensing stiffness. The cytoskeleton transmits the stiffness signal through 
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YAP and TAZ. Endothelial cells also demonstrate a strong cell shape dependence in 

their phenotype that is driven by surface stiffness and extracellular matrix contact (C. S. 

Chen, 1997). YAP/TAZ activates downstream pathways that are known to increase fibrotic 

pathways resulting in the synthesis of extracellular matrix (Totaro et al., 2018). The precise 

mechanosensing mechanism that transmits the signal from cell sensing of substrate stiffness 

to YAP and TAZ is poorly understood.

The cytoskeleton plays a critical role in force transmission as the nuclear translocation 

of YAP/TAZ was mitigated by inhibitors of non-muscle-myosin II in a study on matrix 

stiffness and its effects on the transcriptional output of epithelial cells (Dupont et al., 2011). 

Interestingly, osmotic forces affect intracellular crowding and stiffness, which in turn affects 

cell differentiation (Guo et al., 2017), and can cause both nuclear translocation (Hong et 

al., 2017) and phase separation of YAP, which when condensed are active sites of gene 

transcription in HEK293 cells (Cai et al., 2019). It remains to be seen if these affects play 

out in endothelial cells.

The cytoskeleton engages in mechanical-metabolic crosstalk through YAP/TAZ. Pulmonary 

vascular stiffness causes YAP to bind to GLS1 promoter sequence in response to matrix 

stiffening, and hence conversion of glutamine to glutamate in pulmonary artery endothelial 

cells. As glutamate enters the TCA cycle as alpha-ketoglutarate, YAP/TAZ therefore 

stimulates synthesis of biosynthetic growth and proliferation intermediates (Bertero et 

al., 2016). YAP also increases transcription of LDHA to promote glycolysis and cell 

migration (Bertero et al., 2016). YAP/TAZ accelerates lipid accumulation via activation 

or dysregulation of SREBP2 (Aylon et al., 2016; Jeong et al., 2018).These growth signals 

are thought to drive the plexiform lesions and thickening of the vasculature leading to the 

clinical phenotype found in pulmonary hypertension. Furthermore, YAP/TAZ coordinates 

EC proliferation and metabolic activity by upregulating MYC signaling (J. Kim et al., 2017).

In vascular development, YAP/TAZ promotes cell migration and barrier function by linking 

mechanical signals with bone morphogenetic protein (BMP) signaling to establish functional 

network formation of blood vessels during angiogenesis (Neto et al., 2018). BMP family 

regulates VEGFR2 and NOTCH signaling via TAZ-Hippo pathway (Pulkkinen et al., 2021). 

Furthermore, YAP/TAZ constrain HIF-1α target gene expression in vivo and in vitro. 

Surprisingly, YAP/TAZ suppresses bone angiogenesis in hypoxia (Sivaraj et al., 2020). 

Upstream kinase signaling components of YAP/TAZ (such as Wwc2, which activates LATS) 

are also critical for vascular development (Hermann et al., 2021, p. 2). YAP and TAZ are 

also important for lymphatic plexus patterning and postnatal lymphatic valve maintenance 

by negatively regulating PROX1 (Cho et al., 2019).

YAP/TAZ and stiffness are instrumental to endothelial-adjacent cells in the 

microvasculature. YAP is induced after injury and promotes wound healing (proliferation, 

migration) which provides evidence for tension sensing at wound fronts (Kimura et 

al., 2016; X. Wang et al., 2012). Stiffness-activated YAP/TAZ has also been found to 

regulate metabolism in fibroblasts (cancer-associated) by increasing glutamine metabolism 

in response (Bertero et al., 2019). Matrix sensing/remodeling is responsible for smooth 

muscle growth in pulmonary hypertension models (Bertero et al., 2015; Dieffenbach et al., 
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2017; Kudryashova et al., 2016) and in vitro models of idiopathic pulmonary fibrosis (F. 

Liu et al., 2015). Interestingly, YAP inhibition causes resolution of scars and prevent the 

formation of keloids, an excessive scarring process (Mascharak et al., 2021).

