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Abstract

Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) 

have transformed the way the DNP process is understood in rotating samples. In 2012, two 

methods were concomitantly developed to simulate small spin systems (less than 4 spin-1/2). 

The development of new polarizing agents, including those containing metal centers with S > 

1/2, makes it necessary to further expand the numerical tools with minimal approximations that 

will help rationalize the experimental observations and build approximate models. In this paper, 

three strategies developed in the past five years are presented: an adaptive integration scheme, a 

hybrid Hilbert/Liouville formalism, and a method to truncate the Liouville space basis for periodic 

Hamiltonian. Each of these methods enable time savings ranging from a factor of 3 to >100. We 

illustrate the code performance by reporting for the first time the MAS-DNP field profiles for 

“AMUPol”, in which the couplings to the nitrogen nuclei are explicitly considered, as well as 

Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin 

1/2.

Graphical Abstract

• Faster MAS-DNP simulations in Liouville space via adaptive integration

• Zero-Track Elimination algorithm for periodic Hamiltonians

• Operator splitting using Hilbert and Liouville formalism to compute larger spin 

systems

• First bis-nitroxide MAS-DNP field profiles with explicit Nitrogen hyperfine couplings

• First solid-effect and cross-effect MAS-DNP field profiles with electron spins S = 5/2
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Introduction

In the past two decades, Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) 

has enabled very difficult solid-state NMR experiments by increasing the resolution (MAS) 

and the sensitivity (DNP) [1–3]. First developed for low magnetic fields [4–6], MAS-DNP 

for high fields [1,7] has been a game changer for difficult systems [8–15], thanks to 

hardware developments [3,16–20] and the introduction of biradicals as polarizing agents 

[21–24]. MAS-DNP complements room temperature solid-state NMR experiments and 

enables ssNMR applications where the system of interest has a low concentration [14,25–

31] and/or cannot be isotopically enriched [32–34].

DNP is a process that involves a complex interplay between the coherent and incoherent 

behavior of the spin system. The time dependence induced by MAS generates fast energy 

level (anti)crossing [35,36] and so-called rotor events [37]. These rotor events impact the 

populations and coherences in the density matrix, the effects of which depend on the 

strengths of the interactions and the rates of the crossings [35,37]. The deep complexity 

of this problem makes numerical simulations the only viable tool for the analysis of these 

mechanisms [35–39].

To simulate an experiment under MAS-DNP conditions, one needs to account for both 

the coherent (time dependent) behavior of the spin dynamics and its coupling to the 

environment, i.e., the relaxation. The integration of the resulting time dependent quantum 

master equation requires significant computing power. Due to the potentially large 

anisotropies and the amplitude of the interactions, it is integrated in a stepwise fashion 

[35–37]. This integration can be done over a long evolution time [35] or can take advantage 

of the periodicity of the problem [36,37] by just computing the evolution operator for one 

rotor period and applying it stroboscopically [36,37]. Hilbert space simulations are best 

suited for the former, while the Liouville space approach is better for the latter, and turns out 

to be faster for small spin systems [36,37,40–42].

This integration of the quantum master equation involves many matrix multiplications and 

exponential matrix operations. As the size of the spin system increases, the matrices become 

very large (exponential scaling), making the simulations cumbersomely slow. Improving 

the efficiency of MAS-DNP simulations is critical, as currently, they are the only way to 

understand time-dependent DNP mechanisms [35–40,42–48] and may be the best pathway 

for enabling the rational design of better biradicals [40,43,44,49,50]. While the numerical 

efficiency problem seems largely contained for bisnitroxide, with the advent of quantitative 

simulations [44,51], it may remain an open problem for biradicals with strong exchange 

interactions [49,52–54]. In addition, the MAS-DNP community has a strong interest in using 

other paramagnetic species for DNP that are reduction resistant, can be used to dope bulk 

materials [55–65], and/or may offer increasingly important structural information [66,67].

The current literature offers a variety of approaches to accelerate numerical spin 

dynamic simulations, such as the Liouville space basis truncation [68,69] using symmetry 

considerations or the contribution of the state to the spin dynamics [70,71], truncations 
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using the Krylov-Bogoliubov approximation [72], block diagonalization [73,74], or the use 

of efficient exponential matrices [74–77]. For Hilbert space simulations, larger spin systems 

can be simulated with the coupled cluster approach [78–81]. For very large spin systems, 

one can use Krylov propagation [74,82] and prevent matrix size explosion using tensor 

trains to avoid opening the Kronecker products [83]. In addition, simulations of frozen 

systems routinely require powder averaging to provide an accurate representation of the 

system’s properties. To this end, efficient interpolation algorithms have been implemented 

and yield considerable time savings [84–87]. However, most of these approaches have not 

been implemented into MAS-DNP simulations but have great potential to improve the speed 

of the simulations.

In this article we describe additional numerical methods that can lead to orders-of­

magnitude time savings in simulations of MAS-DNP experiments. First, a simple adaptive 

integration scheme that enables time savings on the order of three to five times is presented. 

Second, a hybrid Hilbert/Liouville formalism is introduced to study larger spin systems, 

which enables simulations of MAS-DNP field profiles with more spins and with electron 

spin S > ½ with times savings greater than one hundred times for short spin evolution times 

(< 1 s). Third, this hybrid formalism is used to truncate the Liouville space basis. This 

process, similar to the Zero-Track-Eliminations [88], enables truncation of the Liouville 

space basis, which combined with the adaptive integration scheme, yields times savings 

on the order of five to nine times, and is perfectly suitable for 3-spin steady state 

studies. Finally, the advantages, limitations, and potential improvements of each method 

are discussed.

Simulations

Hamiltonian and Integration of the Master equation

In this section the spin system and Hamiltonian are presented together with the standard 

numerical simulation approach to numerically integrate the time dependent Liouvillian 

[36,37].

