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Abstract

Most of the genetic basis of chronic liver disease remains undiscovered. To identify novel 

genetic loci that modulate the risk of liver injury, we performed genome-wide association studies 

(GWAS) on circulating levels of alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), alkaline phosphatase (ALP) and total bilirubin across 312,671 White British participants in 
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the UK Biobank. We focused on variants associated with elevations in all four liver biochemistries 

at genome-wide significance (P<5x10−8) and that replicated using Mass General Brigham 

Biobank in 19,323 European ancestry individuals. We identified a genetic locus in mitochondrial 

glycerol-3-phosphate acyltransferase (GPAM rs10787429) associated with increased levels of ALT 

(P=1.4x10−30), AST (P=3.6x10−10), ALP (P=9.5x10−30) and total bilirubin (P=2.9x10−12). This 

common genetic variant was also associated with an allele dose-dependent risk of alcoholic 

liver disease (OR 1.34, P=2.6x10−5) and fatty liver disease (OR 1.18, P=5.8x10−4) by ICD-10 

codes. We identified significant interactions between GPAM rs10787429 and elevated body mass 

index in association with ALT and AST (P-interaction=7.1x10−9 and 3.95x10−8, respectively), as 

well as between GPAM rs10787429 and weekly alcohol consumption in association with ALT, 

AST, and alcoholic liver disease (P-interaction=4.0x10−2, 1.6x10−2 and 1.3x10−2, respectively). 

Unlike previously described genetic variants that are associated with an increased risk of 

liver injury but confer a protective effect on circulating lipids, GPAM rs10787429 was 

associated with an increase in total cholesterol (P=2.0x10−17), LDL cholesterol (P=2.0x10−10), 

and HDL cholesterol (P=6.6x10−37). Single-cell RNA sequencing data demonstrated hepatocyte­

predominant expression of GPAM in cells that co-express genes related to VLDL production 

(P=9.4x10−103). In conclusion, genetic variation in GPAM is associated with susceptibility to liver 

injury. GPAM may represent a new therapeutic target in chronic liver disease.
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Chronic liver disease leads to over 40,000 deaths annually in the United States and 

represents an area of substantial unmet medical need (1). While environmental factors play a 

role in the development of chronic liver disease, prospective twin studies have demonstrated 

that up to half of the observed variation in hepatic fibrosis and steatosis is attributable to 

genetic factors (2). Elucidation of the genetic underpinnings of chronic liver disease may 

reveal new targets for therapeutic intervention; drug development targets with human genetic 

evidence of disease association are more likely to lead to FDA-approved drugs (3).

Hepatocellular injury is characterized by elevations in serum alanine (ALT) and aspartate 

(AST) aminotransferases, while cholestatic liver injury is associated with elevated 

serum alkaline phosphatase (ALP) and total bilirubin levels. A powerful approach for 

understanding the molecular basis of liver disease has been to perform genome-wide 

association studies (GWAS) of levels of circulating liver enzymes across large population 

samples (4-13). Combined GWAS of ALT and AST have previously revealed sequence 

variations associated with liver disease, such as PNPLA3 I148M (11) and HSD17B13 
rs72613567 (13); this has catalyzed the development of new therapeutics targeting these 

genes for the treatment of chronic liver disease (14). A more recent large trans-ethnic 

GWAS of ALT and AST identified a missense variant in the gene encoding manganese 28 

efflux transporter SLC30A10 (rs188273166) associated with liver disease and extrahepatic 

cholangiocarcinoma (15).
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A limitation of combined GWAS of liver transaminases is that elevations in ALT or AST 

may be caused by kidney, heart or muscle damage (16), and therefore only a subset of 

identified loci are likely to be causally implicated in liver damage. In addition, in contrast to 

other metabolic disorders, such as obesity or type two diabetes, where hundreds of genetic 

risk loci have been identified (17), few genetic associations have been identified to date for 

chronic liver disease. This highlights the need for studies with increased sample size and the 

exploration of novel liver-related endophenotypes.