Cytoskeletal regulation of metabolism

In addition to external mechanical forces, metabolism is regulated cell-autonomously by 

internal mechanical cues largely in response to cytoskeletal remodeling. ATP and GTP 

hydrolysis drive actin and tubulin filamentation; ATP hydrolysis drives myosin-dependent 

formation of actin stress fibers in many cell types. Thus, it is not surprising that changes 

in cell internal mechanics through cytoskeletal reorganization can autonomously regulate 

metabolism and energy production.

The cytoskeleton can regulate energetic demand by sequestering enzymes that can regulate 

glycolysis. Tripartite motif containing-21 (TRIM21) is sequestered by F-actin, which hides a 

protease that degrades phosphofructokinase (PFK), making it more active (Park et al., 2020). 

Glycolytic enzymes aldolase A has a catalytic site right next to its actin binding site (J. 

Wang et al., 1996). Filamentation of actin is therefore thought to regulate aldolase A activity 

(J. Wang et al., 1997). Insulin-dependent activation of PI3K/PIP3 recruits and activates Rac 

which promotes actin fiber monomerization, causing release of aldolase A which increases 

glycolysis (H. Hu et al., 2016).

Cells exhibit structural and functional compartmentalization of ATP production

The cell has segregated pools of energy production and consumption and is far from 

equilibrium. The nucleus has its own pool of glycolytic enzymes (Y. Liu et al., 2018; 

Vega et al., 2016; H.-J. Wang et al., 2014, p. 5; Yalcin et al., 2009) (most of uncertain 

function (Boukouris et al., 2016)) and can perform glycolysis on its own (Rechsteiner & 

Catanzarite, 1974; Siebert & Humphrey, 2006). In dividing hepatocytes, glycolysis is more 

active in the nucleus than in the cytosol (Kuehl, 1967). Data suggest that plasma membrane 

Na/K ATPase is tightly coupled with cytoplasmic glycolysis and receives almost no ATP 

from mitochondria (Sepp et al., 2014). Structural barriers prevent free diffusion of ATP 

in muscle cells (Vendelin et al., 2004). Muscle cells exhibit regular patterns of glycolytic 

enzymes that align spatially and functionally with sarcomeres (Sullivan et al., 2003; Wojtas 

et al., 1997). Spermatozoa have glycolytic enzymes regularly organized along flagella and 

exhibit cytoplasmic droplets enriched with glycolytic enzymes which and are critical for 

sperm maturation (Yuan et al., 2013). Studies in red blood cells, which lack mitochondria, 

suggest that glycolytic proteins compartmentalize near the plasma membrane and that their 

subcellular organization is important for the regulation of cellular cation pumps (Chu et al., 

2012; Mercer & Dunham, 1981).

Stress affects the spatial distribution of glycolytic enzymes. Hexokinase (HK) exists in 

both cytoplasmic and mitochondrial membrane bound phases(Roberts & Miyamoto, 2015; 

J. E. Wilson, 1978). HK transits to its membrane bound form during periods of ischemia 

(Knull et al., 1973, 1974). In this way, cells use spatial distribution to control enzyme 

function: diversion of critical glycolytic intermediates may be used to prevent intracellular 
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competition for ATP (Ottaway & Mowbray, 1977) or to divert energy between anabolic or 

catabolic processes (John et al., 2011).

Several glycolytic enzymes were among the first actin-binding proteins identified (Masters, 

1984), which suggests an intimate relationship between cytoskeletal organization and energy 

production (Pagliaro, 1995). Glycolytic enzyme aldolase has separate sites for actin binding 

and isomerase activity; reorganization of cytoskeleton is thought to activate glycolysis by 

freeing aldolase from its bound state (H. Hu et al., 2016; Lew & Tolan, 2013). Aldolase and 

other glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH), pyruvate 

kinase (PK), and lactate dehydrogenase (LDH) also bind to tubulin; binding of these 

enzymes to tubulin cytoskeleton changes their activity in vitro (Kovács et al., 2003; 

Marmillot et al., 1994; Volker et al., 1995), suggesting active cytoskeletal regulation of 

glycolysis.

Teleologically, these observations fit a globally parsimonious view of cellular energy 

production/consumption as (some) cells do not have excess pools of freely diffusing ATP 

and in fact have developed sophisticated mechanisms to sense energy stress, demand, and 

anabolic requirements (Hardie et al., 2012; Herzig & Shaw, 2018; J. Kim & Guan, 2019; 

Saxton & Sabatini, 2017). Whether these observations can be applied to ECs is unknown.

