Skip to main content
. 2021 Dec 2;7:151. doi: 10.1038/s41523-021-00358-x

Table 5.

Comparison of the proposed architectures and state-of-the-art methods.

Reference Method Dataset Dice score (%) IoU score (%)
Tsochatzidis et al.42 UNet+ CBIS-DDSM 72.2 56.5
Sun et al.38 Attention UNet INbreast 79.1
CBIS-DDSM 81.8
Ravitha Rajalakshmi et al.31 Deeply supervised U-Net (DS U-Net) INbreast 79 83.2
CBIS-DDSM 82.9
Dhungel et al.7 Deep structured output learning + refinement INbreast 85
Dhungel et al.12 CNN + CRF INbreast 90.06
Abdelhafiz et al.33 R-UNet INbreast 90.5 89.1
Zhu et al.26 Multi-scale FCN-CRF INbreast 90.97
Wang et al.40 ResNet34 + ASPP INbreast 91.1
Singh et al.27 conditional GAN (cGAN) INbreast 91.47 83.58
Al-Antari et al.25 Full resolution convolutional network (FrCN) INbreast 92.63 86.37
Li et al.32 Conditional Residual UNet INbreast 92.72
Proposed architectures Connected-UNets INbreast 95.16 90.77
CBIS-DDSM 87.02 77.07
Connected-AUNets INbreast 94.89 90.28
CBIS-DDSM 87.95 78.89
Connected-ResUNets INbreast 95.28 91.03
CBIS-DDSM 89.52 80.02