To further study genetic variants that may confer susceptibility to liver injury, we performed 

GWAS on circulating levels of ALT, AST, ALP, and total bilirubin across 312,671 

unrelated White British participants in UK Biobank, a large population-based study. We 

focused on variants associated with elevations in all four liver biochemistries at genome­

wide significance (P<5x10−8), hypothesizing that genetic variants associated with both 

elevated liver aminotransferases (ALT, AST) and elevated markers of cholestasis (ALP, total 

bilirubin) would be more likely to play a role in liver health. We replicated our findings in 

19,323 unrelated European ancestry subjects from the Mass General Brigham Biobank, a 

hospital-based cohort. For variants that associated with elevated risk of liver injury across 

both cohorts, we also sought to determine whether the variants were associated with clinical 

liver disease phenotypes by ICD-10 codes, whether the variants demonstrated differential 

effect by other risk factors for liver disease (gene by environment interaction), and whether 

the variants were associated with circulating lipids. Finally, we analyzed single-cell RNA 

sequencing data from healthy human livers to determine the relative contribution of cell 

sub-populations to the expression of identified target genes.

EXPERIMENTAL PROCEDURES

Cohort descriptions and quality control

The UK Biobank is a population-based cohort consisting of 502,682 individuals (18). To 

minimize confounding due to population structure in our dataset, we restricted our analysis 

to include only subjects estimated to have British ancestry. We also excluded individuals 

with more genome-wide heterozygosity than expected, an excess of missing genotype calls, 

putative sex chromosome aneuploidy, and more than 10 third-degree relatives. We further 

removed at least one individual from each related pair with kinship coefficient >0.0625, 

giving preference to inclusion of patients with all-cause cirrhosis by ICD-10 codes. After 

quality control, 312,671 unrelated White British subjects were included in the analysis. 

We replicated our findings using 19,323 unrelated (kinship coefficient <0.0885) European 

ancestry samples from the Mass General Brigham Biobank, a hospital-based cohort of 

43,534 individuals (19).

Phenotype data

In UK Biobank, blood biochemistry values were obtained for ALT (field 30620), AST (field 

20650), ALP (field 30610), total bilirubin (field 30840), cholesterol (field 30690), LDL 

direct (field 30780), and HDL cholesterol (field 30760). In Mass General Brigham Biobank, 

blood biochemistry values for ALT, AST and ALP were obtained. We log-transformed ALT, 

AST, ALP and total bilirubin, resulting in approximately normal distributions. We defined 
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a severe alcoholic liver disease phenotype by combining the following ICD-10 codes: K702 

(alcoholic fibrosis and sclerosis of liver), K703 (alcoholic cirrhosis of liver), and K704 

(alcoholic hepatic failure). For the all-cause cirrhosis phenotype, we combined the severe 

alcoholic liver disease ICD-10 codes with K740 (hepatic fibrosis), K741 (hepatic sclerosis), 

K742 (hepatic fibrosis with hepatic sclerosis), K746 (other and unspecified cirrhosis of the 

liver), K766 (portal hypertension), I850 (bleeding esophageal varices), I859 (esophageal 

varices), K717 (toxic liver disease with fibrosis and cirrhosis of liver), K721 (chronic hepatic 

failure), K729 (hepatic failure, unspecified), and K767 (hepatorenal syndrome). We also 

investigated a phenotype for all-cause fatty liver by combining K700 (alcoholic fatty liver), 

K701 (alcoholic hepatitis), K709 (alcoholic liver disease, unspecified), K760 (fatty liver, 

not elsewhere classified), K758 (other specified inflammatory liver diseases), and K759 

(inflammatory liver disease, unspecified).

Genotype data

In UK Biobank, genotyping was performed using either the UK BiLEVE Axiom array 

or the UK Biobank Axiom array, then imputed into the Haplotype Reference Consortium 

(HRC) and UK10K + 1000 Genomes panels. We used genotype data from the UK Biobank 

dataset release version 2 and the hg19 human genome reference for all analyses in this 

study. For Mass General Brigham Biobank, genotyping was performed using the Illumina 

MEGA array, QC steps were conducted consistent with prior studies (19), and imputation 

was performed to the HRC using the Michigan Imputation Server. We filtered out variants 

with minor allele frequency < 0.01 and imputation quality < 0.5. Content overlap between 

the UK Biobank and Mass General Brigham Biobank genotyping arrays was between 74.3% 

and 81.3% per chromosome.

