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Abstract 

Here, we combine network neuroscience and machine learning to reveal connections between the brain’s network 
structure and the emerging network structure of an artificial neural network. Specifically, we train a shallow, feed-
forward neural network to classify hand-written digits and then used a combination of systems neuroscience and 
information-theoretic tools to perform ‘virtual brain analytics’ on the resultant edge weights and activity patterns of 
each node. We identify three distinct phases of network reconfiguration across learning, each of which are character-
ized by unique topological and information-theoretic signatures. Each phase involves aligning the connections of the 
neural network with patterns of information contained in the input dataset or preceding layers (as relevant). We also 
observe a process of low-dimensional category separation in the network as a function of learning. Our results offer a 
systems-level perspective of how artificial neural networks function—in terms of multi-stage reorganization of edge 
weights and activity patterns to effectively exploit the information content of input data during edge-weight train-
ing—while simultaneously enriching our understanding of the methods used by systems neuroscience.
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1  Introduction
In the human brain, capacities such as cognition, atten-
tion, and awareness emerge from the coordinated activity 
of billions of neurons [1]. Methods that have tradition-
ally been used to map these functions from neuroimag-
ing data were designed to identify ‘activated’, localized 
regions of the brain that characterize a particular cogni-
tive context [2]. This historical focus on localization has 
led to a number of key insights about neural function, 
however it has also made it more challenging to create 
links between systems-level neural organization and psy-
chological capacities.

A potential means for mapping psychological func-
tions to neural architecture involves the analysis of 

neuroimaging data from a systems-level perspective 
[3–5]. By representing the brain as a network of inter-
acting parts, systems neuroscientists are able to char-
acterize high-dimensional datasets in ways that help 
understand how brain networks process information [6, 
7]. Across multiple spatial [8] and temporal [9] scales, 
these approaches have revealed a number of systems-
level properties of brain organization. A salient example 
is the measurement of network modularity, which quan-
tifies the extent to which a network comprised a relatively 
weakly inter-connected set of tight-knit sub-modules. 
Previous whole-brain imaging approaches have shown 
that network modularity is tightly linked to performance: 
modularity increases with learning [5, 10], but decreases 
during the performance of challenging cognitive tasks [9, 
11]. These results provide evidence that the network-level 
topology of the brain is a relevant axis for understanding 
complex features of human behavior [12, 13].
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Despite their intuitive appeal, current systems-level 
approaches in human neuroimaging are inherently indi-
rect. For instance, it is currently impossible to map the 
intact nervous system at the microscale (i.e., cellular) 
level—instead, we are forced to infer structural connec-
tivity indirectly via diffusion weighted imaging [14], or 
so-called ‘functional’ connectivity via the similarity of 
temporal patterns of neural activity or blood flow [15]. 
Even with access to high-resolution images of neural con-
nectivity, we do not yet have access to generative models 
that can effectively simulate different patterns of network 
reconfiguration across contexts. Without these ‘ground 
truth’ approaches, systems neuroscience is currently 
stuck at the descriptive level: we can identify consistent 
changes in network-level reconfiguration as a function 
of learning [5, 10], or more abstract cognitive capacities, 
such as working memory manipulation [16] or dual-task 
performance [17], however we have no principled means 
of translating these observations to interpretable mecha-
nistic hypotheses [18].

The advent of artificial neural networks (ANNs) in 
machine learning has the opposite problem: the algorith-
mic rules for training high-performing networks have 
been extremely successful, but we do not yet understand 
the organizational principles through which reconfigu-
rations of network architectures enable strong perfor-
mance. Although some of the details of implementation 
differ [19], neuroscience and machine learning share 
some remarkable similarities. For example, the original 
ANN algorithms were in part inspired by the anatomy 
of the cerebral cortex [19–21], and in the case of deep, 
layered neural networks, both systems share a common 
property of distributed computation facilitated by com-
plex topological wiring between large numbers of (rela-
tively) simple computational units. Over the last few 
decades [20], neural networks were trained to outper-
form world experts at complex strategy games, such as 
Chess and Go [22]. Although the algorithms that are used 
to train neural network weights are well understood, the 
manner in which neural networks reconfigure in order 
to facilitate high levels of classification accuracy remains 
relatively opaque [2, 20, 21]. It is this process of adapting 
a complex network of interacting components to perform 
a useful task that has escaped a detailed analysis using 
the established tools of network neuroscience, which 
themselves have been used to quantify structure–func-
tion relationships in the brain for over a decade.

While the question of how network reconfigura-
tion supports learning is mirrored in machine learn-
ing and network neuroscience, the different contexts 
of these fields provides a timely opportunity to bring 
them together synergistically to investigate the problem 
[23]. First, we can observe that the process of adapting 

a complex network of interacting components to per-
form a useful task is more simply captured in the train-
ing of neural networks. Studying this process offers a 
unique opportunity to study whole-network structure 
and activity in a controlled setting with a defined learn-
ing objective. In this way, we may identify deeper con-
nections between the structure of networks in the brain 
and in ANNs. For instance, macroscopic human brain 
networks constructed from multi-region interactions 
in neuroimaging data demonstrate substantial recon-
figuration as a function of task performance: early in the 
course of learning, the brain is relatively inter-connected 
and integrated, but this pattern typically gives way to a 
more refined, segregated architecture as a simple motor 
skill becomes second-nature [5, 10]. Do similar topologi-
cal changes happen across training iterations of ANNs? 
Identifying conserved organization properties between a 
learning brain and a learning ANN could hint at common 
topological principles underlying distributed information 
processing.

Furthermore, the synthetic nature of ML networks 
means that we can directly interrogate the functional 
signature of specific elements within ML networks as 
they learn how to classify diverse input examples into 
a smaller set of outputs classes. While direct access to 
microscale neuronal interconnections is not practi-
cally possible using contemporary human neuroimag-
ing approaches, we can directly observe changes in the 
distributed patterns of connectivity in ANNs over the 
course of learning. This allows us to investigate how the 
functional capacities of networks are distributed across 
their constituent components, which is inherently chal-
lenging to study in biological brains. The established 
tools of network science, as have been applied to quantify 
structure–function relationships in the brain for over a 
decade, are perfectly placed for such analysis [24–27].

