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Abstract

Background: Auditory perceptual abnormalities are common in persons on the autism spectrum.
The neurophysiologic underpinnings of these differences have frequently been studied using
auditory event-related potentials (ERPs) and event-related magnetic fields (ERFs). However, no
study to date has quantitatively synthesized this literature to determine whether early auditory
ERP/ERF latencies or amplitudes in autistic persons differ from those of typically developing
(TD) controls.

Methods: We searched PubMed and ProQuest for studies comparing (a) latencies/amplitudes

of P1/M50, N1b, N1c, M100, P2/M200, and/or N2 ERP/ERF components evoked by pure tones
and (b) paired-click sensory gating (P1/N1b amplitude suppression) in autistic individuals and TD
controls. Effects were synthesized using Bayesian three-level meta-analysis.

Results: In response to pure tones, autistic individuals exhibited prolonged P1/M50

latencies (¢=0.341, 95% Crl [0.166,0.546]), prolonged M100 latencies (g=0.319 [0.093,0.550]),
reduced N1c amplitudes (g=—0.812 [-1.278,-0.187]), and reduced N2 amplitudes (g=-0.374
[-0.633,-0.179]). There were no practically significant group differences in P2/M200 latencies,
N2 latencies, P1/M50 amplitudes, N1b amplitudes, M100 amplitudes, or P2/M200 amplitudes.

Correspondence addressed to: Zachary J. Williams, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN
37232, (805)-729-6691; zachary.j.williams@vanderbilt.edu.

1The terms “autistic person’ and ‘person on the autism spectrum’ are the preferred language of the majority of people diagnosed with
autism (2,4). Out of respect for these preferences, we use these terms to refer to individuals on the spectrum rather than exclusively
using person-first language.
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Paired-click sensory gating was also reduced in autistic individuals (g=—0.389 [-0.619,-0.112]),
although this effect was primarily driven by smaller responses to the first click stimulus.

Conclusions: Relative to typical controls, autistic individuals demonstrate multiple alterations
in early cortical auditory processing of simple stimuli. However, most group differences were
modest in size and based on small numbers of heterogeneous studies with variable quality. Future
work is necessary to understand whether these neurophysiologic measures can predict clinically
meaningful outcomes or serve as stratification biomarkers for the autistic population.
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Introduction

Autism spectrum disorder (hereafter “autism”) is a lifelong neurodevelopmental condition
affecting 1 in 54 children in the United States (1). In addition to the cardinal features

of social communicative impairment and repetitive behaviors, many autistic! individuals
exhibit atypical reactions to sensory stimuli, now considered a core feature of the condition
(3). Decreased sound tolerance is particularly common, with a lifetime prevalence of 50—
70% (5). Autistic individuals also demonstrate other auditory perceptual abnormalities,
including excessive loudness perception (6,7), degraded speech-in-noise perception (7,8),
impaired auditory-visual integration (9), and temporal processing deficits (10-15). These
widespread differences in auditory perception are hypothesized to contribute to the core
symptoms of autism by altering the ways in which autistic children interact with and learn
from their environment (16,17).

Many studies investigating the underlying integrity of the central auditory system

in autism have used auditory event-related potentials (ERPS) and event-related fields
(ERFs), measured by electroencephalography (EEG) and magnetoencephalography (MEG)
respectively. In particular, studies have focused on the P1-N1b-P2 ERP complex

