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Dynamic prostate cancer transcriptome analysis
delineates the trajectory to disease progression
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Comprehensive genomic studies have delineated key driver mutations linked to disease

progression for most cancers. However, corresponding transcriptional changes remain largely

elusive because of the bias associated with cross-study analysis. Here, we overcome these

hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the

roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow

a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M

checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we

functionally validate our observations and add single-cell resolution. Thereby, we show that

tumor progression occurs through transcriptional adaption rather than a selection of pre-

existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of

EZH2 - the top upregulated gene along the trajectory – reverts tumor progression and

macrophage polarization. Finally, a user-friendly web-resource is provided enabling the

investigation of dynamic transcriptional perturbations linked to disease progression.
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Many decades of research have established the funda-
mental understanding of cancer as an anarchistic pro-
liferation and dissemination of cells caused by acquired

mutations in key driver genes1. During the past decade, the most
common cancer types have been extensively characterized for
alterations in the tumor DNA sequence2. While these studies
have been initially conducted on primary cancer tissues, more
recent clinical studies have also included biopsies from metastatic
disease3–9. Because of the binary nature of DNA sequence
alterations (mutated versus non-mutated), mutation frequencies
can be readily compared across studies and enable the nomina-
tion of drivers intimately linked to disease progression and
outcome10,11. That said, the plethora of complex genetic altera-
tions largely complicates a quantitative assessment of the trans-
formed phenotype.

The assessment of gene expression may provide a more com-
plete and quantitative measure of the biological processes related
to disease progression. Most transcriptomic studies have been
thus far conducted on primary tumors12,13. However, multiple
efforts have been dedicated in recent years to the characterization
of metastatic disease for a few tumor types, including prostate
cancer, opening the possibility to assess transcriptional changes
along with disease progression in a systematic manner11,14–17.

Nevertheless, this approach requires the accurate integration of
multiple datasets across studies to overcome the issue of intro-
ducing dataset-specific features, often referred to as batch effects.
The substantial amount of nonbiological artifacts introduced both
by RNA-sequencing (RNA-seq) library generation techniques
and by the exploitation of different quantification algorithms are
among the difficulties that can emerge in the attempt of nomi-
nating a trajectory of prostate cancer disease progression by
inferring dynamic transcriptional changes from a large integrated
cohort.

Here, we provide a framework to overcome these issues and
enable the accurate quantitative integration of RNA-seq data
from over 1000 clinical tissues ranging from normal prostate
tissue to primary prostate cancer (PNPCa) and metastatic
castration-resistant (CR) prostate cancer (CRPC). The harmo-
nized Prostate Cancer Transcriptome Atlas provides a unique
resource to mine transcriptional changes related to different
disease stages. Using this resource, we characterize the trajectory
to disease progression and functionally validate our findings in
patient-derived xenograft (PDX) models at the single-cell level.
Finally, we show how our Prostate Cancer Transcriptome Atlas
can infer or validate new therapeutic avenues for cancer patients.

Results
Generation of the Prostate Cancer Transcriptome Atlas. To
nominate gene-expression changes related to disease progression,
we re-processed and integrated high-throughput transcriptional
datasets from 13 different studies, constituting thus far the most
comprehensive compendium of the disease (Supplementary Fig.
1A and Supplementary Data 1)11,16–24. The resulting principal
component analysis (PCA) showed that samples’ position at a
given disease stage largely overlapped with another regardless of
their origin. In contrast, samples from distinct disease stages
differed in localization (Fig. 1a). An appreciable “batch effect”
related to the hybrid capture sequencing (HCS) technique was
detected and subsequently corrected (Supplementary Fig. 1B).

Gene-set enrichment analysis (GSEA) of the first two principal
components (PCs) revealed that PC1 correlated with enhanced
proliferation, while PC2 anticorrelated with canonical AR
signaling (Supplementary Fig. 1C, D). Moreover, PC3 separated
cancers harboring truncal mutations in SPOP and FOXA1 from
the ones harboring gene fusions involving ETS family

transcription factors (Supplementary Fig. 1E)25–28. Additional
PCs accounting individually for <4% of the total variance did not
reveal any association with tumor cell-specific features. Impor-
tantly, the stromal contribution was well represented by PC5 and
to a much lesser extent associated with PC1–4 (Supplementary
Fig. 1F–H and Supplementary Data 2). The latter indicates that
the positioning of tissue samples in PC1–4 is only slightly
influenced by the tumor purity.