Here, we use a network science approach to under-
stand how network reconfiguration supports the per-
formance of ANNs at supervised learning problems. 
Specifically, we use the tools of systems neuroscience 
and information theory to analyze a feed-forward neu-
ral network as it learns to classify a set of binary digits 
(from the classic MNIST dataset [28]). The fact that this 
classic dataset is so well understood enables us to more 
clearly interpret how network reconfiguration supports 
learning. Importantly, given the similar principles at play 
in more complex neural networks, which either alter 
architectural [29] or nodal features [30] while keeping 
basic principles of training intact, we anticipate that any 
conclusions gleaned from the study of extremely simple 
network architectures can be used as the basis of future 
interrogation of more complex architectures. If we find 
similarities between network properties in two classic 
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and high-performing distributed information processing 
systems—the brain and ANNs—it could provide hints as 
to more general principles of the properties of underlying 
network architectures that facilitate efficient distributed 
information processing.

In particular, we were interested in whether the topol-
ogy of the neural network over the course of learning 
mirrored patterns observed in the analysis of fMRI net-
works in human participants [13]. By tracking functional 
networks derived from fMRI data over the course of 
10 sessions in which participants learned to map visual 
stimuli to motor responses, it was observed that effective 
learning was associated with an increase in network mod-
ularity [13], Q, which quantifies the extent with which the 
network can be clustered into tight-knit communities 
with relatively sparse connections between them [13]. A 
plausible explanation of these findings is that structural 
connections within the modularized regions increased 
their strength over the course of learning, however tech-
nological limitations make this inference challenging. 
Fortunately, we can leverage the full observability and 
tractability of feed-forward neural networks to directly 
test these ideas in silico, and indeed contribute to the 
cause of “explainable AI” [19–21].

By tracking the topology of the MNIST-trained net-
work over the course of training, we partially confirmed 
the original hypothesis of increasing segregation as a 
function of learning, however our analysis identified a 
more subtle temporal partition. Early in learning, train-
ing reconfigured the edges of the network so that they 
are strongly aligned with information-rich regions of the 
nodes in up-stream layers of the network, but in a man-
ner that did not alter the global topology of the network 
(i.e., the edges did not become more modular during the 
first phase). Following this initially topologically silent 
phase, the network then entered a second phase charac-
terized by a rapid increase in modularity that was coin-
cident with large gains in classification accuracy. Later 
in learning, network-activity patterns reconfigured to a 
slightly less modular state that maximized digit category 
separation in a low-dimensional state space estimated 
from the activity patterns of the nodes within the net-
work. Our results provide foundational understanding 
of how ANN network activity and connectivity evolves 
over the course of learning that simultaneously informs 
our understanding of both systems neuroscience and 
machine learning.

2 � Results
2.1 � Feed‑forward neural network construction 

and training
We applied systems neuroscience and information-theo-
retic methods to analyze the structure of a feed-forward 

neural network as it was trained to rapidly classify a set 
of ten hand-written digits (Modified National Institute 
of Standards and Technology [MNIST] dataset [28]). 
The ANN was trained across 100,000 epochs with sto-
chastic gradient descent, however we only present a sub-
set of epochs in order to demonstrate the key patterns 
observed in the dataset—specifically, we analyze a total 
of 64 epochs: the first 30; every 10 epochs to 100; every 
100 epochs to 1000; every 1000 epochs to 10,000; and 
every 10,000 epochs to 100,000. Although a neural net-
work with a single hidden layer is theoretically sufficient 
for high performance on MNIST [28], neural networks 
with more hidden layers provide benefits of both com-
putational and parameter efficiency [31]. For the sake of 
simplicity, we chose a relatively basic network in which 
edge weights and nodal activity patterns could be directly 
related to performance.

With these constraints in mind, we constructed a feed-
forward network with two hidden layers—a 100-node 
hidden layer (HL1) that received the 28 × 28 input (pixel 
intensities from the MNIST dataset) and a 100-node 
hidden layer (HL2) that received input from HL1—and 
a 10-node output layer (Fig.  1A). The edges between 
these layers were given unique labels: edges connect-
ing the input nodes to the first hidden layer were labeled 
as α edges (dark blue in Fig.  1A); the edges connecting 
the two hidden layers were labeled as β edges (orange in 
Fig.  1A); and the edges connecting the second hidden 
layer to the readout layer were labeled as γ edges (dark 
green in Fig. 1A). A clear difference between the topology 
of the ANN and standard approaches to analyzing neu-
roimaging data is that the mean of the absolute value of 
edge weights from all three groups increased nonlinearly 
over the course of training in the ANN, whereas typical 
neuroimaging analyses normalize the strength of weights 
across cohorts.

2.2 � The topological properties of a feed‑forward neural 
network during training

It has previously been suggested that the concept of mod-
ularity (i.e., ‘Q’) may be employed to improve the design 
of deep neural-network architecture in various ways [32, 
33]. Non-trivial modular structure is a pervasive fea-
ture of complex systems [25, 27], and has been shown 
to increase as a function of learning in neuroimaging 
experiments [5, 10]. Based on this similarity, we hypoth-
esized that Q should increase as a function of training 
on the MNIST dataset and should reflect improvements 
in classification accuracy. To test this prediction, we 
required a means for translating the edges of the neural 
network into a format that was amenable to network sci-
ence approaches (i.e., a weighted and directed adjacency 
matrix). To achieve this, we created a sparse node × node 
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matrix, and then mapped the α (input–HL1), β (HL1–
HL2) and γ (HL2–output) edges accordingly, yielding the 
adjacency matrix shown in Fig. 1B.

With the network edge weights framed as a graph, we 
applied methods from network science to analyze how 
its complex topological structure changed as the ANN 
was trained to classify the MNIST dataset (Fig.  1C). We 
applied used the Louvain algorithm to estimate Q from the 
neural network graph at each training epoch. Variations in 
network modularity across training epochs are plotted in 
Fig. 1D and reveal three distinct periods of: approximately 
constant Q (‘Early’; training epoch 1–9; data points 1–9 
in Fig.  1D), followed by increasing Q (‘Middle’; training 

epoch 10–8,000; data points 10–55 in Fig. 1D), and finally 
decreasing Q (‘Late’; training epoch 9000–100,000; data 
points 56–64 in Fig.  1D). Early in training, there was a 
substantial improvement in accuracy without a noticeable 
change in Q (light blue in Fig. 1E). In the middle period, we 
observed an abrupt increase in Q (light green in Fig. 1E) 
that tracked linearly with performance accuracy (r = 0.981, 
pPERM < 10–4, permutation test). Finally, in the late train-
ing period, Q began to drop (Fig. 1E; light purple). These 
results demonstrate that the modularity of the neural net-
work varies over the course of training in a way that corre-
sponds to three different types of behavior with respect to 
the network’s classification performance.