For a spin system containing Ne electron spins and Nn nuclei, the Hamiltonian for MAS­

DNP simulations is defined as:

H(t) = HZ(t) + HHF(t) + HD(t) + HJ + HZFS + HQ + Hμw
= H0(t) + Hμw

Eq. (1)

Where

HZ(t) = ∑i gi(t)βeB0 − ωμw Sz, i + ∑n − ωnI z, n

HHF(t) = ∑i, nAz, i, n(t)Sz, iI z, n + 2 Ai, n
+ (t)Sz, iI n

+ + Ai, n
− (t)Sz, iI n

−

HD t = ∑i<jDi, j t 2Sz, iSz, j − 1
2 Si

+Sj
− + Si

−Sj
+ HJ = ∑i<j

− 2Ji, j Sz, iSz, j + 1
2 Si

+Sj
− + Si

−Sj
+

Eq. (2)
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Hμw = ∑iω1Sx, i Eq. (3)

Herein, the electrons spins are designated by a, b, c, … while nuclear spins designated by 

1, 2, 3… gi stands for the electron g-tensor value of electron spin i, Di,j, the electron dipolar 

coupling between electron spin and i, Ji,j, the exchange interaction between electron spin i 
and j, Ai,j, the hyperfine coupling between electron spin i and nucleus n, ωn, the nuclear 

Larmor frequency of nucleus n, ωμw, the microwave frequency, and ω1, the microwave 

nutation frequency. If the electron spin has S > ½ the Zero-Field Splitting (ZFS) term must 

be accounted for. This interaction is treated as a perturbation of the Zeeman interaction 

to enable the simulations in the microwave rotating frame. Using the Irreducible Spherical 

Tensor (IST) representation, the ZFS Hamiltonian can be written up to second order as

HZFS = HZFS
(1) + HZFS

(2)

= ∑iDZFS, iQ2, 0
i T 2, 0

i − DZFS,i2

ω0
i Q2, − 1

i Q2, 1
i T 2, − 1

i , T 2, 1
i

+ 1
2Q2, − 2

i Q2, 2
i T 2, − 2

i , T 2, 2
i

Eq. (4)

Where Q2, m
i  and T 2, m

i  are the spatial tensor components of the ZFS and the IST, respectively, 

and ω0
i = giβeB0 is the Larmor frequency of the electron spin (detailed expressions are given 

in references [73,89])

The simulations are carried out by propagating the density matrix either in Hilbert space 

with the Liouville-von Neuman equation [35]

iħ ∂
∂t ρ(t) = [H(t), ρ(t)] + R(t)ρ(t) Eq. (5)

where H and R are the coherent and relaxation operators, respectively in Hilbert space, or in 

Liouville space using the Master equation [36,37,41]

iħ ∂
∂t ρ (t) = L(t) ρ (t) = (H(t) + R(t)) ρ (t) Eq. (6)

where H and R are the coherent and relaxation super-operators. We use one hat O for an 

operator O in Hilbert space, and two hats O for O in Liouville space. In the Liouville basis 

made of the projectors |ϕi〉〈ϕj|, where |ϕi〉 are the Hilbert space states, ρ . is just ρ reshaped 

as a vector. This basis is called wave-function basis [90] (but also the Bra-Flipper [91]). To 

simplify the equations, we set ℏ = 1.

In this article the relaxation super-operator was generated in the eigenbasis of the Rotating 

Frame Hamiltonian (without microwaves), H0. Details about the relaxation and propagation 
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of such equations can be found in a previous publication [37]. Other relaxation models may 

be valid [92,93], but might not benefit from the same performance gains.

The numerical solution of the MAS-DNP master equation in the Liouville space is obtained 

by slicing the rotor period in small time intervals δt (typically ~103-104 steps per rotor 

period). At each step k, the Liouvillian L(kδt) is assumed to be constant, and the evolution 

super-operators are computed:

U(kδt, (k + 1)δt) = e−iL(kδt)δt Eq. (7)

The calculation of this matrix exponential is often the slowest step of the simulation, and 

this step must be repeated many times. For one rotor-period, τr, the complete evolution 

super-operator is given by

U 0, τr = ∏k = 0
#steps − 1e−iL(kδt)δt Eq. (8)

The density matrix at an integer multiple of any rotor period, N, is obtained as

ρ Nτr = U 0, τr
N ρ (0) Eq. (9)

from which the expectation values of the operators are extracted. For example, the 

polarization of electron spin a, Pa, is defined as

Pa(t) = 2 × Tr ρ(t)Sz, a Eq. (10)

and the polarization gain, ϵB, is defined as

ϵB(t) =
Tr ρ(t)I z
Tr ρ(0)I z

Eq. (11)

More details can be found in earlier publications [38,44,51].

Simulation parameters

Unless otherwise specified, all the simulations were carried out assuming a microwave 

frequency ωμw = 2π × 263.45 GHz, a temperature T = 100 K, a MAS frequency vr = 8 

kHz, and a nutation frequency ω1 = 2π × 0.4 MHz. Using Liouville space formalism, the 

steady-orbit density matrices were computed for 30 s of free evolution. When using the 

Hilbert/Liouville formalism, the density matrix was propagated for 100 ms of free evolution. 

For all nuclei we assumed T2,n = 10 ms.

For single orientation bisnitroxide simulations, we used an arbitrary biradical geometry. The 

g-tensor principal axis frame values were g = [2.00924, 2.0061, 2.00205], Da,b = 30 MHz, 

Ja,b = 0 MHz. The electron a is coupled to a proton through a dipolar hyperfine coupling 
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of Aa,1 = 3 MHz. The g-tensors relative orientation was set to (α,β,γ) = (90°,90°,90°), the 

electron-electron dipolar angles to (θ,ϕ) = (90°,180°), and the electron-proton dipolar angles 

to (θn,ϕn) = (0°,0°). The electron relaxation times were set at T1,e = 0.3 ms and T2,e = 2.5 μs 

for bis-nitroxide, and the nuclear relaxation time was set to T1,n = 0.1 s for the protons. The 

single crystal orientation was chosen to be [0°,137.5°,275°] (Figure 2 and Figure 4). The 

electron-nucleus dipolar angles are arbitrary but for the chosen hyperfine coupling strength, 

they have no effect on the outcome of simulations which are dominated by the electron 

spins’ dynamics [37].

