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A B S T R A C T   

Social distancing has become a key countermeasure to contain the dissemination of COVID-19. This study 
examined county-level racial/ethnic disparities in human mobility and COVID-19 health outcomes during the 
year 2020 by leveraging geo-tracking data across the contiguous US. Sets of generalized additive models were 
fitted under cross-sectional and time-varying settings, with percentage of mobility change, percentage of staying 
home, COVID-19 infection rate, and case-fatality ratio as dependent variables, respectively. After adjusting for 
spatial effects, built environment, socioeconomics, demographics, and partisanship, we found counties with 
higher Asian populations decreased most in travel, counties with higher White and Asian populations experi-
enced the least infection rate, and counties with higher African American populations presented the highest case- 
fatality ratio. Control variables, particularly partisanship and education attainment, significantly influenced 
modeling results. Time-varying analyses further suggested racial differences in human mobility varied dramat-
ically at the beginning but remained stable during the pandemic, while racial differences in COVID-19 outcomes 
broadly decreased over time. All conclusions hold robust with different aggregation units or model specifications. 
Altogether, our analyses shine a spotlight on the entrenched racial segregation in the US as well as how it may 
influence the mobility patterns, urban forms, and health disparities during the COVID-19.   

1. Introduction 

The United States became a major epicenter of the Coronavirus 
disease 2019 (COVID-19) in 2020, reporting the greatest number of 
infections and fatalities worldwide (Dong et al., 2020). As a virus pre-
dominantly spread from person to person in close contact, substantial 
evidence has suggested that tailored public policies and well-designed 
built environment help control the spread of the virus, particularly 
when the mass deployment of effective vaccination has not been ach-
ieved yet (Hu et al., 2021; Kashem et al., 2021; Xiong et al., 2020). 
However, evidence also substantiates effects of countermeasures on 
curbing the spread of the virus are disproportionate, where socioeco-
nomic status plays a critical role (Hooper et al., 2020; Johnso-
n-Agbakwu et al., 2020; McLaren, 2020; Yancy, 2020). With more 
inequity being revealed, the COVID-19 has evolved into an 

unprecedented challenge involving social sustainability, structural 
equality, and health disparities. The pandemic creates a window of 
opportunity for achieving greater social resilience and sustainability in 
the construction of future healthy cities. 

A range of control strategies has been conducted to slow the spread 
of the virus. Social distancing, i.e. staying home and away from others, is 
one of the key countermeasures through limiting physical movements 
and interactions (Flaxman et al., 2020; Fu & Zhai, 2021). Although 
studies have shown that social distancing can effectively flatten the 
spread of the virus (Noland, 2021; Xiong et al., 2020), evidence also 
suggests compounding structural inequalities in social distancing, where 
the racial/ethnic (abbreviated as racial) disparities play an important 
role (Chang et al., 2021; Hu et al., 2021; Jay et al., 2020; Sun et al., 
2020; Weill et al., 2020). Meanwhile, racial disparities are among the 
strongest underlying factors associated with COVID-19 health outcomes 
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in the US. Emerging data indicate that racial minorities, particularly 
African Americans (Abedi et al., 2021; Benitez et al., 2020; Devakumar 
et al., 2020; Yancy, 2020), bear a disproportionate burden of COVID-19 
related outcomes. Such disproportion, also known as “epidemic injus-
tice”, has existed for a long time (Acevedo-Garcia, 2000) and can be 
traced back to the entrenched history of racial segregation in the US. 
Although de jure segregation has been outlawed since the 1960s, de 
facto segregation continues today in areas such as housing, occupation, 
and health care. Racial minorities in urban settings, whose socioeco-
nomic statuses are systematically lower on average, disproportionately 
reside in overcrowded environments both by neighborhood and 
household assessments (Abedi et al., 2021; Hooper et al., 2020; Yancy, 
2020). Meanwhile, they are more likely to engage in public-facing oc-
cupations that would be hard to contain social distancing during the 
pandemic (Benitez et al., 2020; Devakumar et al., 2020; Gross et al., 
2020; Yancy, 2020). Research has also proven that in major US cities, 
hyper-segregated African Americans are more likely to be exposed to air 
pollutants, indicating a greater risk of disease (Zwickl et al., 2014). 
Understanding underlying mechanisms of such inequalities is critical to 
identify high-risk communities, tailor public policies, guide vaccine 
allocation, curb the spread of the virus, and ultimately, construct a more 
healthy, equal society. 

Although racial disparities have been widely considered as the key 
factors associated with COVID-19 outcomes, it remains unclear whether 
racial disparities in social distancing have the same pattern as in COVID- 
19 health outcomes. This study aims to compare racial disparities in 
social distancing and COVID-19 health outcomes. Specifically, four 
questions are proposed. First, how to quantize the severity of COVID-19 
health outcomes and the degree of compliance to social distancing by 
leveraging publicly available datasets? Second, how to simultaneously 
model social distancing and COVID-19 health outcomes under one 
framework with the control of their reverse causality? Third, how to 
adjust for confounding effects from other potential factors such as 
spatial effects, built environment, socioeconomics, demographics, and 
partisanship? And last, how to delineate the temporal evolution of racial 
disparities as the pandemic progressed? 

To answer these questions, we assessed social distancing behaviors 
across more than 3000 counties in the contiguous US via two metrics: 
percentage of point-of-interest (POI) visit change using the year 2019 as 
the baseline (abbreviated as Pct. of visit change), and percentage of 
residents staying home (abbreviated as Pct. of staying home). We 
assessed county-level COVID-19 health outcomes via two metrics: 
number of cases per 100,000 population (abbreviated as cases/ 
100,000), and number of deaths per 100 confirmed cases (aka case- 
fatality ratio, abbreviated as deaths/100 cases). Methodologically, we 
first depicted spatiotemporal distributions of the four metrics and 
calculated pairwise correlations between four metrics and various un-
derlying factors. Then, we built several generalized additive models 
(GAMs) to examine the relationships between racial make-up and four 
metrics, respectively, successively controlling for other confounders. 
Last, we explored temporal evolutions of racial disparities by con-
structing sets of moving GAMs with dependent variables varying as their 
weekly average. For robustness check, we replicated the study at the 
census block group (CBG) level and tested a variety of model specifi-
cations. Our study shines a spotlight on racial segregation as well as how 
it may transfer to mobility changes and health disparities during the 
COVID-19. Our findings are expected to help inform the best practices to 
respond to the current COVID-19 pandemic and future epidemics that 
adequately account for health disparities and social equality across 
different socioeconomic communities. Policymakers and planners in the 
US should focus more on the racial segregation issue to promote health- 
related urban resilience, equality, and sustainability in the development 
of smart cities. 

2. Literature review 

2.1. Socioeconomic roots of COVID-19 health outcomes 

Various studies have sought the socioeconomic roots of health dis-
parities in COVID-19 by exploring the relationships between COVID-19 
health outcomes and a range of exogenous factors, including socioeco-
nomics, demographics, occupation, and living environment. Regions in 
low socioeconomic positions or with crowded living environments are 
more likely to present higher COVID-19 infection or death rates based on 
evidence from different US cities or other countries (Das et al., 2021; 
Kashem et al., 2021; Maiti et al., 2021). For example, one study in 
Chicago claimed that areas with low educational attainment consis-
tently experienced higher case rates (Kashem et al., 2021). Similarly, 
another study explored the spatiotemporal effects of the driving factors 
on COVID-19 incidences in the contiguous US and stated that ethnicity, 
income, crime rate, and migration factors exhibited strong associations 
with COVID-19 cases and deaths (Maiti et al., 2021). Several studies 
analyzed the role of built and social environmental factors in COVID-19 
transmission in Washington D.C. and King County, Washington stated 
that housing quality, race, and income present the strongest associations 
with the COVID-19 infections and deaths (Hu et al., 2021; Liu et al., 
2021). Studies in other countries like Tehran, Brazil, and China also 
claimed that high population density and scarce medical service are the 
strongest predictors positively associated with COVID-19 infections and 
deaths (Lak et al., 2021; Li et al., 2021; Viezzer & Biondi, 2021; Wang 
et al., 2021). 