Fig. 1  A feed-forward neural network exhibits three topologically distinct periods of reconfiguration throughout learning the MNIST dataset. A A 
large (60,000 item) corpus of hand-drawn digits from the MNIST database (28 × 28 pixel array with 256 intensity values per pixel) was vectorized 
and entered into a generic feed-forward neural network with two hidden layers—a 100-node layer (HL1) that received the 28 × 28 input and a 
100-node layer (HL2) that received the input from HL1—and a 10-node output layer (argmax); B the edges connecting the input → HL1 (dark blue; 
α), HL1 → HL2 (orange; β ) and HL2 → output (dark green; γ ) were embedded within an asymmetric weighted and signed connectivity matrix; C 
classification accuracy increased rapidly in the early stages of training, with an asymptote after ~ 100 training epochs; D network modularity (Q) 
was naturally grouped into three separate periods: an early period (light blue; epochs 1–14) that was relatively static, a middle period (light green; 
epochs 15–700) with a rapid increase in Q, and a late period (light purple; epochs 800–10,000) in which Q diminished, albeit not to initial levels. E 
classification accuracy showed a non-linear relationship with Q: initial increases in accuracy were independent of Q (light blue), after which there 
was a positive linear relationship between accuracy and Q (Pearson’s r = 0.981; light green), and finally a sustained drop in Q, as accuracy saturated 
in the later periods of learning (light purple). For clarity, only a subset of the 100,000 epochs are presented here
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2.3 � Early edge‑weight alteration is concentrated 
on informative inputs

The fact that Q did not change early in training, despite 
substantial improvements in accuracy, was somewhat 
surprising. This result was made even more compelling 
by the fact that we observed substantial edge-weight 
alteration during the early period, however with no alter-
ation in modularity. To better understand this effect, we 
first created a difference score representing the abso-
lute value of edge changes across each pair of epochs 
in the early phase (i.e., the blue epochs in Fig.  1D, E). 
We then calculated the grand mean of this value across 
the first epoch (i.e., one value for each of the 784 input 
dimensions, summed across all α edge weights associ-
ated with each input node in the input layer), and then 
reshaped this vector such that it matched the dimen-
sions of the input data (i.e., 282 pixels). We found that 
the α edge weights that varied the most over this period 
were located along the main stroke lines in the middle 
of the image (e.g., the outside circle and a diagonal line; 
Fig. 2A).

Similar to the manner in which an eye saccades to a 
salient target [34], we hypothesized that the feed-forward 
network was reconfiguring early in training so as to align 
with the most informative regions of the input space. To 
test this hypothesis, we binarized the pixel activity across 
the 60,000 items from the training set, with a thresh-
old that varied across each pixel so as to maximize the 
mutual information (MI) that the binarized pixel pro-
vides about the class (i.e., the digit), and then calculated 
the information held by each pixel (IP: MI(pixel, class); 
Fig.  2B). We observed a clear, linear correspondence 
between IP and the edges that reconfigured the most dur-
ing the early period (Fig.  2C; r = 0.965, pPERM < 0.0001). 
The effect remained significant for edge changes in the 
middle (r = 0.874) and late (r = 0.855) periods, however 

the effect was significantly strongest for the early period 
(Z = 16.03, p < 0.001) [35]. This result indicates that the 
network was adjusting to concentrate sensitivity to class-
discriminative areas of input space, which we demon-
strate occurs via the reconfiguration of edge weights 
relating to the most class-discriminative areas of the 
input space.

2.4 � Topological segregation during the middle period 
of learning

Following the initial period of learning, we observed a 
substantial increase in network modularity, Q, that rose 
linearly with improvements in classification accuracy 
(Fig.  1C, green). To better understand how node-level 
network elements reconfigured during the middle period, 
we computed two metrics for each node that quantify 
how its connections are distributed across network mod-
ules: (i) module-degree z-score (MZ), and (ii) participa-
tion coefficient (PC) [36]. MZ and PC have together been 
used characterize the cartographic profile of complex 
networks: MZ measures within-module connectivity, 
and PC measures between-module connectivity and thus 
captures the amount of inter-regional integration within 
the network (see Sect. 4 for details; Fig. 3A) [36]. These 
statistics have been used previously in combination with 
whole-brain human fMRI data to demonstrate a relation-
ship between heightened network integration and cog-
nitive function [11, 37], however the role of integrative 
topological organization is less well understood in ANNs. 
Importantly, the calculation of both MZ and PC relies on 
the community assignment estimated from the Louvain 
algorithm, and hence affords a sensitivity to changes in 
network topology over the course of training.

Using this cartographic approach [36], we were able 
to translate the edge weights in the network into values 
of PC and MZ for each node of the network for each 

Fig. 2  Topologically silent alterations in network edges during the early period of training. A Although network modularity was static in the early 
period, the standard deviation of changes in edge strength, Edge �1, in the first hidden layer of the network did change substantially over the 
course of the early training period (first 10 epochs; cf. Fig. 1C); B pixel information, IP = MI(pixel, class); C we observed a strong positive correlation 
between Edge �1 and IP: r = 0.965 (p < 1–10)
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epoch of training. Figure 3B, C shows the PC and MZ 
values for the nodes in the input layer (i.e., the topo-
logical properties of the α edges) at training epoch 
30, which was indicative of the patterns in the mid-
dle period. PC was associated with a relatively ‘patchy’ 

appearance around the main stroke areas, sugges-
tive of a distributed topological coverage of the input 
space, as well as high values on the edges of the input 
space (Fig.  3B). In contrast, MZ values were far more 
centrally concentrated, indicative of local hubs within 