Trajectory analysis quantifies the path to disease progression.
We applied trajectory inference analysis to characterize disease
progression. The approach identified the path to disease pro-
gression and assigned a pseudotime to each sample that describes
the advancements along this specific path (Fig. 1b). Because PC3
was mainly influenced by truncal prostate cancer driver muta-
tions, its addition to the trajectory inference analysis did not
affect the assigned pseudotime (Supplementary Fig. 1I, J). Sub-
sequently, we assessed corresponding gene-expression changes to
the initial two-dimensional trajectory (Fig. 1c). Among the most
upregulated genes, we noticed key genes encoding for chromatin
remodelers, which mediate gene silencing during development,
such as DNA methyltransferases (DNMTs) and members of the
polycomb-repressive complex-2 (PRC2)29. Most importantly, the
PRC2 member EZH2 emerged as the top upregulated gene, cor-
roborating its previously suggested role in disease progression
(Fig. 1c and Supplementary Fig. 1K)15,30,31. Besides, among the
most upregulated genes, we noted AR-regulated genes that pro-
mote G2–M cell cycle progression, while AR-regulated differ-
entiation genes were suppressed, as expected (Fig. 1d)32–34.

The progression path indicates that most prostate cancers
evolve from normal tissue by continuously increasing AR
signaling (PC2). Then, under androgen deprivation therapy, the
tumors progress to CRPC by increasing cell cycle genes and
eventually dedifferentiate to AR-negative disease with or without
neuroendocrine features (neuroendocrine prostate cancer
(NEPC)) (Fig. 1e). Notably, the transcriptional changes correlated
well with the protein level changes in an independent set of
primary and CRPC samples (Fig. 1f)35. Because EZH2 protein
quantification was not performed in this dataset, we ascertained
its upregulation with disease progression on a tissue microarray
(TMA) of 33 primary and matched CRPC samples (Supplemen-
tary Fig. 1L)36.

Next, we evaluated whether genomic alterations in driver genes
correlate with disease progression. We noted a significant
correlation of point mutations in PIK3CA, TP53, FOXA1,
KMT2C, and PTEN with progression in primary tumors and
FOXA1 in the metastatic counterpart (Fig. 1g). In primary
tumors, we also noticed a positive correlation with MYC copy
number and an inverse correlation with deletions of RB1, PTEN,
and TP53, as expected. In contrast, in CRPC/NEPC samples, only
RB1 loss seemed to correlate well with increased progression (Fig.
1h and Supplementary Fig. 1M, N).

We wondered if pseudotime would also predict survival in
patients with metastatic disease. Indeed, increased pseudotime
significantly correlated with overall survival (Fig. 1i). While loss-
of-function mutations in RB1 and TP53 were also associated with
poor survival, these alterations did not outcompete pseudotime in
the multivariate analysis. Hence, pseudotime still reached
significance when only RB1 wild-type tumors were considered
(Supplementary Fig. 1O, P). The data suggest that pseudotime
assessment may be useful to predict patient survival in an
advanced disease setting.

Finally, we assessed transcriptional changes in key immune
pathways throughout tumor progression along the trajectory. It
has been widely appreciated during recent years that cancer
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growth is supported by changes in the tumor microenvironment,
such as the polarization of macrophages from an M1— towards
M2-like phenotype37,38. Indeed, we noticed a potent down-
regulation of pro-inflammatory M1 markers and an increased
and continuous shift towards M2-associated pro-tumorigenic
effectors (Fig. 1c, j and Supplementary Fig. 1Q–S). Interestingly,
CD24—a potent “don’t eat me” signal for M1 macrophages—was
associated with progression as well39.

Integration of prostate cancer models in the transcriptome
analysis. We next set out to further functionally validate our
findings related to disease progression in eight established human
prostate cancer cell lines and six PDX models originating either
from a surgically, carried off PNPCa40 or CRPC (LuCaP-23.1,
LuCaP-35, LuCaP-78, LuCaP-145, and LuCaP-147)41. To this

end, the transcriptional fingerprint of all models clustered
towards the outer layer of the progression trajectory (Fig. 2a and
Supplementary Fig. 2A, B).