In the US, racial disparities are among the strongest underlying 
factors associated with COVID-19 health outcomes (Liu et al., 2021; 
Maiti et al., 2021). Underrepresented minorities, particularly African 
Americans (Abedi et al., 2021; Almagro & Orane-Hutchinson, 2020; 
Benitez et al., 2020; Devakumar et al., 2020; Johnson-Agbakwu et al., 
2020; Yancy, 2020) and Hispanics/Latinos (Almagro & Orane-Hutch-
inson, 2020; Benitez et al., 2020; Hooper et al., 2020), had dispropor-
tionately higher rates of COVID-19 infections and deaths. Latest studies 
further demonstrated that even after adjusting for extensive socioeco-
nomics and pre-existing health issues, regions with more such under-
represented minorities still exhibited higher infection and fatality rates 
(Almagro & Orane-Hutchinson, 2020; McLaren, 2020). 

2.2. Changes in human mobility during the pandemic 

Previous studies have highlighted the importance and effectiveness 
of social distancing in slowing the spread of the virus (Noland, 2021; 
Xiong et al., 2020). Aided by continuously collected and widely covered 
location-based service (LBS) data, human mobility during the pandemic 
was successfully monitored (Grantz et al., 2020; Li et al., 2021; Safe-
Graph, 2020; Zhang et al., 2020) and was employed as a proxy of the 
degree of compliance to social distancing. During the pandemic, human 
mobility experienced dramatic but uneven changes across socioeco-
nomic groups (Benita, 2021; Chang et al., 2021; Hu et al., 2021; Jay 
et al., 2020; Jiao & Azimian, 2021; Sannigrahi et al., 2020; Weill et al., 
2020). One well-documented conclusion is that social distancing is a 
“privilege” for those in advantaged socioeconomic status (Fu & Zhai, 
2021; Yancy, 2020). Regions with higher income, fewer essential 
workers, and higher flexibility of working from home, exhibited 
significantly higher decreases in mobility than their counterparts 
(Chang et al., 2021; Cuerdo-Vilches et al., 2021; Hu & Chen, 2021; Jay 
et al., 2020; Weill et al., 2020). In the US, partisanship is another salient 
factor related to social distancing. Republican-leaning counties exhibi-
ted substantially less social distancing than Democrat-leaning counties 
(Cai et al., 2021; Gollwitzer et al., 2020; Hu et al., 2021). 

Although racial disparities also present strong associations with so-
cial distancing in the US, it is currently inconclusive on racial differences 
in mobility change. Some researchers emphasized African American- 
leaning regions did better in social distancing (Chiou & Tucker, 2020; 
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Garnier et al., 2021; Huang et al., 2020) while others claimed 
White-leaning regions performed better (Chang et al., 2021; Hu et al., 
2021; Sy et al., 2020; Yancy, 2020). The underlying reason may be due 
to racial make-up, socioeconomics, and partisanship are always tangled. 
A well-designed model framework to disentangle their relationships is 
thus needed. 

One current research gap is racial differences in human mobility and 
COVID-19 outcomes were analyzed separately. It remains unclear 
whether racial differences in human mobility correspond to the same 
pattern in COVID-19 health outcomes. Additionally, few studies have 
focused on the relationships between racial groups and other con-
founders like spatial effects, built environment, socioeconomics, de-
mographics, and partisanship. Moreover, limited studies have analyzed 
the temporal evolution of racial differences across the entire year of 
2020. Considering the declaration and lift of stay-at-home orders and 
the progressive shift of COVID-19 epicenters, understanding how racial 
differences vary throughout the pandemic is particularly important. 

To fill these gaps, our analysis builds on previous work on human 
mobility and health outcomes during the pandemic by (1) focusing on 
the racial disparities during the pandemic by leveraging large-scale 
longitudinal human mobility and health data; (2) comparing the racial 
differences in human mobility and COVID-19 health outcomes; (3) 
successively controlling for extensive confounders to disentangle re-
lationships among racial make-up and other underlying factors; (4) 
investigating the time-varying effects of racial make-up over the entire 
year of 2020; 5) conducting sufficient robustness checks on aggregation 
units and model specifications. 

3. Data and variable description 

3.1. Dependent variables 

We examined human mobility in 3108 contiguous US counties dur-
ing the year 2020 via percentage of visit change using the same week of 
the year 2019 as the baseline, and percentage of people staying home. 
For baseline design, unlike most previous studies using the pre- 
pandemic period in 2020 (Gollwitzer et al., 2020; Jay et al., 2020; 
Pullano et al., 2020), we employed the volume in 2019 to measure 
mobility change. Standardizing the human movement by volume in 
2019 allows us to view variation in mobility more purely due to the 
pandemic, eliminating the natural variation (e.g. time-series season-
ality, abnormal fluctuations) in mobility changes. 

The two human mobility metrics were calculated using data from 
SafeGraph (SafeGraph, 2020), a data company that aggregates anony-
mized location-based service data from ~19 million smartphone devices 
observed per day across ~4.4 million POIs in the US. Specifically, we 
first used the Core Places US and Weekly Places Patterns (v2) datasets to 
calculate the county-level percentage change in visit frequency. These 
datasets contain hourly counts of visitors and geographical coordinates 
for each POI. We then used the Social Distancing Metrics v2.1, which 
contains daily estimates of the percentage of people staying home in 
each CBG. The staying-home devices are defined as those that stayed 
within ~150 m of their common nighttime locations throughout the 
day. All location data was de-identified and contains no private personal 
information. To avoid double-counting visits, we removed all parent 
POIs which include the visits from their child POIs (Chang et al., 2021). 
To address low-sample biases, we removed the records with an average 
sampling rate lower than 5% of the county population. 

SafeGraph data has been used as one of the primary data sources in 
the US for tracking population flow during the COVID-19 pandemic 
(Chang et al., 2021; Fu & Zhai, 2021; Kashem et al., 2021). Previous 
studies have already conducted some data validation through the com-
parison with other mobility datasets, for instance, SafeGraph versus 
Google (Chang et al., 2021) and PlaceIQ (Weill et al., 2020). Their re-
sults showed that SafeGraph was highly consistent with other mobility 
data sources. In addition, SafeGraph has performed warranted analyses 

that suggest their data aligns with Census data (SafeGraph, 2020); for 
example, it does not systematically overrepresent or underrepresent 
individuals in counties with different racial make-ups. All geo-tracking 
data that support and validate the findings of this study are fully 
accessible from the SafeGraph website upon agreeing to certain sharing 
restrictions and ethics guidelines. 

We assessed county-level COVID-19 outcomes via cases/100,000 and 
deaths/100 cases. The cases and deaths were from COVID-19 Data Re-
pository by the Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University (Dong et al., 2020). Their dataset consists of 
cumulative counts of COVID-19 cases and deaths in the US over time at 
the daily county level. 

3.2. Independent variables 

Independent variables (Table 1) were selected based on well- 
documented evidence in previous literature (Abedi et al., 2021; 
Huet al., 2021; Jay et al., 2020; Xiong et al., 2020). Two sets of 
dependent variables were also mutually controlled to address the 
reverse causality (i.e. the simultaneity): when modeling human 
mobility, the cases/100,000 was controlled to capture panic effects of 
virus; when modeling COVID-19 outcomes, the percentage of visit 
change was controlled to capture mitigation effects of human mobility. 

Our data on the racial make-up and socioeconomic factors came from 
the most recent 5-year (2015–2019) American Community Survey (ACS) 
of the US Census Bureau. We considered four main racial compositions: 
Non-Hispanic White (abbreviated as White, set as reference), Black/ 
African American (abbreviated as African American), Hispanic/Latino 
(abbreviated as Hispanic), and Asian. Socioeconomics include (after 
variable selection): (1) Economic indices such as median household 
income, degree of income inequality (GINI coefficient), and percentage 
of residents with no health insurance coverage; (2) Demographic indices 
such as percentage of male, percentage of residents aged 65 years and 
over; (3) Built environment such as population density and rurality; (4) 
Occupations such as percentage of finance, percentage of administra-
tion, percentage of manufacturing, percentage of retail, percentage of 
transportation, percentage of educational services, percentage of 
healthcare, and percentage of accommodation and food. 