Fig. 3  Topological changes during the middle period. A A schematic depiction of two topological extremes: on the left is a segregated network, 
with tight-knit communities that are weakly inter-connected—this network would be characterized by high Q, and would have more nodes 
with high module-degree z-score (MZ) than nodes with high participation coefficient (PC); on the right is an integrated network, which has 
stronger connections between nodes in different communities, and hence a lower Q, and more nodes with high PC than nodes with high MZ; 
B participation coefficient (PC) of input layer nodes at training epoch 30; C module-degree z-score (MZ) of input layer at training epoch 30; D 
digit information, ID = MI(pixelOn, class); E Pearson’s correlation, r, between ID and PC (red) and MZ (blue) across first 30 training epochs. Black lines 
represent the upper and lower bounds (95th and 5th percentiles) of a permuted null dataset (10,000 iterations) and colored bars represent learning 
periods; F IH = MI(node, class) for HL1 (blue) and HL2 (orange) edges—note that both subnetworks increase IH during the middle period, but that 
the late period dissociates the two subnetworks
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network communities around the main stroke areas of 
the inputs space (Fig. 3C). Overall, PC and MZ mapped 
onto different locations in the input space, and hence 
were somewhat negatively correlated when data were 
pooled across all epochs (r = − 0.107; p = 3 × 10–89). 
We hypothesized that these changes in MZ and PC 
were indicative of a topological reconfiguration of the 
input layer of the ANN to align network hubs with key 
aspects of the input stream, being the main stroke areas 
here.

To test this hypothesis, we related the PC and MZ for 
each node of the network across all epochs of training 
to a statistic, ID: MI(pixelOn, class), which computes the 
amount of information available in each pixel of the input 
space when that pixel is active (Fig. 3D). In contrast to the 
average information IP held by the pixel about the class, 
ID is a partial information, quantifying how informative 
each pixel is for tracking multiple different digit classes 
only when the pixel is active (pixelOn). High values of ID 
imply that the recruitment of the pixel is associated with 
a reduction in uncertainty (i.e., an increase in informa-
tion) about the digit. As detailed in Sect.  4, IP (Fig.  2B) 
is negatively correlated to ID (Fig. 3D) and dominated by 
samples when the pixel is inactive.

We observed a significant positive correlation 
between ID and MZ that emerged towards the end of 
the middle period (Fig. 3E). Specifically, we observed a 
dissociation in the input layer (Fig. 3E) during the mid-
dle period, wherein ID was positively correlated with 
PC (max r = 0.396, pPERM < 10–4), but negatively corre-
lated with the module-degree z-score (max r = − 0.352, 
pPERM < 10–4). In other words, the topology of the neu-
ral network reconfigured so as to align highly informa-
tive active pixels with topologically integrated hubs 
(nodes with higher PC). While these pixels are less 
commonly active, they are highly informative of class 
when they are active (high ID), suggesting that the pixel 
being active requires the network to send information 
about such events to many downstream modules. By 
contrast, more segregated hubs (nodes with higher 
MZ) are more likely to be associated with higher IP, 
being nodes that are more informative on average of 
digit class (and tending to be more highly informative 
when inactive). This may indicate that the network 
is reconfiguring so as to organize sets of informative 
nodes into modules in a way that supports the crea-
tion of higher-order ‘features’ in the next layer. In neu-
roscience, nodes within the same module are typically 
presumed to process similar patterns of information 
[13], suggesting that the topology of the neural net-
work studied here may be adjusting to better detect 
the presence or absence of low-dimensional features 
within the input space.

2.5 � Inter‑layer correspondence
Given that the same gradient descent algorithm used to 
train the network was applied consistently across all lay-
ers of the network, we predicted that the same principles 
identified in the input layer should propagate through 
the network, albeit to the abstracted ‘features’ captures 
by each previous layer. Similar to the manner in which 
a locksmith sequentially opens a bank vault, we hypoth-
esized that each layer of the neural network should align 
with the most informative dimensions of its input in 
turn, such that the information could only be extracted 
from an insulated layer once a more superficial layer was 
appropriately aligned with the most informative aspects 
of its input stream. To test this hypothesis, we investi-
gated how the mutual information IH: MI(node, class) 
between each node’s activity and the digit class evolved 
across training epochs. (Note that IH is equivalent to IP 
but computed for hidden layer nodes rather than inputs.) 
As shown in Fig. 2F, mean MI within both hidden layers 
1 (MIHL1) and 2 (MIHL2) increased during the first two 
epochs, but then diverged at the point in learning coin-
ciding with the global decrease in modularity, Q (cf. Fig-
ure  1D). Crucially, despite the decrease in MIHL1 there 
was still an increase in MIHL2, suggesting that the Layer 
2 nodes are improving their ability to combine informa-
tion available in separate individual Layer 1 nodes to 
become more informative about the class. This suggests 
that Layer 1 nodes specialize (and therefore hold less 
information overall, lower MIHL1) in order to support the 
integration of information in deeper layers of the neural 
network (increased MIHL2).

2.6 � Validation with the eMNIST dataset
In summary, in studying the topological reconfigura-
tion of an ANN during training on the MNIST dataset, 
we observed three distinctive periods of adjustment, 
which play different roles in augmenting the distributed 
information processing across the network to capture 
class-relevant information in the input data. To bet-
ter understand the generalizability of these findings, we 
trained a new feed-forward neural network (identical 
in architecture to the original network) on the eMNIST 
dataset [52]. The eMNIST dataset is similar to MNIST, 
but uses hand-written letters, as opposed to numbers. 
Although learning was more protracted in the eMN-
IST dataset (likely due to the increased complexity of 
the alphabet, relative to the set of digits), we observed 
similar changes in network structure across training as 
reported above for the MNIST dataset. Specifically: (i) 
the network shifted from integration to segregation; (ii) 
layers reconfigured in serial; and (iii) nodal roles (with 
respect to inferred network modules) were similarly 
related to class-relevant information in individual pixels 



Page 8 of 15Shine et al. Brain Informatics            (2021) 8:26 

(Additional file 1: Fig. S1). These results suggest that the 
insights obtained from the MNIST analysis may repre-
sent general topological features of efficient distributed 
information processing in complex systems.