As expected, the PCA positioning of cell lines and the PDX
models along the trajectory was highly significantly associated
with the originating disease stage and the dependence on
androgens (Supplementary Fig. 2C). The hormone-naive (HN)
PNPCa model was placed first, followed by the CRPC-derived
models, positioned progressively according to their decreasing
levels of AR dependency. Finally, we observe the AR-negative
(PC3, DU-145) and neuroendocrine models (NCI-H660, LuCaP-
145.2), which are located at the end of the route (Fig. 2a and
Supplementary Fig. 2A, B). As expected, we also noted a
corresponding upregulation of key proteins related to polycomb
complexes (EZH2, SUZ12 EED), DNA methylation (DNMT1,
DNMT3A/B), and G2–M cell cycle progression (Fig. 2b).
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Multiple CR sublines of cell lines and PDX models have been
generated over the past decades, enabling us to further functionally
validate the disease progression trajectory in an isogenic system42.
Indeed, we found that all sublines progressed on the trajectory
(Fig. 2c and Supplementary Fig. 2D–F). Most notably, the LTL-331
PDX model displayed a gradual transcriptional progression from
late-stage PNPCa to AR-negative, neuroendocrine disease within a
timeframe of 32 weeks (Fig. 2c and Supplementary Fig. 2D)43. At the
molecular level, we also noted an increase in key proteins linked to
the trajectory in LNCaP xenograft tumors upon tumor recurrence
after castration (Fig. 2d). Altogether, the data suggest that progression
along the trajectory can be recapitulated in human cell line and PDX
models.

The ex vivo culture of prostate cancer cells has been traditionally a
major challenge. That said, the adjustment of the 3D organoid culture
system for prostate cancer has enabled the ex vivo culture of PDX-
derived cells and the generation of new prostate cancer organoid
lines44,45. We wondered if the transcriptional output of ex vivo
cultures would mirror the corresponding PDX models in vivo. In
general, we found that ex vivo organoid cultures displayed a more
progressed transcriptional output compared to the corresponding
in vivo models (Fig. 2e). In agreement, the AR dependency was also
largely diminished (Fig. 2f and Supplementary Fig. 2C). This
observation could be further validated when androgen-dependent
LNCaP cells in standard 2D were cultured in the 3D organoid
condition (Fig. 2f). Of note, the standard 2D culture matched better
the corresponding xenograft model concerning the position on the
progression trajectory (Fig. 2e). In aggregate, the data may suggest
that the advances in culturing prostate cancer cells using the organoid
system may come at the expense of transformation towards a more
progressed and aggressive androgen-independent state.

Single-cell resolution to the trajectory. We performed single-cell
RNA-seq (scRNA-seq) of most aforementioned PDX models in vivo

to interrogate the individual cells’ distribution along the trajectory of
disease progression. In each case, normal mouse stromal cells were
identified and separated from human tumor cells (Fig. 3a and Sup-
plementary Fig. 3A–D). When comparing the merged single-cell data
with the previously generated bulk RNA-seq data, we noticed in each
case an excellent concordance between the position of both data
points on the PCA plot, suggesting that our single-cell data are
sufficiently similar to allow the integration into the pan-prostate
cancer transcriptome cohort (Fig. 3b and Supplementary Fig. 3E–H).

Subsequently, we interrogated each PDX for the existence of
separate subpopulations using the Seurat workflow46 (Fig. 3a and
Supplementary Fig. 3A–D) and integrated the data into the PCA plot
(see “Methods” section). Overall, single cells of the various
subpopulations within a given PDX model did not greatly differ in
their position to the trajectory and displayed relatively little overlap
across PDX models (Fig. 3b and Supplementary Fig. 3E–L). As
expected, subpopulations in cell cycle progression (i.e., S and G2M
phase) positioned higher on the trajectory (Fig. 3b and Supplemen-
tary Fig. 3E–P). That said, the PDX model LuCaP-35 showed a wider
distribution of subpopulations along the trajectory with distinct
features linked to the S and G2M phase (H1–3 versus H4, 6),
respectively, raising the possibility of being composed of two major,
biologically diverse tumor clones (Supplementary Fig. 3G, K, O).

Subsequently, we assessed if and how these subpopulations would
evolve during progression to androgen independence. For this
purpose, we took advantage of the LuCaP-147 PDX tumor model
that quickly develops castration resistance and compared the single-
cell transcriptional profiles before and after castration (Fig. 3c). Upon
regrowth, there was no major difference in the position and
abundance of previously identified subpopulations (Fig. 3d). Instead,
we noticed a concordant shift along the trajectory for each of the
clusters h1–7, which was characterized by a shutdown of canonical
AR signaling and upregulation of pro-proliferativeMYC target genes,
among others (Fig. 3e, f). Altogether, the data suggest that resistance
to castration in this setting occurs likely through reprogramming of