Genome-wide association analyses in UK Biobank

We performed GWAS using linear regression for ALT, AST, ALP and total bilirubin, 

adjusting for age, sex, body mass index (BMI), total number of medications taken by each 

participant, genotyping batch, and the first 10 principal components of genetic ancestry. 

Association analyses were performed using linear regression in PLINK 2.0 alpha (20). 

Linkage disequilibrium score regression (LDSC) was used to estimate heritability and test 

statistic inflation due to confounding by population substructure (21). GWAS summary 

statistics were uploaded to the FUnctional Mapping and Annotation of GWAS tool (FUMA; 

version 1.3.5) (22). We used a panel of 10,000 randomly selected unrelated UK Biobank 

participants, release 2b, as the reference population for calculating linkage disequilibrium 

(LD). For each GWAS, we identified independent genomic risk loci defined by a genome­

wide significance value of P<5x10−8, an r2 threshold of 0.2, and a maximum distance 

between LD blocks to merge into a locus of < 250 kb. To define shared association signals 

across the four phenotypes, we identified SNPs within these blocks with r2 > 0.8 that were 

genome-wide significant and in common across the ALT, AST, ALP and total bilirubin 

GWAS. The lead independent SNPs that generated the common proxy SNP were identified 

from the ALT, AST, ALP and total bilirubin GWAS, and the SNP with the smallest p-value 

was kept. To correct for potential test statistic inflation, we also performed a sensitivity 

analysis where we inflated GWAS standard errors by the square root of the estimated 

intercept from the LD score regression.
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Replication of top results from UK Biobank in the Mass General Brigham Biobank

We focused on variants associated with elevations in all four liver biochemistries in UK 

Biobank at genome-wide significance (P<5x10−8) for replication in Mass General Brigham 

Biobank in 19,323 unrelated European ancestry individuals. We examined the association 

of these genetic variants with ALT, AST, and ALP using linear regression, assuming an 

additive model, and adjusting for age, sex, BMI, and first ten principal components of 

ancestry.

Association analyses for binary liver disease phenotypes and additional quantitative traits

For replicated variants, we investigated the association with binary liver disease phenotypes 

by ICD-10 codes in UK Biobank. We used R 3.6.3 to perform logistic regression. To 

account for case-control imbalance for binary liver disease phenotypes and lower allele 

frequencies, all logistic regression results were analyzed using the Firth penalized likelihood 

approach. We also examined the association of genetic variants with circulating lipids (total 

cholesterol, direct LDL, and HDL) using linear regression. We assumed an additive model 

for all association analyses and adjusted all models for age, sex, BMI, total number of 

medications taken by each participant, genotyping batch, and first ten principal components 

of ancestry.

Sensitivity analyses for alcohol use and type 2 diabetes in UK Biobank

Given the known important role of alcohol intake on liver injury, we performed a sensitivity 

analysis on variants that replicated in Mass General Brigham Biobank, using self-reported 

number of alcoholic drinks consumed as a covariate. We calculated the average units of 

alcohol consumed per week for each participant in UK Biobank, assuming 2 units (16g) of 

pure alcohol in a pint of beer/cider; 1.5 units (12g) in a glass of red wine, champagne, white 

wine, fortified wine, and “other” alcohol drink; and 1 unit (8g) in a measure of spirits. For 

participants who reported consuming alcohol monthly rather than weekly, we multiplied by 

0.23 to convert monthly alcohol consumption to weekly. Weekly intake values greater than 

6 standard deviations from the mean were excluded, reflective of greater than 92 alcoholic 

drinks per week. We also performed a sensitivity analysis adjusting for the presence of 

type 2 diabetes, which was defined as self-report of type 2 diabetes, followed by a verbal 

interview with a trained nurse to confirm the diagnosis, or hospitalization for diabetes (ICD 

code E11).