recorded at frontocentral electrodes (and the analogous M50-M100-M200 ERF), reflecting
early stimulus feature extraction and integration in primary/secondary auditory cortex
(18-24). In young children, the N1b component has not fully matured, and instead a
developmentally-specific N2 component is present with a similar topography and generators
(25,26), ostensibly representing some of the same processes (27-31). An additional
developmentally-sensitive component, the temporal N1c, is generated in the superior
temporal gyrus, reflecting the activation of neural generators underlying stimulus encoding
and discrimination (22-24). Although N1c is present in adulthood, it is most prominent in
young children, decreasing in amplitude with age (28,32).
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To date, comparisons of auditory ERP/ERF responses between autistic individuals and
typically developing (TD) controls have yielded varied results (15,22,33-37). Multiple
studies report delayed P1/M50 and N1/M100 latencies in autistic children and adults,
ostensibly reflecting a delay central auditory information transfer (38-45). However, others
report a lack of consistent group differences (46-54) or even reduced latencies in autistic
participants (55,56,58). Similarly, initial findings of decreased N1b amplitudes in autism
(47,55-57,59) failed to replicate on several occasions (43,45,54,60-62). Although less
frequently studied, reduced N1c (47,63-65) and N2 (42,51,52,66-69) amplitudes have also
been found in autism. These results suggest that autism may be characterized by reduced
neural synchrony while processing low-level sound features, although this difference may be
limited to specific developmental stages/components.

Another line of research on basic auditory processing in autism has examined the brain’s
ability to filter out or inhibit the processing of redundant sensory information. Known as
sensory gating, this process is typically studied using paired broadband click stimuli (70).
P1 and/or N1b amplitudes are smaller to the second click than the first, and the degree

of amplitude suppression is thought to quantify how effectively one can “gate out” the
second stimulus. Decreased sensory gating has been robustly demonstrated in individuals
with schizophrenia and other psychotic disorders (71-74), with sensory gating deficits
significantly predicting subjective perceptual abnormalities in this population (75,76).
However, findings in autism have been inconsistent (37). Some studies have reported
large sensory gating deficits in autism (77-79), whereas others have found minimal group
differences (45,80-84) or impaired sensory gating only in a subgroup of participants (85,86).

Given the often-contradictory findings regarding early auditory processing in autism,
synthesis of this literature is necessary to reach strong conclusions about the presence

and directionality of group differences. Thus, the current study sought to meta-analytically
compare auditory cortical activity between autistic individuals and TD controls. We focused
only on simple, non-linguistic stimuli in order to better answer the question of whether
autism is associated with disruptions in basic auditory stimulus processing, which could
serve as the neural substrate of altered auditory perception in this population. Although
evoked responses to linguistic stimuli may relate more strongly to social communication
abilities (87-90), diagnostic group differences in these responses could be confounded by
the higher-order deficits in language processing that frequently accompany autism (91).
Within the autism ERP/ERF literature, the most frequently utilized non-linguistic auditory
stimuli are pure tones and broadband clicks, with the latter primarily being used to assess
sensory gating. Accordingly, in the current meta-analysis, we evaluated differences between
individuals with and without autism in (a) the amplitudes and/or latencies of tone-evoked
early auditory ERP/ERF components and (b) the strength of paired-click sensory gating.

Methods and Materials

Identification and Selection of Studies

The procedures adhered to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (92). We searched PubMed and ProQuest for publications
on autism and auditory ERPS/ERFs, as defined using a combination of keywords and
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filters (see Supplemental Materials). Eligible studies included peer-reviewed journal articles,
dissertations, and theses published in English between 1/1/1980 and 1/10/2020.

Included studies satisfied the following criteria upon full-text review: (a) included =10
autistic participants, (b) included TD control participants, (c) recorded EEG/MEG while
presenting pure tone or paired-click stimuli, (d) examined latencies/amplitudes of obligatory
ERPS/ERFs in response to tones (P1/M50, N1b, N1c, M100, P2/M200, N2) or P1/N1b
amplitude suppression in a paired-click paradigm, and (e) reported statistics necessary for
calculation of Hedges’ g for outcomes of interest (see Supplemental Materials for more
details).

Data Extraction

For each study, we extracted group comparison statistics for all outcomes of interest.