Our data on partisanship was retrieved from the 2016 presidential 
election result provided by the MIT election lab (MIT, 2018). The per-
centage of total votes for Donald Trump was labeled as Republican and 
the percentage of total votes for Hillary Clinton was labeled as Democrat. 
We only included the Democrat in our model and set Republican as 
reference due to high multicollinearity. We also controlled for weather 
conditions including the differences in precipitation, wind speed, and 
minimum temperature between 2019 and 2020 using data from NOAA’s 
National Centers for Environmental Information. More details regarding 
these variables and the descriptive statistics are provided in Table 1. 

There is an important caveat here regarding the modifiable area unit 
problem (MAUP), which postulates that different regional aggregations 
of the units of observation may lead to different modeling estimations. 
This concern cannot be ignored especially in large US counties with 
significant racial residential segregation (Chen & Krieger, 2020). How-
ever, due to the unavailability of finer-grained data in both dependent 
variables (i.e. COVID-19 cases and deaths) and part of independent 
variables (e.g. GINI, partisanship, rurality), we employed the county as 
our spatial unit, which is the most granular data that we can currently 
obtain for all variables. For a robustness check, we partially conducted 
the research at the CBG level with variables that can be obtained at the 
CBG level (see Section 4.5). 

4. Methods 

The flowchart of research methodology is depicted in Fig. 1. We first 
analyzed the spatiotemporal distribution of human mobility and COVID- 
19 outcomes and checked their Moran’s I statistics. We conducted 
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pairwise analysis between all variables to understand their bivariate 
relationships. After preliminary analysis, we built a set of ordinary least- 
squares (OLS) regression to perform variable selection and model di-
agnostics. Based on diagnostic results, we modified our variable sets and 
model specifications, and fitted sets of cross-sectional models under the 
GAM framework. We further constructed sets of moving GAMs by 
allowing dependent variables to vary over time in order to examine 
temporal patterns of racial differences throughout the pandemic. Last, 
we replicated part of our analysis at the CBG level and tested other 
model specifications such as fixed-effect models and time-varying 
models under other time lags to check the robustness of our findings. 

4.1. Variable selection and model diagnostics 

Variable selection was performed to determine the optimal variable 
set. The variance inflation factor (VIF) was first calculated to test the 
multicollinearity, and VIFs greater than 5 were excluded. Then, a for-
ward stepwise regression was employed to help select the independent 
variables based on the smallest AIC. Based on selected variables, we 
tested non-control OLS regression and diagnosed model assumptions 
including linearity, normality, homogeneity of residuals variance, and 
independence of residuals error terms (Supplementary Figs. S2,3). We 
also conducted the Moran’s I test to check whether spatial autocorre-
lations are statistically significant in the four metrics as well as in their 
model residuals (Supplementary Fig. S4). In non-control models, 

Table 1 
Summary of county-level variables.   

Variable Description Mean St.d. Median Min. Max. 

Dependent Variable 
Pct. of visit change Average percentage change in POI visits during 1 March to 31 December 

2020, in% 
− 12.28 13.82 − 11.01 − 69.58 35.62 

Pct. of staying home Average percentage of people staying home during 1 March to 31 December 
2020, in% 

27.71 4.30 27.42 7.04 48.82 

Cases/100,000 Cumulative number of COVID-19 cases per 100,000 population by the end 
of 2020, in count 

6470.25 2788.98 6227.84 0.00 26,942.75 

Deaths/100 cases Cumulative number of COVID-19 deaths per 100 confirmed cases by the 
end of 2020, in count 

1.80 1.14 1.56 0.00 12.00 

Independent Variable 
Racial/ethnic 

groups 
White The percentage of Non-Hispanic Whites, in% 76.59 19.88 83.88 0.69 99.59 
African American The percentage of African Americans, in% 9.16 14.57 2.34 0.00 87.23 
Asian The percentage of Asians, in% 1.30 2.39 0.62 0.00 36.47 
Hispanic The percentage of Hispanics/Latinos, in% 9.45 13.92 4.22 0.00 99.17 
Others The percentage of other minorities including American Indian and Alaska 

Native alone, Native Hawaiian or other Pacific Islander, two or more races, 
and others, in% 

6.24 8.27 3.93 0.00 94.78 

Socio- 
economics 

Finance The percentage of finance and insurance, in% 3.30 1.63 2.99 0.00 18.79 
Scientific The percentage of professional, scientific, and technical services, in% 3.74 2.66 3.11 0.00 52.90 
Administration The percentage of administration, business support, and waste 

management services, in% 
3.27 1.41 3.23 0.00 15.69 

Manufacture The percentage of manufacturing industry, in% 12.34 7.09 11.42 0.00 46.39 
Retail The percentage of retail trade and wholesale trade, in% 13.62 2.66 13.71 1.27 42.42 
Information The percentage of information, in% 1.33 0.80 1.25 0.00 11.61 
Transportation The percentage of transportation, warehousing, and utilities, in% 13.04 3.22 12.70 0.00 40.64 
Education The percentage of educational services, in% 9.34 3.21 8.74 0.00 36.12 
Health Care The percentage of healthcare and social assistance, in% 13.88 3.37 13.84 0.00 38.15 
Accommodation & 
Food 

The percentage of accommodation, food, arts, entertainment, and 
recreation services, in% 

8.31 3.60 7.95 0.00 41.37 

Agriculture The percentage of agriculture, forestry, fishing, hunting, construction, and 
mining, in% 

13.95 7.55 11.96 0.90 61.47 

GINI A measure of statistical dispersion to represent the income inequality, from 
0 (maximal inequality) to 1 (perfect equality) 

0.45 0.04 0.44 0.32 0.71 

Median Income The median household income (in 2019 Inflation-Adjusted Dollars), in 
$104/household 

5.33 1.41 5.17 2.15 14.23 

Poverty The percentage of households below national poverty level, in% 14.83 5.94 13.81 2.26 48.22 
High Educated The percentage of residents with education attainment equal to/higher than 

Bachelor, in% 
21.95 9.58 19.55 0.00 77.56 

Without Insurance The percentage of residents with no health insurance coverage, in% 9.55 4.98 8.65 0.67 40.91 
Total Population Total population, in 104 10.39 33.26 2.60 0.01 1008.16 
Population Density Population density, in 104 persons/sq. mile 0.03 0.18 0.00 0.00 7.20 
Central 1: Central (41.22%); 2: Outlying (17.78%); 3: Rural (41.00%) – – – – – 
Work from Home The percentage of work-from-home commuters among workers 16 years and 

over, in% 
5.09 3.18 4.44 0.00 34.11 

Age over 65 The percentage of residents 65 years and over, in% 18.85 4.61 18.48 3.20 56.71 
Age 18–65 The percentage of residents between 18 years and 65 years, in% 58.92 3.85 58.87 36.02 80.77 
Age under 18 The percentage of residents under 18 years, in% 22.23 3.46 22.24 7.27 41.80 
Male The percentage of male, in% 50.05 2.32 49.63 42.81 72.72 

Partisanship Democrat The percentage of Democrats in 2016 presidential candidate vote totals, in 
% 

31.50 15.19 28.28 3.14 90.86 

Republican The percentage of Republicans in 2016 presidential candidate vote totals, in% 63.28 15.64 66.34 4.09 96.03 
Weather Precipitation Difference in daily precipitation between 2019 and 2020, in mm − 0.24 0.86 − 0.36 − 2.68 2.86 

Wind Speed Difference in daily wind speed between 2019 and 2020, in mph 0.08 0.31 0.07 − 1.15 1.57 
Min. Temperature Difference in daily minimum temperature between 2019 and 2020, in 

degrees F 
0.39 0.66 0.25 − 1.39 3.00 

Notes: Dependent variables reported here are for the cross-sectional models. When fitting time-varying models, the dependent variables change to the corresponding 
weekly average. Variables in Italic were excluded from the models, either because of the high multicollinearity with other variables or the low capability in explaining 
the dependent variables. 
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Moran’s I statistic varied from 0.269 to 0.605 with all P-value < 0.001, 
substantiating a statistically significant spatial clustering. After 
involving the spatial interaction, Moran’s I decreased to 0.08 to 0.227, 
indicating the spatial autocorrelation in residuals has been largely 
eliminated. 