2.7 � The late period is associated with low‑dimensional 
pattern separation

Next, we investigated whether the extent to which the 
nodal topology of the networks trained on the two data-
sets differed (i.e., whether different regions of the input 
space had higher or lower PC and MZ) was proportional 
to the most informative locations of the input space in 
each dataset ( �ID). Specifically, the difference in the pat-
tern of an input node’s edges across inferred network 
modules between the eMNIST and MNIST datasets ( �
PC) was correlated with the difference in image input 
characteristics between the two datasets ( �ID vs. �
PC: r = 0.301, pPERM < 0.0001; �ID vs. �MZ: r = − 0.247, 
pPERM < 0.0001). This result provides further confirmation 
that neural networks learn by reorganizing their nodal 
topology into a set of periods that act to align network 
edges and activity patterns with the most informative 
pixels within the training set.

We found that pixels demonstrated unique roles across 
learning with respect to the emerging modular archi-
tecture of the neural network, and that these roles were 
shaped by their class-relevant information. As edge 
weights were reconfigured across training, we observed 
that standard deviation of changes in outgoing edge 
strength from a node (i.e., Edge �1 ) increases for highly 
informative inputs (i.e., high IP; Additional file 1: Fig. S1D 
for eMNIST corresponding to Fig.  2C for MNIST). As 
these weights change, they alter the activity of each of the 
nodes in the hidden layers, which ultimately pool their 
activity via modules to affect the class predictions, which 
are read out based on the activity of the final output layer. 
So how do the changes in edge weight translate into 
nodal activity? Based on recent empirical electrophysi-
ological [38] and fMRI [39] studies, we hypothesized that 
the activity patterns would be distributed across the neu-
ral network in a low-dimensional fashion. Specifically, by 
way of analogy to the notion of manifold untangling in 
the ventral visual system [40], we predicted that across 
training, the high-dimensional initial state of the system 
(i.e., random edge weights) would become more low-
dimensional as pixel–pixel redundancies were discovered 
through the learning process.

To test this hypothesis, we used dimensionality-reduc-
tion [41] to analyze the ‘activity’ of all of the nodes within 
the neural network, across the different training epochs. 
Here, activity was defined as the sum of weighted inputs 
from inputs or earlier layers of the network, after having 
been filtered through an activation function. We applied 

PCA [42] to the nodal activity across all four layers of 
the feed-forward network—i.e., the input, HL1, HL2 and 
output nodes—which were first standardized and then 
either concatenated (to calculate the dimensionality of 
the entire process) or analyzed on an epoch-to-epoch 
basis (to calculate the effect of training; see Sect.  4 for 
details). The concatenated state–space embedding was 
relatively low-dimensional (120/994 components, or 
12.2%, explained ~ 80% of the variance) and the pixel-
wise loading of each of the top eigenvalues (λs) for the 
input layer (Fig.  4A) was correlated with both IP and ID 
statistics used in the prior analyses (IP − λ1: r = 0.218, 
p < 10–4; λ2: r = 0.189, p < 10–4; λ3 = 0.158, p < 0.0001; 
and ID − λ1: r = 0.338, p < 10–4; λ2: r = 0.123, p < 10–4; λ3: 
r = 0.062, p = 0.08), suggesting a direct correspondence 
between class-relevant information in the input space 
and the low-dimensional embedding. Crucially, test tri-
als that were incorrectly classified (at Epoch 10,000, 
though results were consistent for other epochs) were 
associated with lower absolute loadings on the ten most 
explanatory EVs (EV1–10; Additional file  1: Fig. S3; FDR 
p < 0.05). These results are tangentially related to recent 
empirical neuroscientific studies that employed dimen-
sionality reduction on electrophysiological [38] and fMRI 
data [39] to show that learning and cognitive task perfor-
mance are typically more effective when constrained to a 
low-dimensional embedding space.

By conducting a PCA on each epoch in turn, we found 
that training was associated with a non-linear alteration 
in the amount of variance explained by the top 10 PCs 
(Vd

10), and that these changes aligned well with the topo-
logically identified periods (Fig. 4B). The network began 
in a relatively high-dimensional configuration, consistent 
with the random initiation of nodal activity. During the 
early period (light blue in Fig.  4B), as the edge weights 
reconfigured to align with IP (Fig.  3D), Vd

10 remained 
relatively high. During the middle period (light green in 
Fig. 3B), there was a sharp reduction in Vd

10, however the 
dimensionality collapse was diminished mid-way through 
the period. The late period (purple in Fig. 3B) was associ-
ated with a mild reduction in Vd

10. Interestingly, height-
ened levels of training led to a tighter correspondence 
between nodal topological signatures (PC/MZ calculated 
separately at each epoch) and the principal component 
loadings of nodes in the input layer (Additional file 1: Fig. 
S2), suggesting that the topology of the neural network 
reconfigured over training to better map onto a low-
dimensional sub-space that concentrated class-relevant 
information in the training dataset.

Organizing an information processing system within 
the constraints of a relatively low-dimensional archi-
tecture (i.e., dimensions ≪ nodes) can confer impor-
tant computational benefits [41]. For instance, previous 
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theoretical work in systems neuroscience has argued that 
the ventral visual stream of the cerebral cortex is organ-
ized so as to ‘untangle’ different inputs streams into 
highly informative categories [40]. Here, ‘untangling’ 
refers to the ability of the system to effectively separate 
inputs along different categorical dimensions (e.g., dis-
tinguish a well-known face from that of a stranger), 
while still retaining sufficient information in the signal 
such that higher-order classifications of the same data 
are still possible (e.g., recognizing a well-known face in 
a unique orientation). Interestingly, the same concept 
has been used to explain the function of both the visual 
system [40] and effective decision-making [43], and may 
underpin the functionality of convolutional neural net-
works trained on naturalistic images [24]. In the context 
of our PCA analysis, ‘untangling’ could be envisaged as 

alterations in the way that the activity of the network 
reflecting different digit categories is embedded within 
the network’s state space: the loadings onto different 
categories in the untrained network should be relatively 
overlapping (i.e., ‘tangled’), but should become less over-
lapping (i.e., ‘untangled’) as the network learns to effec-
tively categorize the inputs into distinct digits.

Analyzing our data from this vantage point, we found 
that the increase in topologically rich, low-dimension-
ality was associated with a relative ‘untangling’ of the 
low-dimensional manifold (Fig.  4C): the middle period 
was associated with a general expansion in the low-
dimensional embedding distance within categories (light 
green in Fig. 4D), which then allowed the system to both 
expand between categories and contract within catego-
ries during the late period of learning (purple in Fig. 4D). 