Subcellular metabolic heterogeneity in migrating ECs

More recently, “glycolytic metabolons” have been suggested in ECs. An enrichment of 

glycolytic enzymes such as PFKFB3 in lamellipodial ruffles may drive increased ATP 

in the lamellapodia, which may in turn drive migration (De Bock et al., 2013; Eelen 

et al., 2018). In thrombin-stimulated endothelial cells, glycolysis is more active near 

the contracting lamella and co-localizes with actin turnover, which again suggests cell 

autonomous subcellular organization of energy production (D. Wu et al., 2021). Targeting 

local ATP supply with ATP/ADP exchange enzyme adenylate kinase-1 enhances cell 

migration in embryonic fibroblasts (van Horssen et al., 2009).

The cytoskeleton regulates glycolysis in response to increased energy 
demand and cell migration—Obeying basic laws of physics, there is a strong 

correlation between cellular work (distance migrated) and cellular energy production 

(Kondo et al., 2021; D. Wu et al., 2021). In breast cancer cells, cellular ATP/ADP ratio 

correlates with leader-cell invasion (J. Zhang et al., 2019). Furthermore, in cell migration, 

there is acute energy demand that should be heterogeneous within a cell, as some parts of 

a cell active extend while other part are stationary. It follows that there should be a way 

to upregulate energy intake at the subcellular level. Using single cell metabolism assays, it 

was recently discovered that RhoA in response to thrombin stimulus stimulates SLC2A3 to 

uptake more glucose in HAECs. The resultant glycolysis is spatially heterogeneous within a 

cell and only occurs in areas of the cell which are actively contracting (D. Wu et al., 2021). 

Interestingly, intracellular pH, which is largely determined by the subcellular glycolytic rate, 

is regulated by integrin-mediated cell spreading, and thus cellular tension may also regulate 

metabolism autonomously (Schwartz et al., 1989, 1990, 1991). SLC2A3, which has a lower 
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Km for glucose than SLC2A1, is thus a promising candidate for rapid glucose uptake 

(Burant & Bell, 1992); whether SLC2A3 is spatially regulated within ECs is unknown.

Metabolic memory is encoded in epigenetic modifications and the 
cytoskeleton—Metabolic changes are critical for changing cell phenotype. This occurs 

functionally in the production of metabolites but also provides a basis for cellular 

differentiation or creation of memory in the form of epigenetic modifications. Fatty acid

derived acetyl-CoA was found to be critical for maintaining lymphatic differentiation 

through acetylation of histones (Wong et al., 2017). Acetylation requires the key 

intermediate metabolite acetyl-CoA, the sole donor of acetyl groups for acetylation 

(Choudhary et al., 2014). In addition to epigenetic modifications, the cytoskeleton is also 

acetylated: α-tubulin promotes microtubule stability (Szyk et al., 2014). Thus it can be said 

that the cytoskeleton also possesses some metabolic memory.

Acetylated tubulin improves EC barrier function. Histone deacetylase 6 (HDAC6) 

phosphorylation, which deacetylates microtubules (MTs) and reduces barrier function, 

exacerbates EC barrier dysfunction in a cigarette smoke/LPS animal and Staphylococcus 

aureus model and of lung injury (Borgas et al., 2016; Karki et al., 2019; Kratzer et al., 

2012), whereas hyper-acetylated tubulin is protective against LPS-induced ALI (Y. Zhang 

et al., 2008). Selective HDAC6 inhibition by tubastatin A also reduced TNFα-induced lung 

endothelial cell hyperpermeability (J. Yu et al., 2016).

In acute lung injury models, multiple studies invoke a final common pathway of RhoA

induced activation of myosin light chain, causing EC contractions and pulmonary vascular 

leak. Microtubules modulate RhoA activity in an LPS-dependent manner via oxidative-stress 

induced release of GEF-H1(Kratzer et al., 2012). GEF-H1 bound to MTs is dependent 

on microtubule acetylation. Mechanically, stiffness can activate GEF-H1 expression and 

thereby exacerbate LPS-induced lung inflammation (Mambetsariev et al., 2014).