Assessing for gene-environment interactions in UK Biobank

For genetic variants associated with elevated risk of liver injury in both UK Biobank and 

Mass General Brigham Biobank, we investigated the combined effects of the genetic variant 

and BMI on biomarkers of hepatocellular injury. We performed an interaction analysis by 

modeling the main effects of the genetic variant and BMI, as well as an interaction term, 

using an additive model. BMI was entered as a continuous variable in all analyses. To 

depict the interaction between genotype and BMI visually, participants were divided into 

four categories of BMI: lean (<25 kg/m2), overweight (25–30 kg/m2), obese (30–35 kg/m2) 

and very obese (>35 kg/m2). We performed a similar analysis to assess the interaction 

between the genetic variant and weekly alcohol consumption on markers of hepatocellular 
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injury and alcoholic liver disease. We depicted the interaction between genotype and alcohol 

use by dividing participants into four categories: no alcohol use, low risk alcohol use (<21 

units of alcohol/week for men, <14 units of alcohol/week for women), hazardous drinking 

(22-49 units of alcohol/week for men, 15-35 units of alcohol/week for women), and harmful 

drinking (>50 units of alcohol/week for men, >36 units of alcohol/week for women) (23).

Single-cell RNA sequencing

Merged single-cell RNA data from non-diseased human livers was acquired (24). We 

assessed the expression of target genes of interest in parenchymal and non-parenchymal liver 

cells, and in hepatocytes with or without a gene expression signature of VLDL production. 

This signature was defined by co-expression of more than three transcripts of APOB and 

MTTP. Expression of target genes of interest in VLDL-producing compared to non-VLDL 

producing hepatocytes was tested for statistical difference using Wilcoxon rank sum test. 

Data was analyzed using Seurat and R 3.6.3.

RESULTS

Genome-wide association study and replication results

We performed GWAS of 9.9 million genetic variants on circulating levels of ALT, AST, 

ALP and total bilirubin across 312,671 unrelated White British participants in UK Biobank. 

SNP-based heritability estimates (standard error) in our sample were 10.8% (0.8%) for 

ALT, 10.7% (1.0%) for AST, 19% (2.6%) for ALP, and 10.1% (3.2%) for total bilirubin. 

According to the estimated intercept (standard error) from a linkage disequilibrium (LD) 

score regression, some of the genomic inflation in test statistics for ALT, AST, and total 

bilirubin may be due to biases such as residual population stratification: 1.0774 (0.013) 

for ALT; 1.0688 (0.01) for AST; 1.14 (0.0257) for ALP, and 1.0489 (0.0154) for total 

bilirubin. We identified 204 distinct genomic risk loci associated with ALT, 201 associated 

with AST, 274 associated with ALP, and 99 associated with total bilirubin at P<5x10−8. We 

next identified shared association signals across the four liver biomarkers, with traits having 

either the same index variant or a variant in strong linkage disequilibrium (r2 > 0.8 with 

the index variant). This identified 58 distinct loci associated with both ALT and AST, 18 

distinct loci associated with both ALP and total bilirubin, and 5 distinct loci associated with 

ALT, AST, ALP and total bilirubin (Figure 1, Figure 2, Table 1). Of these 5 loci, 2 of them, 

rs10787429 (closest gene, GPAM) and rs11601507 (closest gene, TRIM5), were associated 

with elevated levels across all four liver biochemistries. The other 3 genetic variants, such as 

the well-characterized locus at SUGP1/TM6SF2 rs200210321, were highly associated with 

elevated ALT, AST and total bilirubin but were also associated with significantly decreased 

ALP (Table 1). We focused on the 2 identified variants associated with elevations across all 

four liver biochemistries, suggestive of a possible common pathway towards liver cholestasis 

and hepatocellular injury. We attempted to replicate the association of GPAM rs10787429 

and TRIM5 rs11601507 with elevated markers of liver injury in Mass General Brigham 

Biobank, a hospital-based cohort. GPAM rs10787429 was associated with log-transformed 

ALT (P=2.7x10−3), AST (P=3.3x10−2) and ALP (P=1.9x10−2) in Mass General Brigham 

Biobank (Table 2). TRIM5 rs11601507 was not significantly associated with liver injury in 

Mass General Brigham Biobank, perhaps due to insufficient statistical power (minor allele 
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frequency for GPAM rs10787429 0.234 compared to 0.06 for TRIM5 rs11601507) (Table 

2). As GPAM rs10787429 was the only risk locus associated with elevated ALT, AST, ALP 

and total bilirubin in UK Biobank that replicated in Mass General Brigham Biobank, we 

focused further analysis on this locus (Figure 3). In UK Biobank, the results for GPAM 
rs10787429 remained at genome-wide significance after inflating the standard errors by the 

square root of the LD score regression intercept for each biomarker of liver injury GWAS 

(Supplementary Table 1).