Fig. 1 Trajectory to prostate cancer progression. a Principal component analysis (PCA) of pan-prostate cancer transcriptomes obtained from the indicated
studies of normal (shades of green), primary (shades of red), castration-resistant (CRPC, shades of blue), and neuroendocrine prostate cancer (NEPC,
shades of gray). See Source data file. b Unbiased trajectory analysis identifies the path to disease progression. Quantification of the path is indicated by
inferred pseudotime. See Source data file. c Plot representing the correlation between mRNAs and pseudotime inferred along the trajectory. Positively
correlated genes are depicted in red while negatively correlated genes are depicted in blue. Polycomb-repressive complex-related genes highlighted in
orange, cell cycle-related genes in green, immune response in light blue, and AR signaling in magenta. X-axis: Pearson’s correlation coefficient between
mRNAs and pseudotime; Y-axis: the associated significance adjusted for false discovery rate (FDR) and expressed in the form of −10 × log 10(FDR). See
Source data file. d Schematic representation of gene-expression changes in AR-regulated target genes related to cell differentiation and proliferation and
PRC2 components along the trajectory. Genes are enclosed in boxes, whose color is associated to the correlation coefficients between mRNA expression
and pseudotime, and are depicted in the indicated color scale. e Gene-set enrichment analysis performed on genes ranked for their Pearson’s coefficient as
determined by the correlation between mRNA expression and pseudotime inferred from the trajectory. Increasing pseudotime results in an increase of cell
cycle-related genes and concomitant downregulation of androgen-responsive genes. Upregulated: red; downregulated: blue. See Source data file. f
Scatterplot revealing Pearson’s correlation coefficient and associated P value between mRNAs and protein abundances, expressed in the form of fold
change (log-scale) between CRPCs and primary tumors. Polycomb-repressive complex-related genes highlighted in orange, cell cycle-related genes in
green, immune response in light blue, and AR signaling in magenta. See Source data file. g P values associated to Pearson’s correlation coefficients
expressed in form of −10 × log 10(P value) (FDR-adjusted). Coefficients were determined for the correlation between somatic mutations (0: wild type; 1:
non-synonymous mutation) and inferred pseudotime along the trajectory. To dissect the relative impact on disease progression at different stages,
coefficients were computed separately in primary and CRPC/NEPC samples. Only recurrently mutated genes (at least in six individuals) were taken into
account. PIK3CA (green); TP53 (pink); PTEN (dark green); SPOP (orange); AR (gray); KMT2D (brown); KMT2C (light brown); STAT3 (blue). See Source
data file. h Computed Pearson’s correlation coefficients between samples’ numeric copy-number status (−2: homozygous deletion; −1: heterozygous
deletion; 0: wild type; 1: gain; 2: amplification) and inferred pseudotime, stratified for primary and metastatic tumors (CRPC, NEPC). MYC (red); AR (gray);
RB1 (light blue); PTEN (dark green); TP53 (pink). i Kaplan–Meier curve for disease-free survival in CRPC patients stratified according to pseudotime using a
four-tiered scoring system (quartiles: Q1, Q2, Q3, and Q4) reveals a significant association of higher pseudotime with impaired survival. Source: cBioportal
(SU2C/PCF Dream Team, PNAS 2019). P value was determined by using log-rank test. Q1 (red, n= 20); Q2 (orange, n= 20); Q3 (green, n= 20); Q4
(blue, n= 19). For one patient, two metastatic samples were available. We discarded the sample with the lower pseudotime. See Source data file. j
Histograms depicting the correlation between the inferred abundance of the indicated immune cell populations (as determined by Cibersortx) and
pseudotime. P values associated with Pearson’s correlation coefficients were adjusted for multiple testing using false discovery rate (FDR) and reported on
top of the bars. Red: positive correlation; blue: negative correlation. See Source data file.
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the entire tumor cell population instead of a clonal selection of a
particular cluster.

Subsequently, we wondered if the induction of resistance may
be paralleled by changes in the tumor microenvironment. Indeed,
after castration, we observed an increase in the abundance of
tumor-associated macrophages that displayed a change in
polarization from M1- to M2-like features (Fig. 3g, h). In line
with this, we also observed a gradual reduction of TNFα signaling
and inflammatory signatures—key features of M1 macrophages—
in PDX models with increasing pseudotime along the trajectory
(Fig. 3i). The results agree with the expression changes of M1-
and M2-related transcripts along the trajectory of disease
progression described earlier in Fig. 1. Taken together, the data
illustrate how bulk transcriptional changes related to disease
progression can help to shed light on the emergence of androgen-
independent prostate cancer at the single-cell level.