In addition to microtubules, acetylation is important for stable adherens junctions. β-catenin 

HDAC6-dependent deacetylation causes β-catenin nuclear translocation and disassembly of 

adherens junctions (J. Yu et al., 2016, p. 6); on the contrary, β-catenin acetylation promotes 

its membrane localization thus stabilizing adherens junctions (Iaconelli et al., 2015), 

although these studies are not in endothelial cells. Thus, acetyl-CoA, a key mitochondrial

derived metabolite, may be critical for vascular permeability in lung injury. As mitochondria 

activity of ECs is enhanced by unidirectional flow and suppressed by disturbed flow (D. Wu 

et al., 2017), it is now possible to speculate that shear stress-induced mitochondria function 

affects cytoskeleton and junctional stability and hence is protective against lung injury.

Discussion

Mechanical forces drive changes in endothelial cell phenotypes which can lead to disease 

states. Mechano-transduction mechanisms result in changes to endothelial phenotypes such 

as production of matrix, expression of inflammatory markers and TNFα signaling, changing 

barrier properties, and endothelial-mesenchymal transformation. Continued endothelial 

transformation at a large enough scale in tissue or organ beds leads eventually to 
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pathological disease processes such as atherosclerosis, pulmonary hypertension, and 

capillary leak syndromes.

These changes require rewiring cellular biomass and energetics to support new cellular 

functions instead of maintaining cellular quiescence. All major metabolic pathways become 

altered including glucose, amino acids, fatty acid metabolism. Glucose is diverted from 

synthesis of glycocalyx into fueling cell migration. Amino acids and fatty acids are diverted 

for synthesis of nucleic acids in preparation for cell division.

Metabolic byproducts have a profound impact on cellular identity and act to preserve the 

state of the cell in accordance with the nutrient microenvironment. While transcription 

factors are central actors in promoting differential transcriptomic identities, metabolic 

products are central to preserving the epigenetic change of cells including methylation, 

acetylation, and lactylation. These changes occur via one-carbon metabolism, the production 

of acetyl-CoA from pyruvate, and through lactate dehydrogenase from pyruvate to 

lactate, respectively. Production of these metabolites thus changes the chromatin state and 

fundamental identity of the cell.

Not only are cellular level epi- and transcriptomic memories created from metabolic 

products, but also the structural fabric of endothelial cells. Microtubules and cell-cell 

junctions are acetylated, which stabilizes the cell integrity. This is especially important 

since the cytoskeleton is an integral and necessary component of mechanical signaling. 

Mechanical forces are often transient, whereas nutrient supply changes are much slower; 

buffering against sudden mechanical changes prevents rapid signaling changes which may 

be counter-productive. Acetylation of the cytoskeleton, as well as changes to chromatin, 

require significant integration of time-dependent mechanical forces prior to cellular decision 

making and cellular memory formation.

However, there are certain instances where quick sensation of nutrients is important, namely, 

such as during ischemia and reperfusion. While not discussed in depth in this current review, 

hypoxia can act digitally in an on-off manner through the action of HIF-1α. Degradation 

of HIF transcription factors through prolyl hydroxylases requires alpha-ketoglutarate and 

thus TCA metabolism plays a central role in regulation of the hypoxia response. Longer 

term, the reduction in acetyl-CoA via shutting down pyruvate dehydrogenase acts to reverse 

cytoskeletal and chromatin memory. Nevertheless, since O2 plays such an important role in 

ATP generation and ROS signaling in ECs, its role as a digital switch makes sense in that 

regard.

The interaction between mechanical forces and nutrient flux must be further clarified both 

in vitro and in vivo. One often unrecognized difficulty with mechanotransduction and 

metabolism experiments is that due to fundamental thermodynamic principles, mechanical 

forces and nutrient delivery are co-dependent variables. Much like the thermoelectric effect 

where current necessarily produces changes in temperature through Onsager reciprocal 

relations, changes in mechanical flux, be it shear stress, pressure, stiffness, or stretch, will 

necessarily change the inbound flux of nutrients and outbound flux of waste products. For 

instance, in disturbed flow there is no net shear stress and therefore no net flux; in this case, 
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the delivery of O2 is only reliant on diffusion and not convective flow. Therefore, the rate of 

consumption of nutrients must also be considered. Mitochondrial oxygen consumption, for 

example, may outstrip its diffusion-limited supply in the absence of convectional flux. Thus, 

mechanical forces, nutrient flux and nutrient gradients are inexorably linked through basic 