4.2. Cross-sectional models with successive controls 

The cross-sectional models were fitted under the generalized addi-
tive model (GAM) framework. GAM (Wood, 2003) is a semi-parametric 
model with a linear predictor involving a series of additive 
non-parametric smooth splines of covariates. Compared to the OLS 
linear regression, GAM is more flexible with fewer assumptions, which is 
useful when data fails to meet OLS assumptions, such as normality and 
homogeneity. Additionally, a noticeable advantage of GAM lies in its 
capability and flexibility to handle different nonlinear effects (Wood, 
2003). By changing spline functions, various nonlinear effects can be 
fitted under one framework, such as random effects, nonlinear in-
teractions, and spatial autocorrelations (Hu et al., 2021; Wang, Hu, & 
Jiang, 2020). 

In our cases, the dependent variables in cross-sectional models 
included average percentage change in POI visits (Vi%), average per-
centage of people staying home (Si%), total cases/100,000 (Ci), and 
total deaths/100 cases (Fi%) from 1 March to 31 December 2020, which 
are calculated as follows: 

Vi% =

∑T
t=9vi,t −

∑T
t=9 v̈i,t

∑T
t=9 v̈i,t

, Si% =

∑T
t=9si,t

∑T
t=9di,t

(1)  

Ci = 100, 000
∑T

t=9ci,t

Pi
,Fi% =

∑T
t=9fi,t

∑T
t=9ci,t

(2)  

where vi,t is the number of POI visits in county i during week t in 2020; 
v̈i,t is the number of POI visits in county i during week t in 2019; si,t is the 
number of residents staying at home in county i in week t; di,t is the 
number of observed devices in county i in week t; ci,t is the number of 
confirmed cases in county i in week t; fi,t is the number of deaths in 
county i in week t; Pi is the total population of county i. 

When building GAMs, we first fitted a baseline OLS with no control 
Eq. (4)) and successively included state effects, socioeconomics, and 
partisanship (Eqs. (5)–((7)). Specifically, state effects include state 
random effects, weather conditions, spatial interaction, and simulta-
neity; socioeconomics include economic indices, demographic indices, 
built environments, and occupations. The formulations of the set of 
GAMs are as follows: 

(Yi − μi)

σi
∼ t(ϑi), Yi ∈ Vi, Si,Ci,Fi (3)  

Fig. 1. Flowchart of research methodology.  
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g(Yi) = β(1)
0 +

∑R

r=1
β(1)

r X(1)
r,i + ei (4)  

g(Yi) = β(2)
0 +

∑R

r=1
β(2)

r X(1)
r,i + δ(2)Ki + fl

(
Xp,i ×Xq,i

)
+ Ri + Wi + ei (5)  

g(Yi) = β(3)
0 +

∑R

r=1
β(3)

r X(1)
r,i +

∑M

r=1
γ(3)r X(3)

r,i + δ(3)Ki + fl
(
Xp,i ×Xq,i

)
+ Ri + Wi

+ ei

(6)     

Ki = I(Yi ∈ Vi, Si)Ci + I(Yi ∈ Ci,Fi)Vi (7)  

where Yi is one of the dependent variables from Vi, Si,Ci, Fi, following 
scaled t-family with μi as expectation, σi as variance, ϑi as degree of 
freedom, and g(.) is the link function; μi is determined by a linear pre-
dictor, while σi and ϑi are estimated alongside smoothing parameters; 
β(1− 4)

0 are the overall intercepts across models with different controls; 
β(1− 4)

r are the coefficients of the rth racial group X(1)
r across models with 

different controls, and R is the number of racial groups; γ(3− 4)
r are the 

coefficients of the rth socioeconomic features X(3)
r across models with 

different controls, and M is the number of socioeconomic features; α(4) is 
the coefficient of partisanship X(4); Ki is the term to address the reverse 
causality, I(.) is the indicator function, and δ(4) is the corresponding 
coefficient; Xp and Xq are the pairs of independent variables nonlinearly 
interplaying with each other; fl(.) is marginal nonlinear smoother 
excluding the basic functions associated with the main effects (in our 
cases, the spatial coordinate interaction was fitted through this term); Wi 
is the weather conditions of county i; Ri is the nonlinear random effect of 
county i; ei is the error term. 

4.3. Time-varying effect models with moving dependent variables 

We examined temporal evolutions of racial differences by con-
structing sets of GAMs under specifications similar to Eqs. (4)–(7), 
except that the dependent variables varied as their weekly average 
moving from week 1 to 52 in 2020. The COVID-19 outcome models were 
fitted only when the national cumulative case or death tolls were greater 
than 100. We also involved a two-week lag in human mobility when 
modeling COVID-19 outcomes (Eq. (12)) to capture the lagged effects of 
mobility change on curbing the transmission of virus (Gollwitzer et al., 
2020; Xiong et al., 2020). We did not lag the COVID-19 outcomes when 
modeling human mobility (Eq. (12)) since the panic effects of virus on 
human behavior are immediate or preemptive (Huang et al., 2020). 
Other sizes of time lag were tested and found similar patterns (Supple-
mentary Fig. S6). 

The rationale behind the choice of time-moving regression instead of 
a longitudinal approach (e.g. a multi-level structure) is that almost all 
independent variables remain time-invariant during the pandemic. 
Moreover, panel models cannot discern the nonlinearity in time-varying 
effects, which is needed in understanding the coefficients’ temporal 

evolution. In our cases, the formulations of four time-varying dependent 
variables are as follows: 

Vi,t% =
vi,t − v̈i,t

v̈i,t
, Si,t% =

si,t

di,t
(9)  

Ci,t = 100, 000
ci,t

Pi
,Fi,t% =

fi,t
ci,t

(10)  

where Vi,t , Si,t are percentage of POI visit change and percentage of 
staying home in week t in county i; Ci,t , Fi,t are number of COVID-19 
cases/100,000 and deaths/100 cases in week t in county i; Other nota-
tions have the same meanings as in Eqs. (1)–(2). 

The formulations of moving GAMs are similar to Eqs. (3)–(7). For 

brevity, here we only rewrite the formulations of fully-controlled 
models, i.e. the Eq. (7), in a time-varying setting (Eq. (11)). The 
reverse causality term (Eq. (12)) also changed into a lag format to 
capture lagged effects: 

g
(
Yi,t

)
= β(4)

0,t +
∑R

r=1
β(4)

r,t X
(1)
r,i +

∑M

r=1
γ(4)r,t X

(3)
r,i + α(4)

t X(4)
i + δ(4)t Ki,t + fl

(
Xp,i ×Xq,i

)

+ Ri,t + Wi,t + ei,t

(11)  

Ki,t = I
(
Yi,t ∈ Vi,t, Si,t

)
Ci,t + I

(
Yi,t ∈ Ci,t,Fi,t

)
Vi,t− u (12)  

where Yi,t is one of the dependent variables from Vi,t , Si,t , Ci,t , Fi,t, 
following scaled t-family with g(.) as link function; β(4)0,t is the overall 

intercept in week t; β(4)r,t is the coefficient of the rth racial group X(1)
r in 

week t; γ(4)r,t are the coefficients of the rth socioeconomic features X(3)
r in 

week t; α(4)
t is the coefficient of partisanship X(4) in week t; Kt is the term 

to address the reverse causality in week t; u is the size of time lag (in 
week); Wi,t is the weather conditions of county i in week t; Ri,t is the 
random effect of county i in week t; ei,t is the error term; Other notations 
have the same meanings as in Eqs. (3)–(7). 