Co-targeting AR and EZH2 delays tumor progression. Because
EZH2 emerged as a top upregulated transcript within the

trajectory of disease progression and had been shown to promote
androgen independence15,30,47,48, we set out to investigate if co-
targeting AR and EZH2may prevent or substantially delay disease
progression. Indeed, we noted a dramatic change in the tran-
scriptional output program of LNCaP cells when treated with the
EZH2 protein inhibitor GSK126 under androgen-deprived cul-
ture conditions in charcoal-stripped serum (CSS) (Fig. 4a). Pre-
viously detected LNCaP subpopulations (h1–6, h8) formed a new
subpopulation (h7), suggesting a nearly complete rewiring of
transcription, upregulation of AR signaling, reduction of E2F-
related cell cycle genes, and reversion of progression on the tra-
jectory (Fig. 4b and Supplementary Fig. 4A–D). In line with this,
we noticed a strong reduction in colony formation when
androgen-dependent LNCaP, VCaP, and LAPC4 cells were sub-
jected to CCS and treated with GSK126, while forced expression
of EZH2 was sufficient to promote colony formation in the same
setting (Supplementary Fig. 4E).

Next, we tested if our observations would also translate into an
in vivo setting. For this purpose, we injected LNCaP cells into the
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flank of immune-compromised mice and treated the emerging
xenograft tumors with castration alone or in combination with
3 weeks of GSK126. In both cases, the tumors fully regressed.
While the tumors of castrated mice regrew with a latency of
around 4 weeks, GSK126 co-treated tumors took more than twice
as much time to re-initiate tumor growth (Fig. 4c).

We subsequently performed scRNA-seq on the tumors pre-
and post castration to investigate transcriptional changes on
tumor and stromal cell subpopulations. As noted previously for
LuCaP-147, we found no major change in the tumor cell
subpopulations (i.e., h1–6) that adapted to castration (Fig. 4d).
Because GSK126 treatment in vivo had been stopped for 3 months
before harvesting the tumors, the transcriptional changes in the
tumor cells appeared less striking than in the aforementioned cell
culture setting (Fig. 4a, d). That said, we observed after GSK126
co-treatment a continuous relative increase in tumor cell numbers
of cluster h6—the least progressed cluster on the trajectory that
also displayed the highest AR mRNA levels (Fig. 4d and
Supplementary Fig. 4F–I). This cluster showed a further increase
in AR signaling and a reversion of disease progression after

GSK126 treatment (Fig. 4e and Supplementary Fig. 1). Finally, we
assessed if pharmacologic inhibition of EZH2 may also affect the
tumor microenvironment. Indeed, GSK126 treatment suppressed
the continuous proliferation of fibroblasts after castration and
tumor regrowth (Supplementary Fig. 5A, B). In line with this,
GSK126-treated LNCaP cells suppressed the secretion of the
fibroblast growth factors PDGF-AA and PDGF-AB-BB in
culture49 (cytokine arrays, Supplementary Fig. 5C, D) Impor-
tantly, xenograft-associated macrophages also continuously
increased in numbers and displayed a shift towards M2-like
polarization in tumors adapted to castration as previously
observed (Fig. 4d, f, g). Strikingly, we found a pronounced
relative reduction of preferentially M2-like macrophages in
GSK126-pretreated tumors, suggesting that GSK126-mediated
changes on the tumor microenvironment may have contributed
as well to the delayed regrowth of LNCaP xenografts (Fig. 4h).

We further assessed the interaction between LNCaP cells and
macrophage-like THP1 cells in vitro. The supernatant from
THP1/LNCaP cocultures in CSS promoted M2 polarization on
M0- and M1-THP1 cells, respectively (Fig. 4i, j and
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Supplementary Fig. S5E–I). At the same time, GSK126 reverted
M2 polarization (Fig. 4i, j). In line with this, GSK126 suppressed
the induction of cytokines capable of M2 induction in LNCaP
cells (i.e., CSF1, IL13, IL4; Fig. 4k and Supplementary Fig. S5J).
Indeed, the supernatant of GSK-treated LNCaP cells was
sufficient to revert CSS-induced polarization of human M2
macrophages (Fig. 4l and Supplementary Fig. S5K, L).