Association with ICD-10 based definitions of chronic liver disease in UK Biobank

We investigated the association of GPAM rs10787429 with broad categories of liver disease 

defined by ICD-10 codes in UK Biobank, including severe alcoholic liver disease (N=413), 

all-cause cirrhosis (N=1,493), and fatty liver disease (N=979). A Bonferroni adjusted 

significance level of P<0.017 was used for the three clinical liver disease phenotypes. GPAM 
rs10787429 was associated with increased risk of severe alcoholic liver disease (OR 1.34, 

P=2.6x10−5) and fatty liver disease (OR 1.18, P=5.8x10−4) in an allele dose-dependent 

manner; these odds were comparable to those of well-established genetic variants, including 

PNPLA3 I148M and TM6SF2 E167K (Figure 4). A nominally significant increased 

risk of all-cause cirrhosis was observed for GPAM rs10787429 (OR 1.09, P=2.6x10−2) 

(Supplementary Figure 1).

Sensitivity analyses for alcohol use and type 2 diabetes in UK Biobank

Given the role of alcohol intake on liver damage, we performed a sensitivity analysis 

analyzing the association of GPAM rs10787429 with biomarkers of liver damage 

while accounting for weekly alcohol consumption. The results were consistent and 

remained at genome-wide significance across all biomarkers of liver injury, suggesting 

GPAM rs10787429 has impact on liver damage independent of alcohol consumption 

(Supplementary Table 2). The associations also remained significant for alcoholic liver 

disease and fatty liver disease phenotypes (Supplementary Figure 2, 3). The results adjusted 

for the presence of type 2 diabetes were similar (Supplementary Table 3; Supplementary 

Figure 4, 5).

Analysis of gene-environment interactions in UK Biobank

To determine if the effect of the GPAM rs10787429 variant on hepatocellular injury is 

modified by BMI, we analyzed the relationship between GPAM rs10787429 and ALT 

and AST after stratifying UK Biobank participants into four categories based on BMI. 

We performed linear regression modelling main effects of GPAM rs10787429 and BMI 

as well as an interaction term, assuming an additive model. Significant interactions 

were identified with elevated BMI and GPAM rs10787429 in association with ALT (P­

interaction=7.1x10−9) and AST (P-interaction=4.0x10−8), suggesting a gene-environment 

interaction (Figure 5). We also performed a similar analysis dividing participants into 

four categories of alcohol use: no alcohol use, low risk use, hazardous drinking, and 

harmful drinking, according to UK guidelines (23). We demonstrated a nominally significant 

interaction between elevated weekly alcohol use and GPAM rs10787429 in association 

with ALT (P-interaction=4.0x10−2) and AST (P-interaction=1.6x10−2), using self-reported 

weekly alcohol use as a continuous variable (Supplementary Figure 6). There was also a 
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nominally significant interaction between alcohol consumption and GPAM rs10787429 in 

association with severe alcoholic liver disease (P-interaction=1.3x10−2).

Association with circulating lipids in UK Biobank

The previously described genetic variants PNPLA3 I148M and TM6SF2 E167K increase 

the risk of liver injury but are also associated with decreased circulating lipids and 

cardiovascular protection (25). This raises the possibility that therapeutic strategies targeting 

these genes associated with liver disease may adversely impact cardiovascular risk. 

However, we found that the GPAM rs10787429 allele that associated with increased 

liver biochemistries also associated with increased total cholesterol (P=2.0x10−17), LDL 

cholesterol (P=2.0x10−10), and HDL cholesterol (P=6.6x10−37) (Supplementary Table 4).

Single-cell RNA sequencing

Single-cell RNA sequencing from 28 healthy human livers (24) demonstrated hepatocyte­

predominant expression of GPAM (Figure 6). An expression-based analysis revealed that 

GPAM was present in 48.5% of VLDL-producing cells and only 9.5% of VLDL-non­

producing cells (P=9.4x10−103) (Figure 6).