Fig. 4  Unravelling the manifold: low-dimensional projections of feed-forward neural network activity during MNIST training reveal 
category-specific untangling. A The first three principal components (eigenvalues 1–3: λ1/λ2/λ3) of the input nodes; B the percentage of variance 
explained by EV1, when the PCA was fit on data from each training epoch separately; C 3D scatter plot of the items from the training set during 
three different periods: during the early period (Epochs 1–10), the topological embedding of the different digits showed substantial overlap, 
which is reflected in the low between-category distance (i.e., distance between mean of each digit); in the middle period (Epochs 11–300), the 
embedding showed a relative expansion in the low-dimensional space; and during the late period (Epochs 300+), the distance within each 
category dropped dramatically; D 3D scatter plot of between-category and within-category distance, along with training accuracy—note that 
maximal accuracy is associated with increases in both within- and between-category distance
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This ultimately had the effect of boosting classification 
accuracy. Indeed, the contraction of the within-category 
embedding distance—which takes place first—co-occurs 
with the drop of MIHL1, with the following expansion 
of between category distance co-occurring with the 
increase in MIHL2. At the sub-network level, the activity 
on nodes in HL2 was substantially more low-dimensional 
than HL1 (Additional file  1: Fig. S4), further expanding 
on the notion that different computational constraints 
are imposed on neural networks, depending on the depth 
of network layers. Overall, these results confirm the pres-
ence of manifold ‘untangling’ in a simple, feed-forward 
ANN, and hence provide a further link between the way 
that both synthetic and biological neural networks learn 
how to classify visual inputs.

3 � Discussion
In this work, we used information theoretic and net-
work science tools to study the topological features of 
a training neural network that underlie its performance 
on supervised learning problems. We found many simi-
larities between the topological properties of the brain 
and ANNs—two systems known for efficient distrib-
uted information processing. In the training ANN, we 
observed three distinctive periods of topological recon-
figuration, in which changes in edge strength (Fig.  2), 
topology (Fig.  3) and low-dimensional activity (Fig.  4) 
showed a striking correspondence with class-relevant 
information in the input data. The results of our study 
help to both validate and refine the study of network 
topology in systems neuroscience, while also improving 
our understanding of how neural networks alter their 
structure so as to better align network edges and the 
topological signature of the network with the available 
streams of information delivered to the input nodes.

The reconfiguration of network edges occurred in 
three distinct periods over the course of learning. In 
the first (relatively short) period (light blue in Fig.  1C), 
the weights of edges in the first layer were adjusted in 
proportion to the amount of class-relevant informa-
tion related to each node (i.e., IP). This process achieved 
“easy” increases in accuracy, with very little alteration 
to the modular structure of the network, and only mod-
est increases in information held by the hidden layer 
nodes about the digit class. The next, somewhat more 
protracted period (light green in Fig.  1C) involved a 
substantial topological reconfiguration that resulted in 
large increases of network modularity that linearly drove 
classification accuracy near its maximal level. Intrigu-
ingly, in this period the information held individually by 
nodes in the first hidden layer about the class increased 
substantially before ultimately returning to a lower 
level. This was reflected in changes to low-dimensional 

embedding distance within categories (Fig.  4D), which 
first expanded and subsequently contracted in step with 
the changes in information held individually by the HL1 
nodes about the class. This more complex reconfigura-
tion appeared to organize sets of nodes into modules in 
a way that involved the most informative nodes about the 
class becoming segregated hubs within each module and 
appeared to support the creation of higher order “fea-
tures” in the next layer. In other words, the reduction in 
information held by individual nodes in the hidden layer 
appears to be due to their specialization within modules 
in carrying this higher-order feature information rather 
than information directly about the class.

The final period (light purple in Fig.  1C) involved a 
subsequent reduction in modularity, along with a con-
solidation that was similarly reflected in an expansion 
of between category distance in the low-dimensional 
embedding of the activity patterns (Fig.  4D). These 
changes are aligned with a continued increase in infor-
mation held by the second hidden layer nodes about the 
class, despite the decrease that occurred earlier in the 
first hidden layer. Further analysis suggested that this 
period involved Layer 2 nodes utilizing the higher-order 
features, combining them (which increases integration/
reduces overall modularity) to become more informative 
about the digit class.

Overall, we conclude that the specialization at ear-
lier layers (i.e., increasing their modularity but decreas-
ing individual information) facilitates the integration of 
information at later layers, which occurs later in learn-
ing. These general trends were confirmed in application 
to the eMNIST dataset and may represent general learn-
ing principles of distributed information processing in 
networked systems. While some of these features (e.g., 
increased modularity with learning) are consistent with 
findings in the systems neuroscience literature, there are 
others that were more subtle than has been observed in 
biological systems (e.g., non-topological reconfigura-
tions in early period; late decreases in modularity with-
out performance decrement), and hence may be related 
to idiosyncrasies inherent within the training of artificial 
neural networks (e.g., ‘random’ weights at initialization 
and back-propagation induced over-fitting, respectively). 
Future studies will be key to addressing these important 
open questions.

This study was designed to expose the inner workings 
of an architecturally basic neural network using a com-
mon training dataset. These features were chosen due 
to their simplicity, which we hoped would help to refine 
the clarity of the resultant network and informational 
signatures. With these constraints in mind, a clear open 
question is whether other more complex network archi-
tectures, such as recurrent [44], convolutional [29], echo 
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state [45] or generative adversarial networks [46], will 
share similar information processing principles [2, 20, 
21], or whether the idiosyncratic features that define 
each of these unique architectures will rely on distinct 
algorithmic capacities. Since each of these more complex 
networks use much of the same basic machinery (i.e., 
diversely connected virtual nodes connected with sta-
tistical edges whose weights are trained as a function of 
trial-and-error), our hypothesis is that most of the infor-
mational features described in this study will be perva-
sive across the family of different network architectures. 
Regardless, our work provides evidence that network sci-
ence can provide intuitive explanations for the computa-
tional benefits of neural network learning, and helps to 
highlight the growing intersection between artificial and 
biological network analyses [47].