In aggregate, the data suggest a rationale for joint targeting of
AR and EZH2 in prostate cancer because the latter reverts tumor
cell progression towards a more androgen-dependent state and at
the same time counteracts adaptive changes in macrophages and
fibroblasts that are intimately linked to disease progression.

Discussion
In the present study, we combine transcriptional profiles of
prostate cancers at various disease stages to a comprehensive
Prostate Cancer Transcriptome Atlas with negligible study-
related interference (i.e., batch effects). Mining the atlas reveals
a rather uniform trajectory towards disease progression from
normal prostate, primary, and metastatic CRPC. The trajectory is
characterized by a gradual upregulation of genes related to EZH2-
mediated polycomb signaling and cell cycle progression, most
namely G2M checkpoints and mitotic spindle genes. The latter
may provide an explanation why taxanes (i.e., docetaxel, cabazi-
taxel), which disrupt microtubule function during cell division,
remain a cornerstone of prostate cancer treatment in the
hormone-sensitive and CR metastatic setting50–57.

EZH2 has been previously described to be critically involved in
prostate cancer as an activator of AR signaling30. It is also a key
component of PRC2-mediated gene silencing—a developmental
pathway implicated in dedifferentiation and prostate cancer
progression15,29,58–66. In agreement with the latter, we find EZH2
the top upregulated gene in the progression trajectory along with
other PRC2 members. In line with a function in driving disease
progression and dedifferentiation towards the loss of AR
expression, we demonstrate how EZH2 inhibition reverts the
transcriptional output of prostate cancer cells along the pro-
gression trajectory. The findings may have important implica-
tions for the treatment of prostate cancer patients in an HN or

early CRPC because it may prevent the dedifferentiation of cancer
cells as an escape mechanism to AR-directed therapeutic inter-
ventions. In line with previous reports, we noticed along the
trajectory a change of macrophage polarization from inflamma-
tory M1 to pro-tumorigenic M237,38. Our findings further
underscore the antitumor potential of pharmacologically re-
educating macrophages towards M1. Castration was sufficient in
our PDX models to induce a change toward M2 polarization after
a relatively short period in line with previous reports67, suggesting
that therapeutic interventions per se may be at least in part the
underlying cause. Importantly, we show in the same setting that
inhibition of EZH2 protein substantially blocked the castration-
induced polarization change towards M2, uncovering a thus far
underappreciated role for EZH2 in macrophage polarization
another rationale towards co-targeting AR and EZH2 in prostate
cancer.

It is mostly unknown how disease progression in prostate
cancer emerges at the single-cell level. Using a series of PDX
models reflecting different progression stages from HN to AR-
negative late-stage disease enabled the addition of single-cell
resolution to the progression trajectory. Our results suggest that
resistance to androgen deprivation may occur through tran-
scriptional adaptation of tumor cells towards a more progressed
state. In line with this, a recent study has proposed that prostate
regeneration (a process that shares many molecular features with
prostate cancer progression) is driven by nearly all persisting
luminal cells, not just by rare stem cells68. That said, in our study,
we have used a relatively uniform xenograft tumor model that has
been already derived from CRPC and thus adapt swiftly to cas-
tration in mice. Conceivably, resistance to androgen receptor
inhibition over a longer period may also involve the selection of
stem-cell-like subpopulations irrespective of the presence of
genetic drivers of CRPC (e.g., AR amplification or point
mutations)69–73.

We provide a web-based interface for the research community to
facilitate the mining of the Prostate Cancer Transcriptome Atlas,
called the PCaProfiler (https://www.pcaprofiler.com). Using this
resource, we readily identify, for example, that a subpopulation of
very advanced prostate cancer tissues expresses high levels of IL23A, a