mass transport mechanisms.
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Figure 1: Major mechanical forces in vasculature.
(Left) In large arteries, endothelial cells in the straight vessels are subjected to unidirectional 

flow, whereas endothelial cells in the branch points and curvatures are subjected to 

disturbed flow and stiffness, leading to atherosclerosis formation. (Middle) Microvascular 

flow occurs in vessels, capillaries, and lymphatics. Shear stress is critical for lymphatic valve 

development. Stretch in the lung modulates capillary barrier function. (Right) Veins have 

valves which are under the control of lymphangiogenesis genes, but how metabolism plays a 

role is unclear.
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Table 1.

Summary of studies on mechanical forces cooperating with metabolic changes in driving endothelial 

phenotypes.

Mechanical Force Vasculature 
(cell type)

Regulation 
Mechanism

Metabolism EC Phenotype Disease Ref

Shear stress (high/static, 
UF/DF)

HUVEC, 
ApoE-KO 
mouse, LDLR-
KO mouse

↑KLF2
(↓PFKFB3, 
↓HK2)

↓Glucose uptake,
↓Glycolysis

↓Proliferation,
↓migration,
↓inflammation,
↓monocyte 
adhesion

Pulmonary 
hypertension, 
atherosclerosis, 
thrombosis, 
pathological 
angiogenesis

1–6

Shear stress (UF/DF and 
long/short)

HUVEC, 
BAEC, 
RFPEC, 
ApoE-KO 
mouse

↑KLF2
(↑HAS2 for 
glycocalyx)

↓Glycolysis
(↑Hexosamine 
and glucuronic 
acid 
biosynthesis)

↓Permeability,
↓monocyte 
adhesion

Atherosclerosis 7–16

Shear stress (DF/UF) HAEC, 
HUVEC, 
mouse, ApoE-
KO mouse

↑HIF-1a
(↑SLC2A1,
↑HK2,
↑PFKFB3,
↑LDHA,
↑PDK1,
↑NDUFA4L2)

↑Glycolysis,
↓OXPHOS

↑Proliferation,
↑inflammation

Atherosclerosis 6, 
17–
19

Shear stress (DF/UF) HUVEC, 
HAEC, mouse 
brain EC, 
mouse, ApoE-
KO mouse

↑YAP/TAZ
(↑JNK,
↑MYC,
↑PGC1α)

↑Glycolysis,
↑OXPHOS,
↑Mitochondria 
biogenesis

↑Proliferation,
↑inflammation,
↑migration,
↑monocyte 
adhesion

Atherosclerosis 20–
25

Shear stress (DF/UF) HAEC, mouse ↑SLC2A1/3 
(possibly by YAP/
TAZ)

↑Glucose uptake 
and glycolysis

↑Migration Aorta leakiness 26

N/A Mouse bone 
EC

↑YAP/TAZ
(↓HIF-1a)

↓Glycolysis ↓Proliferation Angiogenesis, 
osteogenesis

27

Shear stress (DF/UF) HUVEC, 
MAEC, ApoE-
KO mouse

↑PRKAA1 ↑Glycolysis ↑Proliferation Atherosclerosis 28

Shear stress (high/static 
and UF/DF)

HAEC, 
HUVEC, 
mouse

↑SIRT1
(↑PGC1α)

↑Mitochondria 
biogenesis

↑NO 
bioavailability

29–
31

Shear stress (high/static) HPAEC ↓Plasma 
membrane 
cholesterol

↑OXPHOS ↑Ca2+ signaling 32

Shear stress (UF/DF) HUVEC, 
RAEC, mouse, 
LDLR-KO 
mouse, ApoE-
KO mouse

↑OPA1,
↑MFN2,
↓DRP1,
↓FIS1

↑Mitochondria 
fusion,
↓Mitochondria 
fission

↓Inflammation,
↓monocyte 
adhesion

Atherosclerosis 33–
36

Transient shear stress 
(high/static)

HUVEC, 
BAEC

↑DRP1,
↑[Ca2+]i

↑Mitochondria 
fission,
↓OXPHOS,
↑mitochondria 
ROS

37

Shear stress (high/low) HPAEC, 
HUVEC

↑Mitochondria 
ATP
(↑Purinergic 
receptors)