DISCUSSION

In this study, we performed GWAS on circulating levels of ALT, AST, ALP and total 

bilirubin in UK Biobank, a large population-based cohort. Our analysis of shared GWAS 

risk loci for ALT and AST, as well as the results of a recent trans-ethnic study in UK 

Biobank (15), confirm the key role in liver injury played by PNPLA3 (11, 26), TM6SF2 
(27, 28), SERPINA1 (29), HSD17B13 (13), SH2B3 (30), PANX1 (7, 31), EFNA1 (4, 32), 

ERLIN1 (33), AKNA (7), MTTP (34), ZNF827 (4, 7), and EFHD1 (4, 7). Consistent with 

the hypothesis that loci associated with ALT or AST could be related to kidney or muscle 

damage, we identified ANO5 rs7481951, for which homozygosity has been shown to lead 

to muscular dystrophy (35). Of the 18 shared genome-wide significant loci from our ALP 

and total bilirubin GWAS, we confirm several loci previously associated with liver injury at 

TM6SF2 (27, 28), HNF1A (36), ADH4 (37, 38), PCCB (7, 39), CPS1 (7, 40), and APOE 
(12, 41).

We focused on variants associated with elevations across all four liver biochemistries and 

that also associated with liver injury in Mass General Brigham Biobank, a hospital-based 

cohort. This identified a novel genetic locus at the mitochondrial glycerol-3-phosphate 

acyltransferase (GPAM rs10787429). In addition to demonstrating allele dose-dependent 

effects across four biomarkers of liver injury, GPAM rs10787429 also associated with 

several categories of liver disease based on ICD-10 diagnostic codes, demonstrated an 

interaction with environmental risk factors for liver disease, and associated with elevated 

circulating lipids. Our study is the first to perform an analysis across all four biomarkers of 

liver injury, and complements recent reports that have associated variation in GPAM with 

quantified liver fat by abdominal MRI imaging in UK Biobank (12, 42), and with severity of 

histologic assessment of liver steatosis in European cohorts (12).
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The genetic risk locus at GPAM shares several features in common with other variants 

previously linked to liver disease. First, genetic variants in PNPLA3, TM6SF2, and 

HSD17B13 are strong genetic determinants of both fatty liver disease and alcohol-related 

liver cirrhosis (11, 13, 27, 28, 43). The overlap between the genetic determinants of these 

two diseases suggests that fatty liver, regardless of cause, is harmful and may progress to 

inflammation and fibrosis. Consistent with these results, we find that genetic variation in 

GPAM is associated with both fatty liver disease and severe alcohol-related liver cirrhosis 

in UK Biobank. Second, a unique feature of genetic variants associated with liver disease 

is a strong interaction with the environment. For example, a recent study demonstrated 

that adiposity amplifies the risk of fatty liver disease conferred by multiple loci: PNPLA3 
I148M, TM6SF2 E167K and GCKR P446L (44). Similar to these results, we found that 

BMI as well as weekly alcohol use amplified the risk of hepatocellular injury associated 

with sequence variation at GPAM rs10787429. We suggest that certain genetic variants, in 

combination with an environmental trigger, such as high BMI or excess alcohol intake, act 

synergistically to uncover liver disease phenotypes.

The PNPLA3 I148M and TM6SF2 E167K alleles that increase the risk of cirrhosis 

have been reported to decrease circulating atherogenic lipid particles and are associated 

with lower risk of cardiovascular disease (25). This raises the possibility that therapeutic 

strategies targeting PNPLA3 or TM6SF2 may adversely impact cardiovascular risk. 

Interestingly, GPAM rs10787429 was associated with both increased risk of liver injury 

as well as elevated total cholesterol, LDL cholesterol, and HDL cholesterol. It is therefore 

plausible that therapeutic targeting of GPAM may protect against liver disease without 

adversely impacting the risk of cardiovascular disease, although further laboratory-based 

validation of this concept is required.