Fig. 3 Single-cell resolution to the trajectory. a Dimensionality reduction of single-cell distribution of LuCaP-147 PDX model in vivo using Uniform
Manifold Approximation and Projection (UMAP) and subsequent identification of cell clusters performed using Seurat46 workflow. Human (right) and
mouse cells (left) are separated from each other. A total amount of 7 and 4 clusters could be identified for human and mouse cells, respectively. For the
latter, we indicated the cells of origin corresponding to the various clusters on top. Inference of cell types was performed with SingleR86 through the
exploitation of the ImmGen repository87. For human cell clusters, we indicated the inferred cell cycle phase as predicted using Seurat. Human and murine
cell clusters are depicted using different colors as indicated on top of the figure panel. b Projection of single-cell clusters on the PCA plot. The position of
merged single-cell data corresponds to the one from bulk RNA-sequencing data. Please refer to the “Methods” section for detailed information on scRNA-
seq data integration with bulk RNA-seq. Cell clusters are depicted using different colors as indicated on top of the figure panel. c LuCaP-147 xenografts
regress and regrow within 4 weeks after castration. N= 5 independent experiments. Error bars indicate standard error. d Comparison of tumor single-cell
clusters before (left) and after castration (right). Cell clusters are depicted using different colors as indicated on top of the figure panel. e Violin plot shows
an increase in pseudotime of individual cells within the cell clusters after castration. To deal with drop-out events, the pseudotime inference was performed
for each cell following imputation of missing genes using RMagic88. Pre-castration (Pre-CX): red; post castration (Post-CX): blue. f Gene sets perturbed in
LuCaP-147 xenografts’ single-cell clusters at regrowth (post castration) compared to pre-castration. Most hallmark gene sets are upregulated (red) or
downregulated (blue) similarly. A marked downregulation of AR-responsive genes is noted. Differential expression for each cluster denoting the
transcriptional changes occurring after castration was determined using the MAST algorithm91. Subsequently, we determined the gene-set enrichments
using Camera (pre-ranked)75. g Dimensionality reduction (UMAP) of murine macrophages (green) pre-castration (left) and post castration (right)
highlights a notable increase in macrophage count at regrowth. h After castration, the percentage of infiltrated macrophage to tumor cell ratio increases.
Pre-CX (red): 8.1%; post-CX (regrowth, blue): 17.1%. Statistical significance was computed using Pearson’s χ2 test. See Source data file. i After castration,
macrophages display more M2-like transcriptional features according to the macrophage polarization index, as determined by using MacSpectrum78.
Significance levels (P values) were determined using Wilcoxon’s rank-sum text (two-tailed). Pre-CX: red; post-CX (Regrowth): blue. See Source data file. j
Single samples gene-set enrichment analysis of inflammation-related pathways performed following reclustering of murine macrophages extracted from
the corresponding single-cell RNA-seq experiments. Missing gene-expression values (drop-out events) for each cell were imputed using RMagic. With
increasing pseudotime along the trajectory, macrophages of xenograft models display less active TNFA (dark gray) and inflammatory signaling (light gray).
PNPCa xenografts were excluded from the analysis because of the limited number of infiltrated macrophages. Error bars indicate standard error.
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cytokine recently described to mediate castration resistance in pros-
tate cancer74. Interestingly, correlating the IL23A expression with
genomic features in our webtool identifies a tight association of
IL23A expression with gains and amplification of its receptor IL23R.
Such insights may be important for patient selection/stratification for
anti-IL23 targeting monoclonal antibodies under clinical develop-
ment (i.e., NCT04458311).

The PCaProfiler will also allow the pseudotime annotation of
new cancer transcriptomes. In a clinical trial setting, this infor-
mation may enable identifying antitumor responses within a
certain subset of patients with a given degree of disease pro-
gression. In a preclinical setting, the atlas may also help
researchers to choose the corresponding model system that
reflects the disease stage under investigation. Of note, in this
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regard, we have already annotated the pseudotime for the most
frequently used prostate cancer cell lines (see PCaProfiler).
Alternatively, the PCaProfiler may enable researchers to verify
and optimize the ex vivo culture condition so that it best mirrors
the in vivo setting.

In conclusion, we successfully merged the RNA-seq data from
several prostate cancer studies, covering different disease stages.
Based on that, we delineate the roadmap to prostate cancer
progression in a qualitative and a quantitative manner. Further-
more, we also show how individual tumor cells can be tracked
along the progression trajectory in response to pharmacological
perturbations. Because the transcriptome data of advanced
metastatic disease will become more readily available for other
tumor types, the current study may serve as a blueprint for their
analysis and exploitation.

Methods
Experimental model and subject details
Plasmids. The pHAGE-puro (Plasmid #118692) and the pHAGE-EZH2 (Plasmid
#116738) were purchased from Addgene.

Cell lines. PC3, DU-145, 22rV1, MDA-PCa-2b, LAPC4, LNCaP, VCaP, and HEK
293T cell lines were purchased from ATCC (American Tissue Culture Collection)
(Manassas, USA). The LAPC4 cell line was a gift from Prof. Helmut Klocker, the

LNCaP-abl cell line was a gift from Prof. Myles Brown (DFCI, Boston), and the
THP1 cell line was a gift from Prof. Saverio Minucci (IEO, Milan). The supernatant
of all cell lines was routinely tested (two times per month) using the MycoAlertTM
Mycoplasma Detection Kit (Catalog #: LT07-318, Lonza). All cell lines resulted
negative for Mycoplasma infection.