5. Results 

5.1. Spatiotemporal distribution 

Fig. 2 illustrates the temporal evolution of human mobility and 
COVID-19 outcomes. Moving throughout the pandemic, we found 
human mobility plummeted steeply in March until reaching their nadir 
during late-April, followed by rapid recovery to near-unperturbed 
baseline in July; afterward, the gap between 2019 and 2020 in human 
mobility remained relatively stable until the end of 2020. Conversely, 
the percentage of staying home presented a reversed temporal pattern. 
Staying home percentage sharply increased from 24% to 37% in two 
months from March to late-April; after that, staying home percentage 
decreased and recovered to around 25% after July. The two health 
metrics, however, varied in substantially different patterns compared 
with human mobility. We noticed that there were three waves of 
epidemic outbreaks regarding the number of new confirmed cases, 
starting in May, August, and November, with each one higher than the 
previous. In addition, the temporal patterns of cases/100,000 and 
deaths/100 cases were not concurrent. The highest deaths/100 cases 
occurred in May, decreased afterward, and kept at a low rate regardless 

g(Yi) = β(4)
0 +

∑R

r=1
β(4)

r X(1)
r,i +

∑M

r=1
γ(4)r X(3)

r,i + α(4)X(4)
i + δ(4)Ki + fl

(
Xp,i ×Xq,i

)
+ Ri + Wi + ei (7)   
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of the second and third waves of explosion of new confirmed cases. Such 
a pattern unravels the time-varying relationships among human 
mobility, COVID-19 outcomes, and other influential factors. We also 
noticed significant heterogeneity across different counties particularly 
in COVID-19 outcomes (the buffers in Fig. 2(b)), implying the necessity 
of adjusting for regional random effects when specifying models. 

Fig. 3 shows the spatial distribution of four metrics in the contiguous 
US. We calculated the Moran’s I statistics and found pronounced evi-
dence of spatial clustering: Moran’s I statistics are 0.564, 0.725, 0.567, 
and 0.321 for Pct. of visit change, Pct. of staying home, cases/100,000, 
and deaths/100 cases, respectively, with p-values all < 0.001. Such high 
spatial autocorrelation may be because non-pharmaceutical in-
terventions and epidemic outbreaks were often targeted at an aggregate 
administrative level (Das et al., 2021). We further overlapped these 
metrics with the geographical distribution of racial make-up and 
observed distinguishable racial clustering, either manifesting as the 
spatial concentration within racial groups or the spatial exclusion 
among different racial groups (Supplementary Fig. S1). The salient 
spatial dependence corroborates the pronounced racial residential 
segregation in the US. It also suggests the necessity of controlling for 
spatial autocorrelation when fitting models. 

5.2. Pairwise analysis 

We calculated the pairwise correlation among variables and reported 
those ranking in the top 10 in terms of their correlations with dependent 
variables and racial groups (Table 2). We found partisanship (Democrat 
and Republican) presented the strongest correlation with two human 
mobility metrics, followed by High Educated, Scientific, Asian, and Me-
dian Income, all showing absolute Pearson coefficients greater than 0.4. 
Compared with human mobility metrics, COVID-19 outcome metrics 
presented lower correlations with independent variables. Cases/ 
100,000 exhibited the strongest negative association with Pct. of staying 
home, followed by Scientific, Administration, and High Educated. Deaths/ 
100 cases were negatively associated with White and Median Income and 
were positively associated with African American and Poverty. 

Racial make-up was highly correlated with other controls, 

demonstrating high multicollinearity if we incorporated all variables 
into a model without preselection. We observed a significant and 
negative correlation between White and Hispanic as well as White and 
African American; hence, we excluded White from the model and set it as 
a reference. We also noticed White and African American were strongly 
associated with partisanship. Concretely, the correlation between Afri-
can American and Democrat was markedly positive, as well as the cor-
relation between White and Republican. However, the VIF test 
demonstrated acceptable values (i.e. VIF < 5) when one pair of race and 
partisanship coexisted, and we thus kept African American and Democrat 
in the final model. We also found Asian presented a pronounced and 
positive correlation with variables implying high socioeconomic status, 
for example, Scientific, High Educated, and Median Income. In contrast, 
Hispanic and African American exhibited a reverse pattern. Hispanic was 
positively correlated with Without Insurance, and African American was 
positively correlated with Poverty. 

5.3. Cross-sectional modeling 

Results of 16 cross-sectional models (4 metrics cross 4 sets of con-
trols) were summarized in Table 3. Four sets of controls correspond to 
Eqs. (4)–(7), respectively, with racial coefficients corresponding to 
β(1− 4)

r . All variables were unstandardized for the convenience of inter-
pretation. With the involvement of controls, the adjusted R-squared of 
four models were also enhanced, suggesting control variables did help in 
explaining the metrics. Moreover, the model goodness-of-fit of human 
mobility models were greater than the COVID-19 outcome models, with 
the deaths/100 cases model presenting the worst performance, indi-
cating our independent variables were more related to human mobility 
compared with COVID-19 outcomes, which is also consistent with pre-
vious correlation analyses reported in Table 2. 

The non-control models exhibited low model goodness-of-fit and 
unstable estimated associations. With the inclusion of controls, most 
racial associations flipped signs, changed magnitudes, or lost signifi-
cance. Different sets of controls showed different effects on the racial 
coefficients. First, state effects substantially changed the magnitudes of 
relationships between all racial groups and cases/100,000, as well as 

Fig. 2. Temporal evolution of human mobility and COVID-19 outcomes. Red curve represents the daily county-level average. Buffer denotes the county-level 95% CI 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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obscured the significance of relationships between all racial groups and 
deaths/100 cases except African American. Also, the model goodness-of- 
fit has been considerably improved after controlling for state effects, 
which may be attributed to the successful capture of nonlinear random 
effects across all states. Second, socioeconomics markedly influenced 
Asian, reducing the magnitudes of their relationships with two human 
mobility metrics, and magnifying the magnitudes of their relationships 
with cases/100,000. Socioeconomics also significantly reduced the re-
lationships between African American and cases/100,000. Last, parti-
sanship exerted the greatest effects on African American, changing the 
signs of their associations with human mobility metrics and magnifying 
the magnitudes of their relationships with cases/100,000. Partisanship 
also influenced Asian to some extent by obscuring the significance of 
their relationships with cases/100,000. 

The final models (the last column in Table 3) documented the racial 
disparities as follows: during the pandemic, holding others constant and 
using White populations as reference, a county with 1% more African 
American populations was associated with a 0.06% (95% CI: 0.02, 0.10) 
augmentation in POI visits, 0.01% (95% CI: 0.00, 0.03) fewer residents 
staying home, 44.75 (95% CI: 36.34, 53.16) more cases/100,000, and 
0.01 (95% CI: 0.01, 0.02) higher deaths/100 cases; a county with 1% 

more Hispanic populations was associated with a 0.12% (95% CI: 0.08, 
0.15) reduction in POI visits, 0.03% (95% CI: 0.02, 0.04) more residents 
staying home, and 81.43 (95% CI: 73.07, 89.78) more cases/100,000; a 
county with 1% more Asian populations was associated with a 0.86% 
(95% CI: 0.64, 1.09) reduction in POI visits and 0.43% (95% CI: 0.37, 
0.49) more residents staying home. 

Altogether, our model suggested counties with higher Asian pop-
ulations decreased most in human mobility, followed by Hispanic, 
White, and African American populations. This order did not hold 
accordingly regarding COVID-19 outcomes: counties with more White 
and Asian populations reported the least cases/100,000, followed by 
African American and Hispanic populations. Meanwhile, we found 
counties with more African American populations showed statistically 
significant higher deaths/100 cases even after adjusting for extensive 
confounding effects. For a robustness check, we tested other model 
specifications and found conclusions remained consistent when using 
state fixed effects instead of random effects (Supplementary Table S1) 
and when keeping influential outliers (Supplementary Table S2). 