The MAS-DNP field profiles of “AMUPol” used parameters extracted from DFT and EPR 

experiments [44]. The g-tensors relative orientation was set to (α,β,γ) = (58°,57°,126°), Da,b 

= 35 MHz, Ja,b = −16 MHz, the electron-electron dipolar angles to (θ,ϕ) = (78°,167°), and 

the proton hyperfine coupling was identical to the single orientation case. In this case, the 

electron T1,e was assumed anisotropic, i.e., T1,e = f(g), where f is a second order polynomial 

[51,94] and T2,e = 2.5 μs.

For “AMUPol” and the fictious bisnitroxide, the 14N nitrogen hyperfine coupling was set 

to AN = [20 18 101] MHz. Each electron spin is coupled to one 14N nuclear spins. The 

hyperfine coupling can be implicitly or explicitly considered. In Figure 3 and Figure 8, the 
14N were implicitly accounted for by considering that the hyperfine coupling shifts only the 

electron Larmor frequency

Hz, i = gi(t)βeB0 + mI, iAz, i
N (t) Sz, i . Eq. (12)

In these simulations, mI,i was randomly picked between [1,0,−1] for each radical of each 

crystal orientation.

In Figure 4, the 14N are explicitly accounted for and their relaxation times were 

T1, n
14N = 0.025 s. In Figure 6, the 15N hyperfine coupling, [28 25 142] MHz, are explicitly 

accounted for. The relaxation times were T1, n
15N = 0.025 s.

Large integration grid made of 800 three angles REPULSION single crystal orientations 

[95], were used to ensure convergence of the simulations for bisnitroxide.

The quadrupolar interaction of the 14N was ignored as it is relatively small compared to the 

hyperfine coupling and Larmor frequency [96].

For simulations with S = 3/2 and 5/2 (Figure 9), a Dzfs = 1 GHz was assumed (i.e., with 

Principal Axis Frame values [−1 −1 2] GHz). The g-tensor was assumed to be isotropic and 

set, for convenience, to 2.0023. The dipolar coupling between the electron spins was set to 

Da,b = 30 MHz. The nucleus was assumed to be a 13C with a hyperfine coupling was set to 

0.75 MHz. The ZFS relative orientation was (α,β,γ) = (90°,90°,90°), the electron-electron 

dipolar angles to (θ,ϕ) = (90°,180°) and the electron a - proton dipolar angles to (θ,ϕ) = 

(0°,0°). The relaxation times were set to T1,e = 0.1 ms and T2,e = 2.5 μs, an T1,n = 10 s. 200 

three angles REPULSION single crystal orientations were sufficient to reach convergence.
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All the simulations were carried out on a Dell Precision 7820, equipped with two Intel 

XEON gold 6130 CPUs, with 96 GB of RAM, and operating under Ubuntu 20.04.2 and 

using MATLAB 2020b (The MathWorks, Inc). The code was written in MATLAB and 

optimized to maximize calculation speed.

Adaptive integration in MAS-DNP

Principles

One obvious improvement to MAS-DNP simulations, and MAS simulations in general, 

is to avoid the constant time step integration and use an adaptive grid instead. So far, 

the MAS-DNP codes described in the literature use uniform/equidistant integration steps 

[35–37,41] which could be improved with an algorithm that automatically determines the 

optimal integration step size to achieve a given accuracy level.

The algorithm presented herein aims to (1) be simple to implement, (2) be accurate, (3) have 

low overhead (i.e., does not slow down the simulations), and (4) avoid re-computation of the 

Liouvillian and propagator super-operators.

The workflow of this procedure is shown in Figure 1. It is a modified two steps forward 

Euler method that computes accurately the spin dynamics during the rotor-events. First, the 

integration interval, i.e. one rotor period, τr = 1/vr, is divided into two different grids, each 

containing 2n elements. The largest time step allowed for the simulations is δtmax = τr/27 and 

the smallest time step allowed is δtmin = τr/2N (N = 12–14). The code determines on the fly, 

the optimal δt ∈ [δtmin,δtmax] for each “integration step”.

The master equation is first integrated with the largest step interval δtmax and the 

largest convergence criterion ϵ = ϵmax. Then, and for all following integration step, two 

computations are carried out: one super-operator propagator is computed with a time step δt 
and a second one with 2δt:

U2 − steps(0, t + 2δt) =
U(0, t)e−iL(t + δt)δte−iL(t + 2δt)δt

Eq. (13)

U1 − step(0, t + 2δt) = U(0, t)e−iL(t + δt)2δt Eq. (14)

To assess convergence, the Frobenius norm of the difference between the two super-operator 

propagators, Δ1 − 2, is calculated:

Δ1 − 2 = U2 − steps(0, t + 2δt) − U1 − step(0, t + 2δt) Fro Eq. (15)

If Δ1 − 2 is smaller than a user determined threshold ϵ (typically 10−3) the simulation proceed 

to the next integration step, and sets
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U(0, t + 2δt) = U2 − steps(0, t + 2δt), Eq. (16)

The integration step is increased by a factor two (if δt is smaller than δtmax)

δt′ min  2δt, δtmax Eq. (17)

If the difference is greater than ϵ the calculation is carried out with a time step smaller by a 

factor 2

δt′ max  δt/2, δtmin Eq. (18)

The code loops back and computes

U2 − steps 0, t + 2δt′ Eq. (19)

U1 − step 0, t + 2δt′ Eq. (20)

The procedure is carried out until convergence is achieved, i.e. Δ1 − 2 < ϵ. To avoid 

recomputing the super operator propagators at each step, they are evaluated for the smallest 

δt = δtmin

U t, t + δtmin = e−iL t + 2δtmin δtmin Eq. (21)

and stored propagators in memory. They can later be scaled up by computing

U(t, t + δt) = e−iL t + 2δtmin δtmin
δt/δtmin

Eq. (22)

which is “fast” when δt/δtmin is an integer.