↑Ca2+ influx ↑Vasodilation,
↓inflammation

Hypertension 38–
40

Shear stress (high/low) HUVEC ↑Mitochondria 
Ca2+ release/
uptake

↑ER Ca2+ 

uptake/release
41
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Mechanical Force Vasculature 
(cell type)

Regulation 
Mechanism

Metabolism EC Phenotype Disease Ref

Shear stress (DF/UF) HUVEC unknown ↓Lipid 
metabolism,
↓LDLR

42

Shear stress (high/static) HPAEC unknown ↑ether-containing 
lipids

↓Inflammation 43

Shear stress (UF/DF) HUVEC ↑NOTCH1
(↑CPT1A)

↑FAO Possibly ↓EndMT,
↑dNTP synthesis

Angiogenesis 44–
46

Shear stress (DF/UF) BAEC ↑SREBP1 ↑FA synthesis
↑Lipid 
accumulation

47–
48

Shear stress (high/static) HUVEC, 
BAEC

↑ASS1 ↑L-arginine 
synthesis

↑NO production,
↑viability

49–
51

Shear stress (capillary
like/static)

HBMEC ↑TCA enzymes 
such as PDH,
↓LDHA

↑OXPHOS,
↓Glycolysis

↓Proliferation 52

Shear stress (high/static) HGEnC ↑ENOS unknown ↓Permeability 53

Hypoxia/normoxia 
(unknown in 

mechanotransduction)

HMVEC, 
mouse

SIRT3
(↑HIF-2a,
↑PFKFB3)

↑Glycolysis,
↓OXPHOS

↑Proliferation Diastolic dysfunction 54–
55

Hypoxia/normoxia 
(unknown in 

mechanotransduction)

HPAEC ↑FA synthase
(↑HIF-1a)

↑Glycolysis ↑Proliferation,
↓eNOS

Pulmonary 
hypertension

56

Hypoxia/normoxia 
(unknown in 

mechanotransduction)

HMVEC ↑HIF-2a
(↑Arginase II)

↓L-arginine for 
eNOS

↓NO production Pulmonary 
hypertension

57

Long-term shear stress 
(high/static)

HRMEC, 
BRMEC

↑ENOS,
↑TM,
↓ET-1

unknown ↑Vasodilation,
↑Antithrombotic

58–
59

Shear stress (low/static) HRMEC ↑E-selectin,
↑ICAM-1,
↑Cytokine/ 
chemokine,
↑Procoagulant 
factors

unknown ↑Inflammation 60

Shear stress (DF/UF) HLEC, mouse ↑FOXC2-PROX1
(↑Connexin37,
↑calcineurin)

unknown ↑Lymphatic 
identity

lymphatic
valve morphogenesis 

61–
62

Shear stress (low/static) HDMLEC ↑GATA2-FOXC2 unknown lymphatic vessel 
maturation, 
lymphedema

63–
64

Shear stress (high/static) HLEC ↓PROX1
(↓CPT1)

↓FAO
(↓dNTP 
synthesis)

↓Lymphatic 
identity

Lymphangiogenesis 65–
66

Shear stress (chronic low/
static)

LLEC ↑HIF-1a Altered 
metabolomics

↑Proliferation 67

Stretch BPAEC, 
HUVEC

Actin filaments ↑Mitochondria 
ROS

Possibly ↑focal 
adhesion kinase 
signaling;
↑Inflammation

68–
69

Stretch HUVEC unknown ↓Glucose 
utilization

5

Stretch MLEC, mouse ↑YAP/TAZ
(↓VE-PTP)

unknown ↓Permeability,
↓inflammation

Ventilator-induced 
lung injury

71

Stiffness RPAEC, rat ↑YAP/TAZ
(↑GLS1,
↑LDHA)

↑Glutamate
(↑TCA 
intermediates),
↑glycolysis

↑Proliferation,
↑migration

Pulmonary 
hypertension

26
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Mechanical Force Vasculature 
(cell type)

Regulation 
Mechanism

Metabolism EC Phenotype Disease Ref

Cytoskeleton HUVEC ↑PFKFB3 ↑Glycolysis ↑Filopodia 
formation
(↑Migration)

Vessel sprouting 72–
73

Cytoskeleton HPAEC ↑HDAC6
(↓Microtubule)