Fig. 3. Map of human mobility and COVID-19 outcomes in the contiguous US. Cooler and warmer colors imply less or greater value of metrics. More negative POI 
visit change and more positive staying home percentage imply more intensive compliance with social distancing. CBG-level maps for two human mobility metrics are 
available in Supplementary Fig. S7. 
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5.4. Time-varying effects 

Time-varying standardized coefficients of racial groups under 
different sets of controls were depicted in Fig. 4. Here we standardized 
the coefficients to help better compare among racial groups. Comparing 
across columns, we can observe how different sets of controls affected 
racial coefficients, which was consistent with the results shown in 
Table 3. In human mobility models (Fig. 4 rows 1 to 2), adjusting for 
socioeconomics substantially reduced the effects of Asian (columns 2 to 
3, the red curve), while adjusting for partisanship reversed the signs of 
coefficients of African American (column 3 to 4, the blue curve). In 
COVID-19 models (rows 3 to 4), controlling for state effects markedly 
changed magnitudes of racial coefficients (columns 1 to 2). The number 
of weeks showing statistically significant racial coefficients with deaths/ 

100 cases also greatly reduced after controlling for state effects (columns 
1 to 2). 

Our fully-controlled moving GAMs revealed that racial differences in 
human mobility experienced dramatic fluctuations at the beginning of 
the pandemic. Before the pandemic, counties with higher White pop-
ulations exhibited the most human mobility. With the outbreak of the 
pandemic in March, coefficients of African American steeply flipped over 
the x-axis, indicating the ordering of mobility between White and Afri-
can American populations was inverted. Such reversal was not observed 
between White and Asian or Hispanic populations. We also noticed in 
human mobility models that gaps in different racial coefficients reached 
the peak around mid-April; afterward, the gaps remained constant 
regardless of the nationwide lift of stay-at-home orders. 

Temporal evolutions of racial coefficients in COVID-19 outcomes 

Table 2 
Pearson correlation matrix for four metrics and four racial groups.   

Pct. of visit 
change  

Pct. of staying 
home  

Cases/ 
100,000  

Deaths/100 
cases 

Republican 0.668 Pct. of visit 
change 

− 0.637 Pct. of staying home − 0.309 African American 0.251 

Pct. of staying 
home 

− 0.637 Republican − 0.546 Scientific − 0.307 White − 0.195 

Democrat − 0.633 High Educated 0.505 Age under 18 0.268 Poverty 0.188 
High Educated − 0.621 Scientific 0.502 Administration − 0.243 Median Income − 0.160 
Scientific − 0.556 Democrat 0.481 High Educated − 0.225 GINI 0.157 
Asian − 0.542 Asian 0.474 Male 0.214 Age over 65 0.147 
Median Income − 0.475 Median Income 0.431 Pct. of visit change 0.210 High Educated − 0.146 
Central 0.432 Total Population 0.354 Other minorities 0.189 Without Insurance 0.143 
Age 18–65 − 0.418 Central − 0.353 Accommodation & 

Food 
− 0.187 Age 18–65 − 0.136 

Total Population − 0.410 Cases/100,000 − 0.309 Age over 65 − 0.175 Population 
Density 

0.129  

White  African American  Asian  Hispanic 
Hispanic − 0.620 White − 0.619 Scientific 0.593 White − 0.620 
African American − 0.619 Democrat 0.515 High Educated 0.563 Without Insurance 0.402 
Democrat − 0.581 Poverty 0.444 Pct. of visit change − 0.542 Other minorities 0.313 
Republican 0.526 Republican − 0.418 Total Population 0.533 Age under 18 0.313 
Without Insurance − 0.506 GINI 0.386 Median Income 0.508 Manufacture − 0.264 
Other minorities − 0.454 Work from home − 0.303 Pct. of staying home 0.474 Pct. of visit 

change 
− 0.262 

Poverty − 0.415 Median Income − 0.257 Republican − 0.454 Age over 65 − 0.237 
Age over 65 0.383 Deaths/100 cases 0.251 Democrat 0.444 Agriculture 0.236 
GINI − 0.356 Age 18–65 0.249 Population Density 0.366 Health Care − 0.223 
Pct. of visit change 0.302 Agriculture − 0.248 Age 18–65 0.361 Total Population 0.193 

Notes: All correlations have P-value < 0.001. Each column is ascendingly sorted by the absolute value accordingly. 

Table 3 
Results of cross-sectional GAMs with different sets of control variables.  

Dependent Variable Race Non-control Control: + State effects Control: + Socioeconomics Control: + Partisanship 

Pct. of visit change (%) African American − 0.02.(− 0.05, 0.00) − 0.17*** (− 0.20, − 0.14) − 0.20*** (− 0.23, − 0.17) 0.06** (0.02, 0.10) 
Hispanic − 0.14*** (− 0.17, − 0.11) − 0.18*** (− 0.21, − 0.14) − 0.22*** (− 0.25, − 0.18) − 0.12*** (− 0.15, − 0.08) 
Asian − 4.49*** (− 4.73, − 4.25) − 3.59*** (− 3.82, − 3.36) − 1.13*** (− 1.39, − 0.87) − 0.86*** (− 1.09, − 0.64) 
Others − 0.10** (− 0.16, − 0.03) − 0.09*** (− 0.15, − 0.04) − 0.03 (− 0.08, 0.02) 0.04  (− 0.01, 0.09) 

R2 (Adjusted)  0.37 0.60 0.70 0.72 
Pct. of staying home (%) African American − 0.07*** (− 0.08, − 0.06) 0.03*** (0.02, 0.04) 0.04*** (0.04, 0.05) − 0.01* (− 0.03, − 0.00) 

Hispanic 0.00  (− 0.01, 0.01) 0.03*** (0.02, 0.05) 0.05*** (0.04, 0.07) 0.03*** (0.02, 0.04) 
Asian 1.18*** (1.11, 1.26) 0.72*** (0.67, 0.78) 0.53*** (0.46, 0.59) 0.43*** (0.37, 0.49) 
Others 0.05*** (0.03, 0.07) 0.06*** (0.04, 0.07) 0.08*** (0.06, 0.09) 0.06*** (0.04, 0.07) 

R2 (Adjusted)  0.32 0.71 0.75 0.76 
Cases/100,000 African American 4.55  (− 1.59, 10.69) 20.77*** (15.27, 26.28) 8.41** (2.65, 14.18) 44.75*** (36.34, 53.16) 

Hispanic 10.47** (3.00, 17.95) 81.32*** (73.57, 89.06) 72.11*** (63.69, 80.54) 81.43*** (73.07, 89.78) 
Asian − 216.23*** (− 260.36, − 172.10) − 28.61. (− 58.48, 1.26) − 51.43** (− 84.49, − 18.37) − 12.51  (− 45.76, 20.75) 
Others 41.91*** (27.72, 56.09) 32.44*** (22.11, 42.78) 29.99*** (19.50, 40.49) 37.34*** (27.01, 47.68) 

R2 (Adjusted)  0.04 0.58 0.62 0.64 
Deaths/100 cases African American 0.02*** (0.02, 0.02) 0.01*** (0.01, 0.02) 0.01*** (0.01, 0.01) 0.01*** (0.01, 0.02) 

Hispanic 0.00* (0.00, 0.01) − 0.00  (− 0.00, 0.00) 0.00 (− 0.00, 0.01) 0.00 (− 0.00, 0.01) 
Asian − 0.04*** (− 0.06, − 0.03) − 0.01 (− 0.02, 0.01) 0.01 (− 0.01, 0.02) 0.01 (− 0.01, 0.02) 
Others − 0.01*** (− 0.02, − 0.01) − 0.00 (− 0.01, 0.00) − 0.00 (− 0.01, 0.00) − 0.00 (− 0.01, 0.00) 

R2 (Adjusted)  0.08 0.26 0.32 0.32 

Notes: Sets of controls were successively included as the analysis moves from one column to the next. Robust 95% confidence intervals are in parentheses. Significance 
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
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were considerably different from those in human mobility. African 
American presented the strongest positive association with infection rate 
until July when the coefficient of Hispanic increased to a similar 
magnitude, followed by a decrease in coefficients of both Hispanic and 
African American until September, when coefficients of African American 
became insignificant while coefficients of Hispanic increased again until 
the end of 2020. We also observed that Asian only presented signifi-
cantly positive relationships with COVID-19 outcomes in the early stage, 
while afterward, the relationships became insignificant or negative. 
Such change coincided with the shift of COVID-19 epicenters in the US 
from counties with higher African American and Asian populations to 
counties with higher Hispanic and White populations. Last, we observed 
a near 3-week time lag between temporal evolutions of deaths/100 cases 
and cases/100,000. For example, coefficients of African American in 
cases/100,000 reached the highest in late-August, while in deaths/100 
cases the peak occurred in mid-September; this is consistent with the 

average time from infection to death in prior epidemiological studies 
(Jung et al., 2020). 