This integration scheme is notoriously insufficient to capture rapid changes such as the rotor 

events. Without additional constraints, the code requires a stringent convergence criterion ϵ 
to be accurate, annihilating the benefit of the adaptive integration. To overcome it, and find 

a balance between accuracy and speed, two convergence criteria were introduced: one, used 

away from the rotor events, ϵmax, one used nearby the rotor events, ϵmin.

In addition, the existence of a rotor event is determined at each step with a sub-routine that 

checks if an energy level crossing/anti-crossing exists in the interval [t,t +2δt]. If this is the 

case, then a new convergence tolerance then ϵ is set:

ϵ = max  ϵ/10, ϵmin Eq. (23)
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where ϵmin is user-defined (typically 10−6). This ensures proper assessment at the rotor­

events. This criterion is then slowly re-increased towards ϵmax after the energy crossing:

ϵ = min  ϵ × 10, ϵmax Eq. (24)

It is sufficient with this approach to check the energy level crossings occurring in the 

rotating frame since the energy diagram is dominated by the off-resonance generated by the 

g-tensors’ anisotropies under typical MAS-DNP conditions.

Applications

This algorithm leads to a factor >3 in time savings for MAS-DNP simulations while 

maintaining very good accuracy (≤ 5%). This is illustrated in Figure 2 which shows the 

computation for a single crystal orientation at “steady orbit” (or “quasi-periodic steady 

state”). The full lines, Figure 2 (a) show the constant time step integration carried out with 

213 = 8192 steps. Figure 2 (b) lines with crosses show the same simulation with the adaptive 

integration algorithm which lead to only 2225 steps. The time saving is a factor 35 s/10 s ≈ 
3.5. This value is very close to the ratio of number of steps 8192/2225 ~ 3.6, meaning that 

subroutine that determines the optimal time steps has minimal overhead.

This is confirmed with simulations of a AMUPol’s MAS-DNP field profile using both 

methods and reported in Figure 3. The equidistant method took 3.5 times longer than the 

adaptive version leading to identical profiles and a maximum error of ~8 % and an average 

error < 5 %.

All in all, and despite its simplicity, the adaptive integration scheme presented here is 

very powerful. It significantly reduces computation time, by a factor 3–5 depending on 

the convergence criteria and the spin system, while remaining accurate. It thus enables 

computing MAS-DNP field profiles, probe the effect of spin or experimental parameters to 

be tested, in a shorter timescale.

The method presented here still suffers from Liouville space simulations exponential scaling 

with the number of spins. To address this problem an alternative formalism was developed, a 

hybrid between Hilbert and Liouville space.

Operator splitting, the hybrid Hilbert/Liouville formalism

Taking advantage of Hilbert space scaling

In this section, a simulation method that combines Hilbert space and Liouville space 

components is presented. This method avoids, in part, the Liouville space simulations 

scaling issue. In absence of any Liouville basis truncation, a M spin ½ system is represented 

with a Liouvillian and evolves under a super-operator propagator of size of 4M while the 

corresponding Hilbert space size is 2M. The Liouvillian of a five-spin system has a size 

(1024 × 1024) and while the Hamiltonian size is only 32 × 32. The exponentiation is 

in general computationally intensive and scales unfavorably, even when the Liouvillian is 

sparse [74]. For a Liouvillian containing both the coherent and incoherent processes, there 
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are often no “hidden” symmetries, and the full matrix must be exponentiated. One would 

thus want to take advantage of the more favorable Hilbert space scaling, as previously done 

by Thurber and Tycko [35], but also keep the convenience of Liouville space to introduce 

relaxation. This is possible under certain conditions and relies on 3 observations.

Observations (1), if the relaxation super-operator is written in the laboratory frame H0
eigenbasis wavefunction, it takes a “kite shape” [97]. It is the direct sum of the terms related 

to the population and those related to the coherences such that

R = RPop ⊕ RCoh Eq. (25)

RPop being a square non-diagonal matrix of size 2M and RCoh is a square diagonal matrix of 

dimension 2M(2M-1) ~ 22M.

The exponentiation preserves the kite shape and is thus fast and straightforward. It maps as

exp ( − iRt) = exp  −iRPopt ⊕ exp  −iRCoht Eq. (26)

Only a 2M×2M matrix, RPop, must be exponentiated, and the exponential of the numbers 

populating the diagonal of RCoh must calculated.

Observation (2), the MAS-DNP simulations are often carried out in small steps (~ 10 ns) 

and for the typical interactions/relaxation rates found under MAS-DNP conditions (T2,e~μs, 

ω1~MHz, Da,b/Ja,b~MHz) the Lie-Trotter product formula [98] (or Suzuki–Trotter expansion 

up to the first order [99]), is valid. Thus,

e−iL(t)δt = e−i(H(t) + R(t))δt

= e−iR(t)δte−iH(t)δt + O δt2 .
Eq. (27)

Observation (3), e−iH(t)δt (Liouville space) is a very large matrix and slow to compute. 

However, using this Suzuki–Trotter approach, one can use a Hilbert space computation 

instead e−iH(t)δt if the density matrix is re-written in Hilbert space for this step.