Glycerol-3-phosphate acyltransferase catalyzes the rate-limiting step in the de novo pathway 

of glycerolipid synthesis (45). Four isoforms of this enzyme have been identified; the 

mitochondrial glycerol-3-phosphate acyltransferase, encoded by a nuclear gene, is located 

in the outer mitochondrial membrane and is responsible for 30-50% of the total glycerol-3­

phosphate acyltransferase activity in the liver (45). Consistent with these results, we 

demonstrate hepatocyte-predominant expression of GPAM in subclusters that overlap with 

cells involved in VLDL production. In addition to catalyzing the committed step in 

triacylglycerol synthesis, GPAM also directs the flux of fatty acids towards glycerolipid 

synthesis and away from β-oxidation (46). AMP-activated kinase, a sensor of cellular energy 

stores, has been shown to inhibit GPAM, thereby decreasing triacylglycerol synthesis and 

up-regulating β-oxidation when cellular energy stores are low (46).

Prior studies have linked GPAM to liver triglyceride content, body weight, and plasma 

lipid levels in murine overexpression and knockout experiments (46-48). Several small 

molecule inhibitors of glycerol-3-phosphate acyltransferase have been reported, including 

compounds with lower half maximal inhibitory concentration to GPAM (49). In diet-induced 

obese mice, pharmacologic inhibition of glycerol-3-phosphate acyltransferase reduced food 

intake, decreased body weight and adiposity, enhanced fatty acid oxidation, enhanced insulin 

sensitivity, and reversed hepatic steatosis (50). Together, these observations support further 

investigation of the role of GPAM as a therapeutic target in liver disease.
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Our results should be interpreted in the context of several important limitations. Further 

research will be needed to confirm these results across multiple ethnicities. Among liver 

disease cases analyzed in this study, the presence of hepatitis B or hepatitis C was not 

systematically assessed. ICD-10 diagnostic codes are known to be imprecise in the context 

of clinical care; additional studies on the impact of the GPAM rs10787429 locus and other 

loci on biopsy-confirmed liver disease are warranted. We did not confirm associations with 

binary liver disease phenotypes or gene environment interactions in Mass General Brigham 

Biobank; lack of associations could be due to false positives or insufficient power, and 

validation in additional cohorts is warranted. Finally, there are multiple single nucleotide 

polymorphisms at the GPAM locus in high linkage disequilibrium; further studies will be 

necessary to uncover the causative variant and its functional significance.

In conclusion, we identified a common genetic variant in GPAM that is associated with 

susceptibility to liver injury and also associated with increased circulating lipid particles. 

The risk of liver injury may increase synergistically in the setting of higher BMI and 

increasing alcohol use. Our findings provide human genetic support for the role of GPAM in 

liver injury; therapeutic targeting of this enzyme should be explored as a potential approach 

for the treatment of liver disease.
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Figure 1: 
Manhattan plots of GWAS results in 312,671 unrelated White British participants in UK 

Biobank for (A) ALT, (B) AST. Red dots indicate lead SNPs for shared signals across all 

four liver biochemistry GWAS. Dark blue dots (A, B) indicate lead SNPs for shared loci 

between ALT and AST GWAS; the shared signals are marked only once, on the plot for 

which the p-value for the association is smaller. Dashed line indicates P<5x10−8.
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Figure 2: 
Manhattan plots of GWAS results in 312,671 unrelated White British participants in UK 

Biobank for (A) ALP, (B) total bilirubin. Red dots indicate lead SNPs for shared signals 

across all four liver biochemistry GWAS. Purple dots (A, B) indicate lead SNPs for shared 

loci between ALP and total bilirubin GWAS; the shared signals are marked only once, on the 

plot for which the p-value for the association is smaller. Dashed line indicates P<5x10−8.
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Figure 3: 
Representative regional plot of GWAS p-values with genes and functional annotations of 

genomic risk loci on chromosome 10 for GWAS of ALT. Genes prioritized by FUMA are 

highlighted in red; SNPs are colored based on r2.
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Figure 4: 
Association of GPAM rs10787429, PNPLA3 I148M, and TM6SF2 E167K with (A) severe 

alcoholic liver disease and (B) all-cause fatty liver disease, by ICD-10 diagnostic codes in 