Many studies reported multiple effect sizes per outcome (e.g., a given ERP amplitude was
recorded at multiple electrodes or in multiple task conditions), all of which were extracted
and included in our meta-analytic models. In addition, we extracted a number of putative
moderator variables, including recording modality (EEG or MEG), laterality (left, right, or
midline/bilateral), stimulus/task characteristics (probability, duration, intensity [in dB HL],
frequency, inter-stimulus interval, number of presentations, whether attention was directed
to task stimuli), bandpass filter settings, and sample characteristics (Mage/sex ratio/IQ) (see
Supplemental Materials for details). For sensory gating studies, we additionally recorded
whether P1 or N1b amplitude suppression was measured and whether the amplitude
suppression was measured as a ratio or difference score. Lastly, we graded all studies on

a 28-item measure of study quality derived from EEG/MEG study reporting guidelines
(93,94). Quality scores (Supplemental Tables S1-S2) were calculated as the mean of all
items applicable to a given study, ranging from 0 to 1 with higher scores reflecting relatively
higher study quality.

Statistical Analysis

All analyses were performed in R (95). Descriptive statistics, #values, or ~values were used
to calculate Hedges’ g effect sizes (96) using the R package compute.es (97). The sign of g
was standardized such that a negative effect size indicated smaller values of a variable in the
autism group (e.g., less positive P1 amplitude, less negative N1b amplitude, faster latency, or
less effective P1/N1b amplitude suppression), compared to TD controls.

Meta-analytic models were fit for each outcome with data from three or more eligible
studies. We utilized three-level random-effects meta-analysis models to accommodate
dependent effects (98-100), treating effect size (level 3) as a random effect nested within
study (level 2). Parameter estimation was performed in a Bayesian framework using the R
package brms (101,102) and weakly informative priors (see Supplemental Materials). We
utilized the posterior median and the 95% equal-tailed credible interval (Crl) to summarize
all model parameters. Summary estimates were tested against the null hypothesis of g=0,
as well as the interval null hypothesis that the population difference lies within the interval
[-0.1,0.1], which represents differences that we deemed “practically insignificant” (i.e., not
worthy of interpretation as meaningful effects (103,104)). Table 1 describes the Bayesian
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indices used to determine whether the meta-analytic effects were deemed statistically or
practically significant (105).

Publication bias in each meta-analytic model was assessed using contour-enhanced funnel
plots (106), as well as the Bayesian selection model approach proposed in (107) and
implemented in the ROBMA R package (see Supplemental Material for details). This
method uses Bayesian model averaging (108) to calculate a publication bias Bayes factor
(BFpg; see Table 1 for more details) that quantifies evidence for or against the presence of
publication bias (107). Notably, this and other quantitative methods for the assessment of
publication bias have not been formally extended to the case of three-level meta-analysis,
and thus the RoBMA implementation of this model ignores the dependencies among effects
from the same study in our sample. Nevertheless, as the Bayesian selection model approach
shows both high power and low false-positive rates in simulation studies (107), we believe
this to be the most accurate quantitative method for ascertaining publication bias in our data.

To assess study heterogeneity, we calculated the multilevel 2 statistic (109) as well as the
1CQ(2) statistic (98), which reflects the proportion of heterogeneity attributable to between-
study (level 2) variance. We also calculated a model-based 95% predictive interval (110).
Additional measures of heterogeneity are presented in Supplemental Table S3.

Moderation analyses were conducted for outcomes with at least 20 included effect sizes
(111) using Bayesian meta-regression. Each meta-regression model was compared to

its respective baseline (intercept-only) model using a Bayes factor (BFy; Table 1). As
developmental effects on the studied ERP/ERF components were of particular interest, we
separately reported the moderating effect of age on each outcome. In addition, we conducted
subgroup analyses to test (a) whether summary effects differed for EEG and MEG studies
considered separately, (b) whether M50/M100 latency effects and N1c amplitude effects
varied between hemispheres (38,46,63), and (c) whether sensory gating effects varied
between the P1 and N1b ERP components.

Missing data were handled via 10-fold multiple imputation using the mice R package(112).
Bayes factors derived from multiply imputed data were defined as the arithmetic mean of the
Bayes factors computed using each imputed dataset (113).