The resulting Hilbert/Liouville formalism, is illustrated in Figure 4. First, the density matrix, 

written as a 2M × 2M matrix and written in H0 eigenbasis. It is then propagated in the Hilbert 

space using

ρ(t + δt) = UH(t)ρ(t)UH
−1(t) Eq. (28)

where ρ and UH(t) = e−iH(t)δt are operators in the Hilbert space. ρ is then turned into a 

Liouville space vector of size 4M by a simple “reshape” command, which corresponds to 
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ρ  written in the Laboratory frame eigenbasis wavefunction. The relaxation (super-operator) 

propagator UR(t) = exp  −iRPopδt ⊕ exp −iRCohδt  can be applied

ρ (t + δt) = UR(t) ρ (t + δt) Eq. (29)

The density matrix “vector” is then written back into the Hilbert space, as a simple 

“reshape” command, and finally rotated back into the Zeeman basis. UH and UR and the 

eigenvectors V  can be computed for one rotor period and stored in memory for subsequent 

calling.

Applications

The advantages of this approach are not obvious: (1) the number of computations is 

doubled, (2) it is more memory demanding, (3) it does not take advantage of the periodicity 

offered by Liouville space simulations. However, the execution time of exponential matrices 

and matrix multiplication are the main bottlenecks leading to slower simulations in full 

Liouville space. The combined Hilbert/Liouville method is massively faster for larger 

spin systems, with literally no accuracy difference between the Hilbert/Liouville and full 

Liouville approach (see Figure SI 1 for a 3 spins system). Figure 5 illustrates the potential 

of this formalism by exploring the evolution of a 5-spin system: 2 electrons spin 1/2, 2 14N, 

and a proton after it evolved for (100 ms). The simulation took 890 seconds on a single 

CPU core. In comparison, this 5184 × 5184 problem in Liouville space, combined with the 

Zero-Track Elimination (vide infra) and a basis size reduction by 75 % (cutoff criteria 10−5), 

vastly exceeded 15 h.

The simulations reveals that all the rotor events are now “split” into sub-rotor events due 

to the significant 14N coupling and that 14N undergo very strong CE rotor event occurring 

close to the dipolar/exchange rotor events. They affect the electron spins’ dynamics by 

creating significant changes in their polarization. It also shows that, as the number of spins is 

increased, the sharp nature of the rotor-events gets smeared into a more continuous form as 

anticipated in earlier work [39].

This brings up the question: can the spin dynamics of nitrogen be ignored for bis-nitroxides? 

Figure 5 shows they impact all the rotor events and the electrons’ polarization, but so 

far, their dynamics have been left out of MAS-DNP simulations due to scaling issues. 

The Hilbert/Liouville method enables answering this question. The MAS-DNP field profile 

of “AMUPol” made of {2 electrons, 2 nitrogens, 1 proton} was computed in two cases: 

(1) by explicitly including the nitrogens’ nuclear spins, i.e. with the secular and pseudo 

secular hyperfine to the nitrogen spins, (2) by considering only the shift induced by secular 

hyperfine to the nitrogen spins (see Eq. (12)). In case (1), the simulations consider the 

contribution of the nitrogen spin to the total spin dynamics, while in case (2), the nitrogen 

only shifts the electron Larmor frequency.

To keep the simulation time down (i.e., less than a day), 15N were used. The results are 

reported in Figure 6. The black circles correspond to the full treatment of the 15N hyperfine 
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coupling while the open red square correspond to the implicit case. The two MAS-DNP field 

profiles are very similar. The relative intensities of the maximum positive and negative sides 

are identical. The profiles are identical in the low field region but slightly differ in the high 

field one. The approximation (Eq. (12)) repeatedly underestimates the DNP efficiency on 

the right edge of the MAS-DNP field profile. The optimal field position is slightly shifted 

as well. Overall, these effects are small and these simulations (and others, see figure SI 4) 

confirm that one can safely ignore the impact of the nitrogen on the MAS-DNP performance 

of bis-nitroxides.

Lastly, the adaptive integration scheme and the Hilbert/Liouville formalism can be 

combined. The algorithm is identical with exception of the convergence criteria Δ1 − 2 is 

applied to the density matrix and becomes

Δ1 − 2 = ρ2 − steps(0, t + 2δt) − ρ1 − step(0, t + 2δt) Fro ≤ ϵ Eq. (30)

This adaptive integration generates significant time savings when the number of rotor events 

is low. This is illustrated on a model biradical made of 2 electrons and 2 nuclei with 

large isotropic hyperfine couplings matching the Larmor frequency of the proton. This spin 

system is similar to the ideal biradical proposed by Thurber and Tycko [35], except that the 

EPR line is not split due to different isotropic g-tensors but due to the isotopic hyperfine 

coupling. The corresponding MAS-DNP field profile is reported in Figure 7. It was obtained 

in less than 6 hours, ~9 times faster than the equidistant computation.

Expectedly this type of spin system can generate significant enhancement and could be 

superior to bis-nitroxides. One should note that such a mechanism may occur in Mn2+ when 

polarizing certain nuclei (e.g. 31P at ~14.1 T) or with 13C-labelled bis-trityl that exhibit very 

large hyperfine interactions [100].

All in all, the Hilbert/Liouville formalism is very efficient for larger spin system. Its speed 

makes this method pertinent to determine which terms in the density matrix are getting 

populated, thus enabling a speed up the Liouville space simulations via the reduction of 

the Liouville basis. This process, called Zero-Track Elimination [88], is described in the 

following section for periodic Hamiltonian used in MAS-DNP simulations.

The Zero-Track Elimination (ZTE) for periodic Hamiltonians

In this section the Liouville/Hilbert method is used to reduce the space size of the 

conventional Liouville method. As demonstrated by Kuprov et al. [69] the Liouville space 

is often sparsely populated during magnetic resonance simulations. States that do not 

contribute to spin dynamics can be safely discarded, leading to smaller super-operators 

[71,88]. For a time-independent Hamiltonian, it is sufficient to propagate the full density 

matrix over a few time steps to assess which terms are not populated and therefore can be 

discarded. This is the ZTE algorithm [71,88].