UK Biobank, using the Firth penalized likelihood approach. Odds ratios were calculated 

with the use of logistic regression, with adjustment for age, sex, BMI, total number of 

medications, genotyping batch, and first ten principal components of ancestry.
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Figure 5: 
Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) by BMI and GPAM 
rs10787429 status in UK Biobank. Circles and bars depict medians the interquartile ranges, 

respectively. The ALT- and AST- increasing effect of the GPAM rs10787429 was amplified 

by increasing BMI (p for interaction rs10787429 x BMI on ALT = 7.1x10−9; p for 

interaction rs10787429 x BMI on AST = 4.0x10−8).
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Figure 6: 
Single-cell RNA sequencing reveals that GPAM is predominately expressed in hepatocytes 

and co-expresses with VLDL production-related genes. (A) GPAM expression in 

parenchymal and non-parenchymal liver cells shown in purple, (B) violin plot of GPAM 
expression by cell identity, (C) VLDL-producing hepatocytes are defined by co-expression 

of more than three transcripts of APOB and MTTP, (D) GPAM expression in VLDL­

producing compared to non-VLDL producing hepatocytes. GPAM was present in 48.5% of 

VLDL-producing cells and only 9.5% of VLDL non-producing cells (P=9.4x10−103).
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Table 1:

Association signals shared across ALT, AST, ALP and total bilirubin GWAS studies, defined by having a lead 

SNP from each GWAS (ALT, AST, ALP, total bilirubin) either identical or with shared proxies with r2 > 0.8. 

The lead SNP with the smallest p-value was kept. Linear regression was performed adjusting for age, sex, 

BMI, number of medications, genotyping batch, and the first ten principal components of ancestry. Biomarkers 

of liver injury are log-transformed.

Variant Measure (U/L) Estimate Std. Error P-value

GPAM rs10787429 ALT 1.37e−02 1.19e−03 1.37e−30

[10:113949664:C:T] AST 4.84e−03 7.73e−04 3.59e−10

ALP 8.90e−03 7.85e−04 9.51e−30

total bilirubin 7.56e−03 1.08e−03 2.93e−12

Variant Measure (U/L) Estimate Std. Error P-value

TRIM5 rs11601507 ALT 1.75e−02 2.08e−03 4.09e−17

[11:5701074:A:C] AST 1.03e−02 1.35e−03 1.96e−14

ALP 1.98e−02 1.37e−03 3.23e−47

total bilirubin 1.29e−02 1.89e−03 7.58e−12

Variant Measure (U/L) Estimate Std. Error P-value

NLRP3 rs56015600 ALT 7.92e−03 1.10e−03 5.51e−13

[1:247602968:A:G] AST 3.55e−03 7.12e−04 6.33e−07

ALP −6.29e−03 7.24e−04 3.75e−18

total bilirubin 6.37e−03 9.98e−04 1.68e−10

Variant Measure (U/L) Estimate Std. Error P-value

IL1F10 rs6743171 ALT −7.23e−03 1.09e−03 2.90e−11

[2:113840058:C:G] AST −5.33e−03 7.04e−04 3.99e−14

ALP 6.01e−03 7.16e−04 4.74e−17

total bilirubin −8.18e−03 9.87e−04 1.12e−16

Variant Measure (U/L) Estimate Std. Error P-value

SUGP1/TM6SF2 rs200210321 ALT 4.11e−02 2.04e−03 2.31e−90

[19:19393890:A:AG] AST 1.89e−02 1.32e−03 1.93e−46

ALP −2.38e−02 1.34e−03 1.11e−70

total bilirubin 1.47e−02 1.85e−03 2.12e−15
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Table 2:

Association of genetic variants of interest with log-transformed biomarkers of liver injury in Mass General 

Brigham Biobank (n = 19,323). Variants were selected based on their association associated with elevated 

ALT, AST, ALP and total bilirubin in UK Biobank. Linear regression was performed adjusting for age, sex, 

BMI, batch, and the first ten principal components of ancestry.

Variant Measure (U/L) Estimate Std. Error P-value

GPAM rs10787429 ALT 2.28e−02 7.60e−03 2.73e−03

[10:113949664:C:T] AST 1.19e−02 5.59e−03 3.31e−02

ALP 1.32e−02 5.61e−03 1.87e−02

Variant Measure (U/L) Estimate Std. Error P-value

TRIM5 rs11601507 ALT 1.64e−02 1.31e−02 2.10e−01

[11:5701074:A:C] AST 7.54e−03 9.63e−03 4.33e−01

ALP 1.85e−02 9.66e−03 5.57e−02
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