The initial literature search identified 851 results. After removing duplicates (/7=50), authors
ZJW/PGA independently screened remaining abstracts to identify studies eligible for full-
text review. Agreement between raters was good (90%, x=0.631), and all articles flagged by
either rater were subjected to full-text review (/7=159). The same two authors independently
reviewed the full texts of these articles, with good agreement between inclusion/exclusion
decisions (85%, x=0.630). In cases of disagreement, the two authors met and discussed the
article until consensus was reached. This process resulted in 31 articles meeting the study
inclusion criteria. Forward and backward citation tracing of the included articles uncovered
an additional 14 eligible references, for a total of 45 articles included in the meta-analysis
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(Table 2). A PRISMA flow diagram is presented in Supplemental Figure S1, and the specific
studies included in each meta-analysis are described in Supplemental Tables S4-S11.

P1/M50 Latency

N1lb Latency

N1c Latency

P1/M50 latencies were reported for 14 studies (36 effects; Nayt= 498, Mrp=359, mean
quality=0.741), with effect sizes ranging from —0.717 to 1.139. The meta-analytic model
indicated that autistic individuals have prolonged P1/M50 latencies relative to TD controls
(9=0.341, 95% Crl [0.184,0.524], BFrope=29.26; Figure 1A). Bayes factors provided strong
evidence for a prolongation of M50 latency (Bfrope=22.94) but weak and inconclusive
evidence against a prolongation of P1 latency (Bfrope=0.53; Table 3). Despite these
differences, model comparison provided evidence against a moderating effect of recording
modality (BFrope=0.20), suggesting a negligible difference in effect size between EEG
and MEG studies. Group differences in M50 latency were similar across hemispheres
(Br-L=0.087 [-0.159, 0.331]; Supplemental Figure S2). There was no moderating effect

of age on P1/M50 latency effects, although evidence to suggest the absence of an effect
was inconclusive (BF1p=0.45). Similarly, no other putative moderator explained significant
heterogeneity in P1/M50 latency effects, and Bayes factors provided substantial evidence
against the majority of tested variables (Table 4).

N1b latencies were reported in eight studies (25 effects; Nay1=146, Mrp=139, mean
quality=0.554), with effect sizes ranging from —1.442 to 2.208. There was a small

and nonsignificant increase in N1b latency in autism (¢=0.172 [-0.594,0.915]), although
evidence for practical equivalence between groups was inconclusive (Bfrope=0.36).
Moderator analyses indicated the absence of moderation by sample age (B8F;(=0.06), and no
other tested moderator explained significant heterogeneity in N1b latencies (Table 4).

N1c latencies were reported in two studies (10 effects; May1t=56, Mrp=31, mean quality

= 0.426), with effect sizes ranging from 0.274 to 5.566. As fewer than three unique

studies reported N1c data, no meta-analysis was conducted. However, it is notable that all
effect sizes were positive and relatively large on average (Madn=0.738, /QR=[0.503,1.092]),
indicating prolonged N1c latencies in participants with autism.

M100 Latency

M100 latencies were reported in 12 studies (37 effects; May7=516, Mrp=305, mean
quality=0.759), with effect sizes ranging from —0.893 to 1.050. The meta-analytic model
indicated that autistic individuals have significantly prolonged M100 latencies relative to TD
controls (g=0.344 [0.135,0.561], BFrope=6.60; Figure 1B). Moderator analyses indicated
the absence of moderation by sample age (BF17=0.05), and no other tested moderator
explained significant heterogeneity in M100 latency effects (Table 4). However, when
analyzing laterality effects, the model predicted a 97.3% chance of right-hemisphere M100
latencies being more prolonged in autism (Br..=0.231 [-0.004,0.464]; Supplemental Figure
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S5). Nevertheless, there was inconclusive evidence to suggest that the degree of additional
prolongation was larger than 0.1 standard deviations (Bfropg=0.58).