However, the time dependence induced by MAS complicates the application of the ZTE 

algorithm. As MAS-DNP involves periodic, quasi-instantaneous energy level anti-crossing 
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(rotor event), the spin system must be propagated over at least one rotor period to assess 

which terms can be discarded. For large spin systems, this is nearly impossible when using 

the full Liouville formalism. Instead, the propagation can be carried out with the Hilbert/

Liouville formalism, thus enabling the ZTE and the shrinking of the Liouville basis used in 

Liouville space simulations.

In the current implementation, the density matrix is propagated over Nr = 21 rotor periods. 

The density matrices computed at each step of the last rotor period, ρ Nr − 1 τr + kδt , are 

stored in memory. The module of the density matrices elements |ρi,j(Nr − 1)τr + kδt| is 

averaged over the last rotor period as

‖ρi, j‖ = 1
steps ∑k = 1

#steps |ρi, j Nr − 1 τr + kδt | . Eq. (31)

If ∥ρi,j∥ < ϵ the state can be discarded from the basis.

As MAS-DNP requires powder averaging, two strategies can be devised: 1/ apply the ZTE 

for each single crystal orientation prior to executing the reduced Liouville space simulations, 

or 2/ try to find the minimal basis size common to all crystal orientations and then run 

the reduced Liouville space simulations. The ZTE being still time consuming, option 2 is a 

smarter choice. The minimal common basis can be found by executing the ZTE for multiple 

crystal orientations. For Cross-Effect MAS-DNP, 40 REPULSION crystal orientations are 

sufficient to determine these commonly populated states. The final basis consists of all the 

states that meet the criteria ∥ρi,j∥ > ϵ at least once for all the crystal orientation, i.e.

‖ρi, j‖total = 1
steps ∑CF = 1

Crystal Orient ∑k = 1
#steps |ρi, j Nr − 1 τr + kδt |CF > ϵ Eq. (32)

Figure 8 reports the MAS-DNP field profile computed in the case of AMUPol with ZTE as 

compared to the full space, equidistant integration. Keeping the terms that are ∥ρi,j∥ > ϵ = 

5 × 10−5, only 42 of the 64 terms survived. The simulations using adaptive integration and 

ZTE were 5.2 times faster when the maximum number of angular steps was set to 8192. The 

ZTE execution took 40 s and was executed once at B0 = 9.394 T. The average error is < 

5 % on average. A factor > 8 in time savings is obtained by setting the maximum number 

of angular steps to 4096. The errors are larger, about 8 % on average, but simulations still 

provide an accurate MAS-DNP field profile and are thus sufficient for that purpose.

Discussion

Numerical simulations of MAS-DNP are time consuming, even for a small spin system 

made of 3 spins 1/2. They can take a few hours up to a few days depending on the number of 

parameters scanned and the extent of the powder averaging. Thus, three different strategies 

with minimal approximations, and their implementations, have been described: the adaptive 

integration for Liouville space simulations, the hybrid Hilbert/Liouville method, the ZTE 

for time dependent problem. The first two are independent while the ZTE relies on the 

Hilbert/Liouville formalism but benefits the Liouville space simulations. The improvement 
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in the simulation times should not be compared with what was achieved in recent work 

[39,44]. The methods are not intended to simulate thousands of spins, instead, the absence 

of additional assumptions makes these methods ideal to probe cases where there is no prior 

knowledge of spin dynamics. This is essential to understand the spin dynamics and be able 

to make assumptions/simplifications in order to build larger spin systems.

Adaptive and ZTE

The adaptive integration scheme for the Master equation is a simple scheme that improved 

the speed of the simulations by a factor 3–5 without affecting the accuracy. Combined 

with the ZTE the gains are even more important as displayed in Figure 8. Specifically, the 

Liouville basis of a 3-spin system (2 electrons spin 1/2, one nucleus 1/2) was reduced by 

ZTE from 64 to 42 states (≈ 65% or the original size). Scanning through experimental or 

magnetic parameters is made accessible on a reasonable time scale for 3 spin systems. The 

method was successfully used at screening stages of biradical design [49].

The adaptive integration scheme performs well for small spin systems because few rotor 

events occur. This means that the overhead induced by checking the convergence criteria, the 

scaling of the propagator, is vastly compensated by the reduction of the number of steps. As 

the number of spins increases, the rotor events become more continuous, and the adaptive 

integration becomes slower than the brute force equidistant integration.

The ZTE implementation for periodic problem can be straightforwardly applied to any 

system and any basis. In practice, the ZTE leads to drastic basis size reduction when the 

interaction graph is sparsely connected, in other words, when each spin is connected to very 

few neighbors [88]. The ZTE used for a 5-spin system (2 electrons, 2 14N, 1 proton) reduced 

the problem size from 5180 to 1106, i.e. a factor 5, with a cutoff criteria of 10−5.

Here, the ZTE algorithm uses the hybrid Hilbert/Liouville method to propagate large spin 

systems and then reduce the basis for Liouville space simulations. It could have been 

implemented with a Krylov propagation [70,75,82] that only involves fast matrix/vector 

propagator instead of matrix exponential. For speed purposes it may be possible to use a 

Hilbert space propagation, albeit with a lower efficiency as high order of coherences may 

not decay quickly enough [101].

These algorithms are subject to improvements, further boosting their efficiency. Cleverer 

adaptive integration schemes may provide better results both in terms of accuracy and 

computation time if their overhead is significantly lower than the proposed algorithm. So 

far, the algorithm described above “slows” down for each energy level crossing whether 

it contributes to the spin dynamics or not. This clearly can be improved by using the 

approximated eigen-energy diagram, as used to compute field swept EPR spectra [87,102].