What can network neuroscientists take from the results 
of this experiment? For one, our observations provide 
evidence that the tools of systems neuroscience and 
engineering can indeed be used to understand the func-
tion during learning of a complex, high-dimensional sys-
tem [4, 41, 42]. Specifically, we observed a substantial 
increase in network modularity during a simple learning 
task in silico, confirming our a priori hypothesis that neu-
ral network topology would mirror increases observed 
in analysis of fMRI networks in human participants [13]. 
Yet the confirmation can only be considered as partial, as 
we observed a considerably more subtle temporal parti-
tion which, as outlined above, involved three periods that 
incorporated: edge-weight changes without altering the 
network structure; large increases in modularity to yield 
seemingly specialist segregated regions; and a regres-
sion in overall modularity in later periods. One intriguing 
possibility is that similar organizing principles under-
pin learning in biological systems, but are either heav-
ily ingrained in the brain across phylogeny [47] or occur 
on sufficiently rapid timescales, such that they are chal-
lenging to observe within the limitations inherent within 
current measurement techniques. Another possibility is 
that biological brains (and their learning processes) are 
fundamentally different to what we have observed here, 
however future experimental work will be required to 
effectively elucidate these answers.

In addition to these conceptual issues, there are several 
benefits to analyzing neural networks that are not read-
ily apparent in neurobiological analyses. For instance, 
in the case of feed-forward neural networks, we know 
the direct, “ground-truth” mapping between inputs and 
nodes, whereas in neuroscience, this mapping is often 
opaque. For instance, recordings from standard neuro-
imaging approaches are often conflated by non-neuronal 
signals (such as the heartbeat and respiration), and there 

is also often an indirect mapping between information in 
the world and the brain’s sensory receptors (e.g., the loca-
tion of the animal’s gaze can alter the information enter-
ing the brain). In addition, standard network approaches 
in neuroscience require a noisy estimation of network 
edges, whereas the process here allows us to observe the 
edge weights directly. It is our hope that these benefits 
can be used to improve our understanding of the com-
putational benefits of systems-level organizing principles, 
which in turn can be brought back to neuroscience to 
accelerate progress in our understanding of the systems-
level mechanisms that comprise effective neurological 
function.

With all that said, neural networks are clearly nowhere 
near as complex as the typical nervous systems studied by 
neuroscientists [48]. Most artificial neural networks treat 
all nodes as identical, whereas diversity reigns supreme in 
the biological networks of the brain [49]. One key feature 
of this diversity is the multi-compartment nature of spe-
cialist neuronal populations [50], which render neuronal 
responses as fundamentally and inextricably non-linear. 
Crucially, embedding these features into artificial net-
works has been shown to afford key computational fea-
tures over more standard approaches [51]. These axonal 
adaptations are just one of numerous non-linear mecha-
nisms inherent to the brain, including both structural 
circuit-based mechanisms [52], as well as more dynamic 
neuromodulatory gain modulation [53, 54], which are 
rarely explicitly modeled in neural network studies 
(though see [55]). All these features are likely the result of 
the fact that biological neural networks have been shaped 
over countless phylogenetic generations, and through 
this process have inherited innumerable features that 
have helped to adapt organisms to their different envi-
ronments [47]. This is in stark contrast to the typical (and 
admittedly pragmatic) ‘random’ starting point employed 
in standard neural network experiments—precisely how 
our psychological and cognitive capacities emerge over 
the course of phylogeny remains a fascinating source of 
inspiration for evolving artificial networks [56]. Despite 
these differences, we maintain that by analyzing an artifi-
cial network with systems-neuroscience analyses, we can 
improve our ability to interpret the inner workings of the 
“black box” of the brain [21].

In conclusion, we used a systems-level perspective 
to reveal a series of three serial periods of topological 
reconfiguration across the course of network training. 
These periods are associated with distinctive changes to 
the network and provide important hints as the complex 
properties that underly efficient distributed informa-
tion processing in complex systems. Interestingly, many 
higher-order network properties are shared between the 
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brain and ANNs, suggesting the existence of more gen-
eral network learning principles that may be uncovered 
using methods from network science and information 
theory.

4 � Methods
4.1 � Feed‑forward neural network
A prototypical, four-layer, feed-forward neural network 
with no non-linearities was created with randomized 
weights (edge strengths: − 1 to 1). The input layer was 
designed to take 784 inputs, which themselves were 
flattened from a 28 × 28 greyscale pixel array from the 
MNIST dataset [57]. The input layer was fully connected 
to a hidden layer of 100 nodes (HL1), which in turn was 
fully connected to a second hidden layer of 100 nodes 
(HL2). The second hidden layer was then fully connected 
to a 10-node output layer. The activation function was a 
standard sigmoid for the incoming connections at each 
hidden layer (exponent = 1), and a soft max at the output 
layer. The maximum value across the nodes of the output 
layer was taken to reflect the ‘response’ of the network. 
Each result in our study was also replicated in a separate 
eMNIST dataset, which was identical to MNIST, but had 
26 hand-written letters, as opposed to 10 hand-written 
digits [58].

4.2 � Training approach
The network was trained with backpropagation using a 
Stochastic Gradient Descent optimizer. To aid interpreta-
tion, the learnt bias at each neuron was kept to zero and 
no regularization was used. The weights and activities 
were saved as training progressed over the course of a 
number of epochs (SGD: 100,000). Accuracy was defined 
as the percentage of trials in a held-out, 10,000 trial test-
ing set in which the maximum value of the output layer 
was matched with the test category.

4.3 � Network construction
The weighted and signed edges from each asymmetric 
layer of the neural network were concatenated together 
to create an asymmetric connectivity matrix. Each con-
nectivity profile was placed in the upper triangle of 
the matrix (see Fig.  2). To ensure that this step did not 
adversely affect the topological estimates, each experi-
ment was conducted separately on: (a) each layer in turn; 
(b) only the upper triangle of the connectivity matrix. 
Similar patterns were observed when we re-ran each net-
work separately, suggesting that the embedding did not 
adversely affect topological interpretation.