5.5. Modeling at census block group level 

To explore the modifiable area unit problem, we conducted parts of 
our research at the CBG level, which is the smallest available spatial unit 
for which mobility data is available (Chang et al., 2021; Jay et al., 2020; 
Weill et al., 2020). As we did not have CBG-level COVID-19 cases and 
deaths, we only replicated two human mobility models (Supplementary 
Fig. S7). We also re-calculated the independent variables at the CBG 
level using the same datasets. Most independent variables were avail-
able at CBG-level, but some important variables were missing, including 
partisanship, rurality, GINI, and COVID-19 infections and deaths, which 
were filled by county-level attributes. 

Results of CBG-level GAMs (Table 4) were broadly consistent with 

Fig. 4. Time-varying standardized coefficients of racial groups. Each row depicts one of the four metrics. Each column is a model successively controlling for sets of 
confounders. Each curve denotes the coefficient of one racial composition and is smoothed by the spline function. Only coefficients with P-values greater than 0.05 
are plotted. Error bar depicts the robust 95% CI. Y-axis limits are shared by each row individually. The unstandardized version is reported in Supplementary Fig. S5 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article). 
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county-level results in Table 3. Counties with higher Asian populations 
decreased most in human mobility, followed by Hispanic populations. 
However, the magnitudes of racial coefficients all decreased compared 
with county-level models, as well as the model goodness-of-fit. It is 
plausible since data with a finer-grained geographic unit contain more 
heterogeneity and randomness, which could increase the complexity of 
observed racial disparities. Another main difference was that after 
controlling partisanship, the association between African American and 
human mobility metrics did not flip the sign. In other words, CBG-level 
mobility models suggested that even after adjusting for partisanship 
effects, counties with higher White populations still performed the worst 
in following social distancing. The CBG-level time-varying coefficients 
further illustrated that African American-leaning counties only per-
formed less social distancing than White-leaning counties in two months 
(from April to June 2020), while during the remaining periods, they 

performed more social distancing (Fig. 5). Such paradoxical findings, 
however, maybe because some important controls like partisanship, 
GINI coefficient, rurality, and COVID-19 outcomes were inaccessible at 
CBG-level. Thus, it would be inappropriate at this stage to claim the 
CBG-level model provided more reliable conclusions unless those CBG- 
level confounders were well controlled. 

6. Discussion 

This work leveraged large-scale location-based service data across 
~4.4 million POIs in the contiguous US to characterize racial differences 
in human mobility and COVID-19 outcomes during 2020. After adjust-
ing for various confounders, we found racial differences in human 
mobility and COVID-19 health outcomes presented different patterns. 
Counties with higher Asian populations exhibited the greatest social 

Table 4 
Results of cross-sectional models with different sets of controls (CBG level).  

Dependent Variable Race No control Control: + State effects Control: + Socioeconomics Control: + Partisanship 

Pct. of visits change (%) African American − 0.15*** 
(− 0.15, − 0.14) 

− 0.15*** 
(− 0.15, − 0.14) 

− 0.15*** 
(− 0.16, − 0.15) 

− 0.05*** 
(− 0.05, − 0.04) 

Hispanic − 0.21*** 
(− 0.22, − 0.20) 

− 0.10*** 
(− 0.10, − 0.09) 

− 0.13*** 
(− 0.14, − 0.13) 

− 0.08*** 
(− 0.08, − 0.07) 

Asian − 0.79*** 
(− 0.80, − 0.78) 

− 0.44*** 
(− 0.45, − 0.43) 

− 0.33*** 
(− 0.34, − 0.32) 

− 0.22*** 
(− 0.23, − 0.21) 

Others − 0.14*** 
(− 0.15, − 0.13) 

− 0.08*** 
(− 0.09, − 0.07) 

− 0.08*** 
(− 0.09, − 0.07) 

− 0.04*** 
(− 0.05, − 0.03) 

R2 (Adjusted)  0.15 0.25 0.30 0.33 
Pct. of staying home (%) African American 0.05*** 

(0.05, 0.05) 
0.08*** 
(0.08, 0.08) 

0.07*** 
(0.07, 0.07) 

0.05*** (0.05, 0.05) 

Hispanic 0.04*** 
(0.04, 0.05) 

0.04*** (0.04, 0.04) 0.04*** 
(0.04, 0.04) 

0.03*** 
(0.03, 0.03) 

Asian 0.28*** (0.28, 0.28) 0.21*** (0.21, 0.21) 0.19*** (0.19, 0.19) 0.17*** 
(0.16, 0.17) 

Others 0.07*** 
(0.07, 0.07) 

0.04*** (0.04, 0.04) 0.04*** 
(0.03, 0.04) 

0.03*** 
(0.03, 0.03) 

R2 (Adjusted)  0.23 0.43 0.46 0.48 

Notes: This table is analogous to Table 3 human mobility part except the spatial unit is CBG. 

Fig. 5. Time-varying racial coefficients in fully-controlled models (CBG level). This figure is analogous to Fig. 4 row 1,2 in the main text except the spatial unit 
is CBG. 
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distancing, both in terms of reducing their overall movement and 
increasing their staying home percentage, followed by Hispanics, 
Whites, and African Americans. The same order did not hold accordingly 
in COVID-19 outcomes. Counties with higher White and Asian pop-
ulations experienced the lowest infection rate, followed by African 
Americans and Hispanics. Counties with higher African American pop-
ulations also exhibited the highest case-fatality ratio. The observed 
inconsistency, i.e. that counties with more racial groups who performed 
better social distancing did not always exhibit lower infection and case- 
fatality ratio, implies social distancing cannot fully explain the racial 
disparities in health outcomes. Other correlated factors, such as unob-
served socioeconomic status and pre-existing health issues which have 
not been controlled in our models, may contribute to that inconsistency. 

African Americans were the only group that presented a statistically 
higher case-fatality ratio than Whites even after adjusting for extensive 
controls, which was consistent with prior studies (Benitez et al., 2020; 
Hooper et al., 2020; McLaren, 2020; Yancy, 2020). Given that COVID-19 
does not intrinsically discriminate across racial groups, reasons for such 
disparities remain up for debate. Unobserved disadvantaged socioeco-
nomic status such as food insecurity and crowded living conditions; 
stark health inequities such as scarce testing and hospital resources; 
confluence of comorbidities such as hypertension, diabetes, and obesity; 
and deeply embedded systematic and structural racism, may all poten-
tially account for such high case-fatality ratio (Abedi et al., 2021; 
Benitez et al., 2020; Devakumar et al., 2020; Gross et al., 2020; Hooper 
et al., 2020; Yancy, 2020). Specifically, disadvantaged communities of 
African Americans, which also happen to have the highest poverty rates 
(Table 2), are likely to own the fewest health resources and be the worst 
equipped for the pandemic (Abedi et al., 2021; Hooper et al., 2020; 
Yancy, 2020). High rates of underlying comorbidities among African 
Americans further exacerbate their vulnerability to COVID-19 (Benitez 
et al., 2020; Gross et al., 2020). Moreover, even those African Americans 
who possess high income, secure employment, good health status, and 
outstanding health insurance coverage still frequently receive inferior 
care due to implicit bias among healthcare providers (Devakumar et al., 
2020). 