Another significant improvement may be obtained by using “Iserles” integrators [103,104], 

that are equivalent to the trapezoidal integrations. In Spinach v.2.6, their implementation 

yields time savings > 5 [74].

Finally, the ZTE could be made more efficient with more Liouville basis adapted for 

truncation, such as IST [68,74,97,105,106].
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Hybrid Hilbert/Liouville

Despite these two improvements simulations in Liouville space (even truncated) remain 

exceedingly slow for large spin system. For example, it is nearly impossible to compute a 

single crystal orientation containing spins systems with a Hilbert space size > 32×32 on a 

reasonable time-scale. This led to the development of an alternative approach to compute 

larger spin systems: the hybrid Hilbert/Liouville formalism. The method takes advantage of 

the need for small integration steps, to benefit from the scaling of the Hilbert space. This 

enables the propagation of spin system that are significantly larger and that include spins 

>1/2. To fully take advantage of the Hilbert space scaling, the relaxation was introduced 

in the eigenbasis wavefunction of the lab-frame Hamiltonian H0. This basis was used to 

compute the coherent propagator and make the relaxation super-operator exponentiation 

simple. Introducing the relaxation in the eigenbasis of H0 requires the diagonalization which 

might be a bottleneck [107]. However, H0 is always block-diagonal and the diagonalization 

is very fast when combined with the Tarjan algorithm [108].

This method does not fully take advantage of the periodicity of the problem. This is a 

difficulty also faced by Thurber and Tycko in their implementation of the MAS-DNP 

simulations [35] where Hilbert space simulations and a separation of coherent and relaxation 

processes were used.

As the relaxation model used here only considered exponential decays it enables the 

propagators/relaxation super-operator of the Hilbert/Liouville approach to be stored in 

memory. The buffering facilitates longer propagation. To illustrate this, a MAS-DNP 

simulation of a three-spin system (2 electron spin ½ and a nucleus ½) was carried out 

for 1.25 s of free evolution. This simulation took approximately 15 minutes with buffering 

16 hours without. The Hilbert/Liouville simulations even with buffering remains impractical 

for a small spin system as the full Liouville space simulations only take ~30 s.

The Hilbert/Liouville implementation is designed for larger spin systems. It is, so far, 

the only viable numerical method without significant approximations. As a demonstration, 

simulations with 2 electron spins, 2 14N and one proton was carried out over 100 ms in 

just 15 mins for a single crystal, on a single core! We used it to show that the dynamics of 

the bis-nitroxide nitrogen are not essential for the MAS-DNP process and can be omitted. 

Additionally, the formalism is compatible with the adaptive integration saving significant 

computation time when the spin system does not involve too many rotor events. This was 

perfectly adapted to the model biradical where two well defined EPR lines are separated by 

the proton Larmor frequency.

The hybrid Hilbert/Liouville formalism can compute MAS-DNP field profile with two 

electrons spin 5/2 and one nucleus spin ½ as illustrated in Figure 9. In Figure 9 (a, bottom) 

the Solid-Effect MAS-DNP field profiles were computed in two different spin systems, an 

electron spin 3/2 or 5/2 connected to a 13C spin (black circles and red squares respectively). 

The corresponding high field EPR spectra are reported in Figure 9 (a, top). For readability, 

the MAS-DNP field profiles were centered around the central transition − 1
2

1
2  but broader 

field profiles were computed and reported in the SI (Fig. SI 2). The MAS-DNP field profiles 
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presents the expected positive and negative enhancement outside of the EPR spectra. The 

simulations were carried out in 28 and 40 minutes respectively correspond to an evolution of 

25 ms. The speed of the simulations indicated that even spin 7/2, as found in Gd3+, could be 

simulated.

Similarly, Figure 9 (b, bottom) reports the Cross-Effect MAS-DNP field profiles for two 

different spin systems, two electron spins 3/2 with or two electron spin 5/2 connected to 

a 13C spin (black circles and red squares respectively). The corresponding high field EPR 

spectra are reported in Figure 9 (b, top). The MAS-DNP field profiles presents the expected 

positive and negative enhancement inside of the EPR spectra. Again, the MAS-DNP field 

profiles are centered around the central transition − 1
2

1
2  for readability, broader field 

profiles are reported in the SI (Fig. SI 2). They reveal significant enhancement arising for 

these higher spin number states transition. The simulations took 2 h and 18 h respectively for 

25 ms of evolution time. The simulations are significantly slower than the SE case. It may be 

possible to compute two electron spins 7/2 and a nuclei, or two Mn2+ and a nuclei using a 

more powerful computing setup.

This operator splitting method could be used to confirm the theoretical prediction by 

Corzilius of the MAS-DNP mechanism when electron spin ≥ 5/2 are involved [45], test 

the effect of the relative ZFS orientation and build an equivalence with the g-tensors’ 

distance [43]. It may then be possible to build faster MAS-DNP model that uses Landau­

Zener approximation and severely truncated Liouville basis as was done for bis-nitroxides 

[39,44,46,47]. This remains beyond the scope of this manuscript.

In general, the hybrid Hilbert/Liouville is not immediately suitable to compute polarization 

gains ϵB at the steady orbit. A shorter evolution time may affect the shape of the MAS-DNP 

field profiles.

For CE in small spin system, the nuclear polarization at steady orbit is usually obtained in 

hundreds of milliseconds [35], meaning that the Hilbert/Liouville method could be used to 

compute accurate Cross-Effect MAS-DNP field profiles.

This was observed for the MAS-DNP field profiles which is identical for shorter (12.5 ms) 

or longer evolution time (100 ms) (see figure SI 3). This illustrates that reliable MAS-DNP 

field profiles are possible in a reasonable time scale, i.e. within a few hours to a day.