4.4 � Edge weight changes
To determine which edges were associated with maxi-
mal change in the first period, we first created a dif-
ference score representing the absolute value of edge 
changes across each pair of epochs in the early phase. 
We then calculated the grand mean of this value across 
the first epoch (i.e., one value for each of the 784 input 
dimensions, summed across all α edge weights associ-
ated with each input node in the input layer), and then 
reshaped this vector such that it matched the dimensions 
of the input data (i.e., 282 pixels). These values were then 
compared to the information values (see Sect. 4.7 below). 
Correlations between nodes with edge changes across 
the different periods and IP were compared statistically 
using an online calculator (https://​www.​psych​ometr​ica.​
de/​corre​lation.​html#​depen​dent) [35].

4.5 � Modularity maximization
The Louvain modularity algorithm from the Brain Con-
nectivity Toolbox (BCT [59]) was used on the neural net-
work edge weights to estimate community structure. The 
Louvain algorithm iteratively maximizes the modularity 
statistic, Q, for different community assignments until 
the maximum possible score of Q has been obtained (see 
Eq. 1). The modularity of a given network is therefore a 
quantification of the extent to which the network may be 
subdivided into communities with stronger within-mod-
ule than between-module connections.

where v is the total weight of the network (sum of all 
negative and positive connections), wij is the weighted 
and signed connection between nodes i and j, eij is the 
strength of a connection divided by the total weight of 
the network, and δMiMj is set to 1 when nodes are in the 
same community and 0 otherwise. ‘+’ and ‘−’ super-
scripts denote all positive and negative connections, 
respectively.

For each epoch, we assessed the community assign-
ment for each region 500 times and a consensus parti-
tion was identified using a fine-tuning algorithm from 
the BCT. We calculated all graph theoretical measures on 
un-thresholded, weighted and signed undirected, asym-
metric connectivity matrices [59]. The stability of the γ 
parameter (which defines the resolution of the commu-
nity detection algorithm) was estimated by iteratively 
calculating the modularity across a range of γ values 
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(0.5–2.5; mean Pearson’s r = 0.859 + − 0.01) on the time-
averaged connectivity matrix for each subject—across 
iterations and subjects, a γ value of 1.0 was found to be 
the least variable, and hence was used for the resultant 
topological analyses. A consensus clustering partition 
was defined across all epochs using consensus_und.m 
from the BCT. The resultant solution contained 10 clus-
ters that each contained nodes that were distributed 
across multiple layers (i.e., input, HL1, HL2 and output).

4.6 � Cartographic profiling
Based on time-resolved community assignments, we 
estimated within-module connectivity by calculating the 
time-resolved module-degree Z-score (MZ; within-mod-
ule strength) for each region in our analysis (Eq. 2) [11], 
where κiT is the strength of the connections of node i to 
other nodes in its module si at time T, κsiT is the average 
of κ over all the regions in si at time T, and σκsiT is the 
standard deviation of κ in si at time T:

The participation coefficient, PC, quantifies the extent to 
which a node connects across all modules (i.e., between-
module strength) and has previously been used to suc-
cessfully characterize hubs within brain networks (e.g., 
see [11]). The PC for each node was calculated within each 
temporal window using Eq.  3, where κisT is the strength 
of the positive connections of node i to nodes in module 
s at time T, and κiT is the sum of strengths of all positive 
connections of nodes i at time T. Consistent with previous 
approaches in neuroscience [11, 60], negative connections 
were removed prior to calculation. The participation coef-
ficient of a region is therefore close to 1 if its connections 
are uniformly distributed among all the modules and 0 if 
all of its links are within its own module:

4.7 � Mutual information
We calculated three separate Information measures. To 
calculate the Information content within each pixel (IP), 
we binarized the pixel activity across the 60,000 items 
from the training set, with a threshold that varied across 
each pixel so as to maximize the mutual information (MI) 
that the binarized pixel provides about the class, and then 
calculated the information within each pixel: MI(pixel, 
class). To calculate the Information content 
ID = MI(pixelOn, class) within each pixel when the pixel 
was active (after thresholding), we averaged the 

(2)MZ =
κiT − κsiT

σκsiT

.

(3)PC = 1−

nM
∑

s=1

(

κisT

κiT

)2

.

pointwise MI for each training item, log2
p(class|pixel)

p(class)
 , only 

over the items where the pixel was on (pixelOn). Note that 
IP and ID were negatively correlated across the 28 × 28 
input dimension (r = − 0.560, pPERM < 0.0001), suggesting 
that the total information from the pixel is dominated by 
samples when the pixel is inactive [which would be cor-
respondingly averaged as MI(pixelOff, class)]. To calculate 
the Information content within each hidden layer node 
(IH), we calculated the mutual information for each node 
(binarized at activity = 0.5) with the digit class. All MI 
values were computed using the open source JIDT soft-
ware [61].

4.8 � Principal components analysis
Activity values from the test trials from the input, HL1 
and HL2 layers from each epoch were concatenated to 
form a multi-epoch time series. The data were normalized 
and then a spatial PCA was performed on the resultant 
data [41]. The top 3 eigenvectors were used to track the 
data within a low-dimensional embedding space (Fig. 3), 
and the percentage explained variance was tracked across 
all learning epochs. The eigenvectors from the concat-
enated data were then used to estimate the leading eigen-
values across all training epochs. The analysis was also 
re-run with activity patterns in HL1 and HL2 separately 
(i.e., independent of the input layer; Additional file 1: Fig. 
S4). The average value for each exemplar was then used 
to create two distance measures: between-category dis-
tance, which was defined as the average between-category 
Euclidean distance at each epoch; and within-category 
distance, which was defined as the average within-cate-
gory Euclidean distance within each epoch.

4.9 � Permutation testing
We used non-parametric testing to determine statisti-
cal significance of the relationships identified across our 
study [62]. A distribution of 10,000 Pearson’s correlations 
was calculated for each comparison, against which the 
original correlation was compared. Using this approach, 
the p-value was calculated as the proportion of the null 
distribution that was less extreme than the original cor-
relation value. In many instances, the effects we observed 
were more extreme than the null distribution, in which 
case the p-value was designated as pPERM < 0.0001.
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Additional file 1: Figure S1. Accuracy in eMNIST dataset. Figure S2. Cor-
relation between topology and PC1 eigenvector. Figure S3. Classification 
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performance was aligned with the low-dimensional embedding space. 
Figure S4. Dimensionality of Hidden Layers across training.
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