Control variables also accounted for the differences in human 
mobility and COVID-19 outcomes. After controlling for partisanship, the 
association between African Americans and human mobility reversed 
the direction. Human mobility patterns in counties with more Demo-
crats were opposite against counties with more African American pop-
ulations, although Democrats and African Americans themselves were 
positively correlated. Counties with more Democrats presented signifi-
cantly better social distancing. This partially explained why analysis 
without adjusting for partisanship displayed a better social distancing in 
African Americans-leaning counties (Chiou & Tucker, 2020; Papageorge 
et al., 2021): the better adherence may be due to the concentration of 
Democrats instead of only African Americans. In addition, socioeco-
nomic features substantially influenced the coefficients of all racial 
groups; this is unsurprising since racial make-up and socioeconomics are 
closely intertwined and would jointly affect human mobility and 
COVID-19 outcomes. Pairwise correlation analysis further demonstrated 
that counties with high socioeconomic indicators such as high income, 
high rates of college education, and more scientific services, adhered 
better to social distancing; this supported findings in previous studies 
that higher socioeconomic position affords greater opportunity for 
people to adjust their travel behaviors during the pandemic (Jay et al., 
2020; Maiti et al., 2021; Weill et al., 2020). 

Time-varying coefficients demonstrated that racial differences in 
human mobility varied dramatically at the beginning of the COVID-19 
but remained stable afterward, regardless of the progressive lift of 
stay-at-home orders. We documented a reversal in the ordering of 
human mobility between African Americans and Whites during the first 
wave of the outbreak. Before the pandemic, counties with higher White 
populations exhibited the highest mobility, while after the outbreak, 
counties with higher African American populations became the most 

mobile. Previous studies showed similar results stratified by income 
(Jay et al., 2020; Weill et al., 2020). Less mobility was associated with 
worse health outcomes before the pandemic due to physical inactivity 
and social isolation (Jay et al., 2020) but became a health-seeking 
behavior during the pandemic. Hence, the mobility inversion illus-
trated White-leaning counties tend to have greater autonomy to change 
their everyday mobility to achieve good health. The stable trend of racial 
differences in human mobility across the pandemic highlighted the 
voluntary nature of de-mobilizing behaviors, i.e. the reduction in 
movement was driven more by private initiatives, such as panic or social 
responsibility, rather than official directives, which is also in line with 
findings in prior studies (Hu et al., 2021). On the other hand, 
time-varying evolutions of coefficients in COVID-19 outcomes were 
considerably different from those in human mobility, which further 
demonstrated that the performance in social distancing could not be 
concurrently reflected in epidemic slowdown. Another important 
finding is, although the first wave of the outbreak occurred in counties 
with more African American and Asian populations, racial gaps in 
infection rates eventually disappeared as the pandemic progressed to-
ward herd immunity (Fig. 4). 

Findings from this study provide timely suggestions for pandemic 
control, urban planning, and social equality establishment. As the 
wooden bucket theory stated, the “shortest stave”, which are the most 
vulnerable populations in society, will eventually determine the overall 
resilience and robustness of a public health system. Hence, the most 
vulnerable group is suggested to be targeted as the highest priority in the 
allocation of protective gear, tests, and vaccines, which not only pro-
vides extra protection against the virus for those who are in imperative 
need, but also greatly allays the marginal risk of contagion for the rest of 
the population. Moreover, policymakers should focus more on measures 
that facilitate the implementation of social distancing among commu-
nities with high concentrations of racial minorities. Detailed policy op-
tions include enhancing the wage of essential jobs, dedicating 
information campaigns to increase awareness, providing safe mobility 
services to maintain connectivity between areas seeing sustained pop-
ulation flows, and mandating paid sick leave and work-from-home op-
portunities. Last, attention should be paid to those underrepresented 
minorities in the construction of city-level antivirus functions to increase 
social resilience and sustainability and prevent future virus like-attacks. 
Local governments and planners should use the current crisis to review 
how racial segregation systematically influences urban morphology. 
Efforts should be prioritized to socially vulnerable communities to in-
crease their prevention ability and improve their living conditions, for 
example, instituting additional protection procedures, reallocating suf-
ficient healthcare resources, decreasing housing density, and improving 
surrounding built environment and air quality. 

7. Conclusions 

Leveraging large-scale mobility and health data in 2020, this study 
compared and analyzed the racial differences in human mobility and 
COVID-19 health outcomes. Findings suggested vulnerable racial groups 
experienced substantially unequal risks of infection and death, which 
cannot be fully explained by well-documented determinants like human 
mobility, socioeconomic status, and partisanship. Time-varying effects 
further demonstrated racial differences in human mobility persisted 
regardless of the change in stay-at-home orders, while racial differences 
in COVID-19 health outcomes eventually disappeared as the pandemic 
progressed toward herd immunity. Considering the overall effectiveness 
in curbing the spread of the virus, social distancing is suggested to be 
strictly executed until most populations are successfully vaccinated. 
However, complementary policies are needed to help protect the most 
vulnerable and enhance policy efficacy. Efforts should also be made to 
the future construction of antivirus cities to increase health-related 
resilience, equality, and sustainability. 

Several limitations are recognized and deserve further research. 
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First, variables used in our models are correlational and cannot prove 
causality. Second, all analyses were deduced at an aggregate level in the 
absence of available information at the individual level; hence, con-
clusions should not be extrapolated to individuals considering the pos-
sibility of the ecological fallacy. Third, our mobility data only represents 
the behavior of people with mobile devices who opt-in to location 
tracking, which may render sociodemographic and age biases — for 
example, underrepresentation of children and elderly (Grantz et al., 
2020). Last, confirmed case and death counts of COVID-19 might not 
accurately reflect the real situation due to the inequitable distribution of 
testing resources and the exclusion of those ineligible patients who 
sought testing but symptoms did not meet the screening threshold. 

Supplementary 

Fig. S1. Map of human mobility and COVID-19 outcomes in the 
contiguous US. Each panel represents one metric from (a) average per-
centage change in POI visits from 1 March to 31 December 2020, (b) 
average percentage of people staying home from 1 March to 31 
December 2020, (c) cumulative number of COVID-19 cases/100,000 by 
the end of 2020, and (d) cumulative number of deaths/100 cases by the 
end of 2020. Cooler and warmer colors indicate less or greater value of 
metrics. 

Fig. S2. Linear regression diagnostics. Each panel represents one non- 
control linear model with four measures as dependent variables and 
racial make-up as independent variables. Figures in each panel represent 
the (1) Residuals vs Fitted plot; (2) Normal Q-Q plot; (3) Scale-location 
plot; (4) Residuals vs Leverage plot, respectively. 

Fig. S3. Generalized additive model diagnostics. Each panel repre-
sents one fully-controlled linear model with four metrics as dependent 
variables. Figures in each panel represent the (1) Normal Q-Q plot; (2) 
Residuals vs Linear Fitted plot; (3) Histogram of residuals plot; and (4) 
Response vs. Fitted plot, respectively. 

Fig. S4. Spatial distribution of residuals. Each panel represents re-
siduals in models with four metrics as dependent variables. Figures in 
each panel represent the (1) residuals in non-control models (left) and 
(2) residuals in fully-controlled models (right), respectively. 

Fig. S5. Unstandardized time-varying coefficients. This figure is 
analogous to Fig. 4 in the main text except the coefficients are 
unstandardized. 

Fig. S6. Time-varying racial coefficients in fully-controlled models 
(3-weeks lag). This figure is analogous to Fig. 4 in the main text except 
the lag is 3 weeks instead of 2 weeks. 

Fig. S7. Map of human mobility metrics in the contiguous US (CBG 
level). This figure is analogous to Fig. 3 (a,b) in the main text except the 
spatial unit is CBG level. 

Table S1. Results of cross-sectional models with different sets of 
controls (Fixed effects) 

Table S2. Results of cross-sectional models with different sets of 
controls (Raw data) 
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