P2/M200 Latency

N2 Latency

P2/M200 latencies were reported in four studies (12 effects; Nayt=83, Mrp=79, mean
quality=0.658), with effect sizes ranging from —0.982 to 0.687. The meta-analytic model
demonstrated small and practically insignificant differences in P2/M200 latency between
groups (g=0.057 [-0.608,0.611], BFrope=0.21). These conclusions did not change when
examining only EEG studies (Table 3).

N2 latencies were reported in seven studies (12 effects; Nayt= 140, Mrp= 145, mean
quality=0.736), with effect sizes ranging from —0.390 to 0.872. The meta-analytic model
demonstrated small and practically insignificant differences in N2 latency between groups
(9=0.047 [-0.280,0.223], BFrope=0.07).

P1/M50 Amplitude

P1/M50 amplitudes were reported in eight studies (30 effects; Nayt= 182, Myp =154, mean
quality=0.695), with effect sizes ranging from —0.863 to 0.652. The meta-analytic model
demonstrated small and practically insignificant differences in P1/M50 amplitudes between
autism and TD groups (¢=0.042 [-0.198,0.324], BFrope=0.07; Figure 1C). Results were
similar when examining EEG and MEG studies separately (Table 3).

Model comparisons suggested a significant moderating role of stimulus probability
(BF10=5.53; Supplemental Figure S8), with larger group differences in P1/M50 amplitudes
for lower-probability stimuli. Notably, despite the significant moderation, the 95% Crl for g
continued to include zero at all possible stimulus probabilities. The remaining moderators,
including sample age (BF10=0.18), did not explain significant heterogeneity in P1/M50
amplitude effects (Table 4).

N1b Amplitude

N1b amplitudes were reported in seven studies (24 effects; Nayt=205, Mrp=131, mean

quality=0.619), with effect sizes ranging from —1.108 to 0.539. The meta-analytic model
demonstrated small and practically insignificant differences in N1b amplitudes between

autism and TD groups (¢=—0.162 [-0.497,0.157], Bfrope=0.21).

Model comparisons revealed a significant moderator effect of sample 1Q on the magnitude
of N1b amplitude differences (BF1¢=6.03; Supplemental Figure S9). Studies in which the
majority of the autism group had an 1Q<70 (k=3) demonstrated practically significant group
differences (Bfrope=7.70), with moderately smaller N1b amplitudes in the autism group
(9=—0.533 [-0.842,-0.166]). In contrast, studies where the majority of the autism group was
of average or higher intelligence (k=4) reported small and practically insignificant amplitude
differences (¢=0.123 [-0.202,0.349], BFrope=0.16). The remaining moderators, including
sample age (BF1p=0.22), did not explain significant heterogeneity in N1b amplitude effects
(Table 4).
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N1lc Amplitude

N1c amplitudes were reported in three studies (11 effects; NayT=101, Mp=102, mean
quality=0.540), with effect sizes ranging from —2.048 to —0.418. The meta-analytic model
indicated that autistic individuals had substantially smaller N1c amplitudes than TD controls
(9=—0.812 [-1.278,-0.187], BFrope=9.85). Group differences across hemispheres were
minimal (Br..=—0.106 [-0.698,0.455]; Supplemental Figure S10).

M100 Amplitude

M100 amplitudes were reported in five studies (10 effects; Nayt=145, Mrp=87, mean
quality=0.740), with effect sizes ranging from —0.323 to 0.307. The meta-analytic model
demonstrated small and practically insignificant differences in M100 amplitude between
groups (g=0.124, [-0.152,0.398], Bfrope=0.14; Figure 1D)

P2/M200 Amplitude

P2/M200 amplitudes were reported in five studies (13 effects; Nay7=135, Mp=142,

mean quality=0.718), with effect sizes ranging from —-0.377 to 0.282. The meta-analytic
model demonstrated small and practically insignificant differences in P2/M200 amplitude
between groups (g=—0.065 [-0.339,0.176], BFrope=0.07). These results were similar when
examining only EEG studies (Table 3).