Acetyl-CoA ↑Permeability Acute lung injury 74–
76

Cytoskeleton HAEC ↑RhoA
(↑SLC2A3)

↑Glucose uptake ↑Migration 77

Abbreviation list of Table 1:

BAEC: bovine aortic endothelial cell

BRMEC: bovine retinal microvascular endothelial cells

HAEC: human aortic endothelial cell

HBMEC: human brain microvascular endothelial cell

HDMLEC: human dermal microvascular lymphatic endothelial cell

HGEnC: human glomerular endothelial cell

HLEC: human lymphatic endothelial cell

HPAEC: human pulmonary arterial endothelial cells

HRMEC: human retinal microvascular endothelial cell

HUVEC: human umbilical endothelial cell

LLEC: lamb lymphatic endothelial cell

MLEC: murine lung endothelial cell

NDUFA4L2: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2

RAEC: rat aortic endothelial cell

RFPEC: the rat fat pad endothelial cell

RPAEC: rat pulmonary arterial endothelial cells

Reference directory of Table 1:

1.
(Doddaballapur et al., 2015)

2.
(Parmar, 2005)

3.
(Yu et al., 2017)

4.
(Xu et al., 2014)

5.
(Schoors et al., 2014)

6.
(D. Wu et al., 2017, p. 1)

7.
(G. Wang et al., 2020)

8.
(Pries et al., 2000)

9.
(Tarbell & Ebong, 2008)

10.
(Fu & Tarbell, 2013)

11.
(Zeng & Tarbell, 2014)
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12.
(Curry & Adamson, 2012)

13.
(Tarbell, 2010)

14.
(Lipowsky, 2011)

15.
(Lewis et al., 1982)

16.
(van den Berg et al., 2006)

17.
(Feng et al., 2017)

18.
(Akhtar et al., 2015)

19.
(Tello et al., 2011)

20.
(Halder et al., 2012)

21.
(L. Wang et al., 2016)

22.
(K.-C. Wang et al., 2016)

23.
(Koo & Guan, 2018)

24.
(J. Kim et al., 2017)

25.
(Mammoto et al., 2018)

26.
(Bertero et al., 2016)

27.
(Sivaraj et al., 2020)

28.
(Yang et al., 2018)

29.
(B. Kim et al., 2014, p.)

30.
(J.-S. Kim et al., 2015)

31.
(Z. Chen et al., 2010)

32.
(Yamamoto et al., 2020)

33.
(Chehaitly et al., 2021)

34.
(L.-H. Wu et al., 2018)

35.
(Q. Wang et al., 2017)

36.
(Forrester et al., 2020)

37.
(Bretón-Romero et al., 2014)

38.
(Yamamoto et al., 2000)

39.
(Yamamoto et al., 2018)

40.
(S. Wang et al., 2015)

41.
(Scheitlin et al., 2016)

42.
(Venturini et al., 2019)

43.
(Hirata et al., 2021)

44.
(Mack et al., 2017)
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45.
(Kalucka et al., 2018)

46.
(Schoors et al., 2015)

47.
(Liu et al., 2002)

48.
(Aylon et al., 2016)

49.
(McCormick et al., 2001)

50.
(Mun et al., 2009)

51.
(Goodwin et al., 2004)

52.
(Cucullo et al., 2011)

53.
(Bevan et al., 2011)

54.
(Nauta et al., 2017)

55.
(He et al., 2017)

56.
(Singh et al., 2017)

57.
(Krotova et al., 2010)

58.
(Ishibazawa et al., 2011)

59.
(Lakshminarayanan et al., 2000)

60.
(Ishibazawa et al., 2013)

61.
(Sabine et al., 2012)

62.
(Sabine et al., 2015)

63.
(Sweet et al., 2015)

64.
(Kazenwadel et al., 2015)

65.
(C.-Y. Chen et al., 2012)

66.
(Wong et al., 2017)

67.
(Boehme et al., 2021)

68.
(Ali et al., 2006).

69.
(Ali et al., 2004)

70.
(Peng et al., 2021)

71.
(Su et al., 2021)

72.
(De Bock et al., 2013)

73.
(Eelen et al., 2018)

74.
(Kratzer et al., 2012)

75.
(Borgas et al., 2016)

76.
(Karki et al., 2019)

77.
(D. Wu et al., 2021).
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