For the Solid-Effect and Overhauser case, the steady state is reached after a much longer 

evolution time [109–111]. Approximate MAS-DNP field profile may be obtained by 

computing them with short evolution time (e.g. 25 ms) and scale them by computing the 

steady state for a single magnetic field point.

Steady state polarization may nonetheless be accessible with a cleverer approach than 

brute-force time propagation. For example, it is possible to use optimization Monte Carlo 

algorithms to compute the steady state polarization as previously done for large spin systems 

[50].
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Finally, this hybrid method could also be improved, using the already mentioned Iserles 

integrators, a cleverer adaptive integration and different basis. Together they would provide 

enable reducing the number of angular steps required and the basis size, thereby limiting the 

memory requirements, and speeding the simulations up.

Conclusion

In this article we showed three numerical methods to make MAS-DNP simulations faster. 

The three methods, adaptive integration, hybrid Hilbert/Liouville approach and ZTE each 

have their domain of applications and combination. The ZTE combined with adaptive 

integration leads to time saving ranging from 5 to 10 depending on the level of accuracy 

enabling computation of MAS-DNP field profiles of small spin systems straightforward. 

The hybrid Hilbert/Liouville approach is powerful to look at spin systems with more 

spins or spins greater than ½. This enables computing spin systems that corresponds to 

a Liouville space 80 times greater than the commonly used 3 spin ½ system that mimics 

the Cross-Effect. The formalism can serve as a platform to analyze the spin physics in 

these systems and seems sufficient to computer properties such as MAS-DNP field profiles 

but is ineffective to compute the steady state polarization. Each of these methods were 

illustrated with examples that provided a glimpse of what is accessible and how the 

spin dynamics changes with the nature of the paramagnetic species. We finally discussed 

potential improvement that could be made to the codes to further improve them.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematics of the adaptive integration scheme for MAS-DNP simulations in the case of the 

Liouville space simulations. Typically, N = 12–14.

Mentink-Vigier Page 24

J Magn Reson. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Single crystal, time dependence after 30 s of at “steady orbit” of the polarization of electrons 

spin a Pa (blue), electron spin b Pb (red) and nuclear spin P1H(black), in the case of constant 

step integration with 8192 steps (a) obtained in 35 s, and adaptive integration (b) obtained in 

2225 steps and 10 s. The integration steps can be seen in figure (a) as Pa is represented with 

a blue line and crosses. In figure (b) the Pa, Pb and P1H are represented with vertical crosses 

which illustrates where finer and coarser steps where used.
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Figure 3: 
MAS-DNP field profile of AMUPol computed with two different methods: equidistant 

(black circles) and adaptive integration (open red squares). The equidistant was computed in 

5h 48 min as compared to 1h 39 min for the adaptive. The maximum number of steps was 

set to 8192 (N=13) and the convergence criteria were [10−3,10−6]
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Figure 4: 
Schematic of Hilbert/Liouville formalism. First the density matrix is propagated in Hilbert 

space, then reshaped and Relaxation is applied. Finally, it is reshaped back into the 

Hilbert Space. In this schematic, the rotation “into” and “from” the lab-frame Hamiltonian 

eigenbasis were omitted for clarity. They occur at the beginning and the end of this cycle.

Mentink-Vigier Page 27

J Magn Reson. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Time dependence of the polarization for nitroxide biradical made of 2 electrons, 2 14N, and 

one 1H across one rotor period after 100 ms of evolution. Blue, polarization of electron spin 

a Pa, red, polarization electron spin b Pb, gold, polarization of the 14N connected to electron 

a P14N,1, green, polarization of the 14N connected to electron b P14N,2, and black for spin 

P1H computed in 15 minutes.
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Figure 6: 
MAS-DNP field profiles after 100 ms of free evolution of a spin system mimicking a 

AMUPol labelled with 15N. Black circles represent a 5-spin system {2 electrons spin ½, 

2 15N, 1 proton} computed with the Hilbert/Liouville method. Both secular and pseudo­

secular 15N hyperfine coupling terms are considered. Red open squares represent adaptive 

Liouville space simulations where the 15N hyperfine coupling are implicitly accounted for.
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Figure 7: 
Top high field EPR spectrum of the hypothetical biradical computed with Easyspin. Bottom 

73 points MAS-DNP field profile computed with the hybrid Hilbert/Liouville method after 

100 ms evolution, for a 5-spin system {2 electron spins, 2 15N, 1H}. The 15N couplings are 

isotropic and equal to 400 MHz, the g-tensors are [2.0027, 2.0024, 2.0023]. The biradical 

geometry was identical to the fictious bisnitroxide used in figure 2. T1,e = 0.5 ms and T2,e = 

2.5 μs.
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Figure 8: 
MAS-DNP field profile of AMUPol computed with equidistant integrations steps (black 

circles, in 5h48min), computed with adaptive integration and reduced Liouville space (open 

red squares, 1 h). The maximum number of steps was set to 8192 in these simulations. 

Adaptive integration, reduced Liouville (42 states vs 64) and a maximum number of 

steps set to 4096 obtained in 40 minutes (open blue diamonds). For all simulations the 

convergence criteria were [10−3,10−6].
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Figure 9: 
MAS-DNP field profile computed with the hybrid Hilbert/Liouville method after 25 ms 

evolution. (a, bottom), Solid Effect case with one electron spin 3/2 (black circles) or 5/2 

(red open squares) and one carbon atom; (b, bottom) Cross-Effect case with two electrons 

spin 3/2 (black circles) or 5/2 (red open squares) and one carbon. Top of (a) and (b) are 

the corresponding EPR spectra of the spin systems used for the MAS-DNP simulations. The 

EPR spectra were computed with Easyspin assuming a line broadening [0.5 0.5] mT and a D 

strain of 100%, using the “matrix” method. In the MAS-DNP no strain was included.
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