N2 Amplitude

N2 amplitudes were reported in nine studies (27 effects; NMayt=191, Myp=197, mean
quality=0.735), with effect sizes ranging from —0.820 to 0.051. The meta-analytic model
indicated that autistic individuals had significantly reduced N2 amplitudes compared to
TD controls (g=-0.374 [-0.633,-0.179], Bfrope=14.63). There was significant evidence
against the moderating role of sample age (B8F1=0.09), and no other tested moderator
explained significant heterogeneity in N2 amplitude effects (Table 4).

Sensory Gating (P1/N1b Amplitude Suppression)

Sensory gating amplitude differences or ratios were reported in eight studies (21 effects;
NauT=207, Mrp=188), with effect sizes ranging from —1.13 to 0.42. The meta-analytic
model indicated that sensory gating (i.e., amplitude suppression of P1 or N1b) was
significantly reduced in autism compared to TD controls (g=—0.394 [-0.639,-0.099],
BFrope=3.63; Figure 2A). Analyzing P1 and N1b gating separately, both point estimates
were similar in magnitude, but the 95% Crl of the N1b gating estimate included zero (Table
3). Model comparisons provided substantial evidence that neither the ERP component used
to measure sensory gating (8F10=0.17) nor the measure of amplitude suppression (ratio vs.
difference score; BF15=0.16) significantly moderated between-group effect sizes. Similarly,
we found substantial evidence against the moderating role of sample age (BF10=0.02). No
other tested moderator explained significant heterogeneity in sensory gating effects (Table
4).

In order to better understand the drivers of altered sensory gating in autism, P1 amplitudes
in response to the two click stimuli of paired-click paradigms were analyzed separately
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(Table 3; Figure 2B). Meta-analytic models indicated that responses to click 1 were
smaller in amplitude in the autism group (g=—0.286 [-0.505,-0.048], BFrope=1.51), while
responses to click 2 were of approximately equal amplitudes in the two groups (g=0.121,
[-0.237,0.445], BFrope=0.16).

Publication Bias

Publication bias was examined using contour-enhanced funnel plots (106), with quantitative
estimates of the evidence for or against publication bias derived from selection models
(107,114). Contour-enhanced funnel plots (Supplemental Figures S11-S18) were generally
symmetrical and did not reflect a significance-chasing bias for the majority of outcomes.
These judgments were generally supported by publication bias Bayes factor values (Table
2), which demonstrated substantial evidence against the presence of publication bias for
sensory gating outcomes (BFpp=0.24) and inconclusive evidence for or against the presence
of publication bias in all other cases (all other Bfg between 0.34 and 2.80). Notably,

the funnel plot for N1c amplitudes (Supplemental Figure S13) showed some evidence for
significancechasing, with the publication bias Bayes factor nearly reaching the threshold for
indicating significant publication bias (Bfg=2.80).

Discussion

This is the first meta-analysis to quantitatively synthesize studies of (a) obligatory auditory
cortical ERP/ERF responses to tone stimuli and (b) sensory gating performance in paired-
click paradigms in autistic individuals and TD controls. We found small but practically
significant latency delays for P1/M50 and M100, reduced N2 amplitude, and reduced
P1/N1b sensory gating in autistic individuals. A large reduction in N1c amplitude was also
observed in persons on the autism spectrum, although we consider this finding preliminary
due to the small number of low-quality studies analyzed and borderline evidence for
publication bias. In addition, Bayes factors provided moderate to strong evidence that group
differences in P2/M200 latency, N2 latency, P1/M50 amplitude, N1b amplitude, M100
amplitude, and P2/M200 amplitude were all too small to be of practical significance (i.e.,
likely falling within the null region [-0.1,0.1]). Evidence for N1b latency differences was
inconclusive, with results trending toward a lack of meaningful group differences. Notably,
while the N1b amplitude was not significantly different between groups overall, we found
significantly smaller responses in studies predominantly comparing autistic individuals with
intellectual disability to neurotypical controls. Our results cannot determine whether this
reduction in N1b amplitudes is specific to the co-occurrence of autism and intellectual
disability; however, two small studies have reported similar group differences when controls
also had intellectual disability (47,59). Selection model analyses indicated a lack of
publication bias for sensory gating outcomes, but evidence was inconclusive with regard

to the presence or absence of publication bias for all other outcomes.

Moderator and subgroup analyses largely indicated that group differences in ERP/ERF
components were independent of stimulus characteristics, basic demographics, and
methodological choices such as filter settings. In addition, moderation by age was ruled

out in all but one case, extending prior studies that reported no diagnosis by age interactions
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for M50/M100 latencies (39,53,115). Thus, while the presence of unmeasured confounds
cannot be conclusively ruled out, these results suggest that the observed group differences
likely reflect changes in underlying brain activity rather than methodological or statistical
artifacts.

On average, autistic individuals exhibited delayed stimulus processing at the level of

the primary and secondary auditory cortex, as reflected in prolonged P1/M50 and

M100 latencies. These delayed responses are hypothesized to reflect alterations in neural
conduction velocity or synaptic transmission within the auditory cortex during low-level
stimulus processing (39). It is notable that prolonged ERP latencies in autism have also been
found in auditory brainstem responses (116,117), the face-sensitive visual N170 potential
(118), and some variants of the auditory mismatch negativity (119), raising the possibility of
a more generalized deficit in neural processing speed in autism. However, this interpretation
is complicated by a lack of diagnostic group differences in a number of other early and late
ERP components, including the visual P1 (118), cognitive P3 (120), early somatosensory
responses (121), and several other mismatch negativity variants (119,122), as well as

poor correlations between brainstem/cortical ERP latencies (123). Additionally, we found
equivalent latencies in later cortical potentials such as P2/M200 and N2, suggesting that
differences in autistic auditory information processing may be specific to certain neural
circuits or perceptual processes. Nevertheless, additional studies are warranted to better
understand the relationships between ERP/ERF latencies across multiple sensory modalities
and determine whether multimodal information processing delays meaningfully differentiate
autistic individuals from TD controls.

In addition to latency delays, autistic individuals exhibited reduced N1c and N2 amplitudes.
The N1c is primarily generated in secondary auditory areas of the superior temporal gyrus
and is thought to reflect early stages of stimulus feature encoding and discrimination
(23,24,28,47,124). Although the role of this component in auditory processing is not fully
understood, tone-evoked N1c component amplitudes and latencies have been associated
with language ability in children (63,125,126). The developmentally-specific auditory N2
is a precursor of the adult N1b generated in primary/secondary auditory cortical areas,
potentially reflecting either fine-grained acoustic analysis or higher-order encoding of sound
content features (31). Interestingly, although we found very clear evidence of reduced N2
amplitudes in autistic individuals, there was little evidence for reduced N1b amplitudes
(except in the subset with intellectual disability). This finding raises the possibility

that certain auditory processing differences are present in autism during the specific
developmental periods when the N2 component is prominent, although this difference may
simply be masked in adulthood by the activity of multiple other generators of the N1
waveform (19,23,24). While the functional significance of reduced N1c and N2 amplitudes
in autism remains unclear, these changes, presumed to reflect decreased neural synchrony
in secondary auditory areas, may underlie some of the documented differences in auditory
processing and language development seen in autistic persons (12,127).

An additional focus of our analysis was paired-click sensory gating, as measured by P1
and N1b amplitude suppression. Sensory gating ability was slightly reduced in autistic
individuals relative to TD controls, irrespective of the method used to quantify amplitude
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suppression. This effect seemed to result from lower-amplitude responses to the first

click, rather than higher-amplitude responses to the second click (as would be expected

if that information were filtered less efficiently). A similar phenomenon is present in
schizophrenia, where reduced click 1 amplitudes contribute to group differences in sensory
gating (71,72,128). However, in contrast to individuals on the autism spectrum, individuals
with schizophrenia also have substantially elevated P1 amplitudes in response to the second
click, likely reflecting a true failure to “gate” sensory information (72). Thus, while

our results may appear to suggest a superficial similarity between auditory processing
abnormalities in autism and schizophrenia, the reduced “sensory gating” seen in autism
likely arises from another mechanism. Interestingly, a reduced P1 amplitude in autism

was not noted in tone-evoked responses, potentially indicating an effect unique to the
paired-click paradigm. One potential mechanism could involve the brief duration of clicks
used in sensory gating paradigms. P1 amplitudes grow substantially with increasing stimulus
duration (129,130), and it is possible that this growth is reduced in autistic individuals

due to less efficient auditory information transfer. However, there are insufficient data to
indicate whether the P1 amplitude group effects change when stimulus duration is varied
systematically. Additional work is necessary to understand the mechanism and significance
of reduced P1/N1b amplitude suppression in autism, as it is currently unclear whether
alterations in this process can provide insight into autistic auditory perception.

The current study has a number of limitations. First, the studies included in our analyses
were primarily conducted on school-aged children and adolescents with 1Qs in the average
range; relatively few samples contained toddlers, adults, or individuals with cognitive
impairments. Additional research is thus necessary to replicate and extend these findings

in the broader autism population. Moreover, although we found no moderating effects

of age on any outcome, the truncated chronological age range of published studies and
scarcity of longitudinal research on this topic limited our ability to draw conclusions

about developmental trends in ERP/ERF measures. An additional limitation is the small
number of unique studies included in each meta-analysis, which decrease the replicability
of results and provide low power to detect potentially important study-level moderators

of effect size (111). A further limitation is the fact that only TD control groups were
examined, and therefore we were unable to determine whether the group differences
reported in our study are specific to autism (though see 47,52,59,131). Lastly, this study

did not examine correlations between auditory cortical responses and behavioral outcomes
of clinical relevance, such as language ability or auditory sensory reactivity. Further research
characterizing the relationships between behavioral and neurophysiologic measures may
provide valuable information on the underlying neural substrates of autism symptomatology.

In conclusion, this meta-analysis suggests that autistic individuals as a group differ from
typical controls in multiple aspects of early cortical auditory processing. The majority of
these differences are small to moderate in magnitude and in some cases primarily driven

by a subset of the autism population (40,85,132). Nonetheless, this synthesis highlights

the ERP/ERF metrics that have garnered the greatest support for differentiating autistic
persons from their typical peers in processing of simple auditory stimuli. Additional research
is necessary to ascertain the degree to which ERP/ERF indices of interest to the present
synthesis may be useful for explaining heterogeneity in the autism phenotype, stratifying
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autism into meaningful subgroups, predicting differential responses to potential treatments,
or elucidating the neural mechanisms by which interventions work in autistic persons (e.g.,
133-135).
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Figure 2.
(A) Posterior density forest plots of P1/N1b amplitude suppression effects. The standardized

mean difference (SMD) and 95% credible interval (Crl) for each study represent the
posterior distribution of that study’s mean effect size, conditional on prior beliefs and
the observed data. Negative values of g indicate reduced sensory gating ability (i.e., less
effective amplitude suppression) in the autism group compared to TD controls. The gray
shaded area indicates the region of practical equivalence (ROPE). Raw effect sizes from
each study can be found in Supplemental Table S10. (B) Summary posterior densities
of P1 amplitude differences to the first and second clicks of the paired-click paradigm,
as compared to the posterior distribution of P1 amplitude suppression effects. Autistic
individuals demonstrate smaller P1 amplitudes in response to the initial click, driving a
group difference in amplitude suppression metrics.
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