Immunohistochemically staining. EZH2 protein abundance was analyzed on
TMA, including matched primary and CRPC samples36 (University of Bern). All
prostate cancer samples from human subjects were obtained under approval by the
Ethics Committee of Northwestern and Central Switzerland (EKNZ, Nos. EK/1311
and 2015/228). This is based on a retrospective study. Tumor‐free prostate core
needle biopsies were used to analyze benign prostate (n= 3 patients). Prostate
cancer biopsies included in the TMA were taken during routine clinical treatment.
Samples were selected based on the following inclusion criteria: (a) histologically
diagnosed PCa, (b) tumor‐containing biopsies available at HN and CR state, and
(c) sufficient quality and amount of material, as evaluated by experienced
pathologists (JPT). Castration resistance was defined as either biochemical pro-
gression (i.e., serum PSA progression according to the Prostate Cancer Clinical
Trials Working Group criteria or clinical progression. A TMA comprising 112
matched HN/CR tissue specimens and including 107 transurethral resections and
five distant metastases derived from 55 PCa patients was constructed. Briefly, tissue
cylinders with a diameter of 1 mm were punched from the patient’s tissue blocks
containing the specimens using the robotic precision instrument Grand Master
TMA (3D Hitech). Tissue cylinders were placed in one recipient paraffin block.
After the block construction was completed, an 8 μm section of the resulting TMA
block was cut to a microtome. Due to tissue loss, a common problem associated
with TMA technology, 33 high-quality matched tissue samples of primary and
CRPC remained after sectioning.

Fig. 4 EZH2 inhibition cooperates with castration. a Dimensionality reduction (TSNE) of single-cell RNA-seq performed on LNCaP cells cultured in vitro
with charcoal-stripped serum (CSS) in the presence (right) or absence (left) of the EZH2 protein inhibitor GSK126. Identification of cell clusters (h1–h8)
was performed using the Seurat workflow. EZH2 inhibition has a dramatic impact on LNCaP cells, as most of the clusters disappear, while the remaining
cells undergo such deep transcriptional modifications that give rise to a novel cluster (h7). Identified cell clusters are depicted using different colors as
indicated on top of the figure panel. b Pseudotime of individual LNCaP cultured in charcoal-stripped serum (CSS, blue) is significantly reduced upon
GSK126 (CSS+GSK126, yellow) treatment. Pseudotime was computed for each cell, following imputation of missing genes (dropouts) using RMagic.
Statistical significance was determined using Wilcoxon’s test. See Data source file. c GSK126 treatment for 3 weeks upon castration significantly delays the
regrowth of LNCaP xenografts after castration. Curves are determined from n= 6 animals per group. Statistical significance at 100 days was asses using an
unpaired, two-tailed Student’s t test. d Dimensionality reduction (UMAP) of LNCaP xenografts performed on scRNA-seq experiments derived from mice
before castration (Pre-CX, left), 80 days after castration (residual/post-CX, left-center), 80 days after concomitant castration and EZH2 inhibition with
GSK126 (residual/post-CX+GSK126, center), 120 days after castration (regrowth/post-CX, right-center), and 120 days after concomitant castration and
EZH2 inhibition with GSK126 (regrowth/post-CX+GSK126, right). Experiments were performed by sequencing one mouse per condition. Murine cells can
be subdivided into five clusters corresponding to different cell populations according to SingleR (m1: fibroblasts; m2: endothelial cells; m3, m5:
macrophages; m4: monocytes). Human malignant cells can be separated into six clusters. An increase in the relative number of cells in cluster h6 and a
concomitant reduction of murine macrophages following EZH2 inhibition is observed. Identified human and murine cell clusters are depicted using different
colors as indicated on top of the figure panel. e Upon GSK126 pretreatment, for each cluster, we determined differentially expressed genes (MAST
algorithm) and performed gene-set enrichment using Camera (pre-ranked). Results highlight a global increase in androgen-responsive genes. Red:
upregulated; blue: downregulated. See Source data file. f The density plot of macrophage polarization index (MPI) reveals that macrophage cluster m5
(which decreases upon GSK126 administration) shows M2-like transcriptional features, while cluster m3 corresponds to an increased M1-like polarization
as determined by MacSpectrum. Statistical significance was determined using Wilcoxon’s test. Blue: density distribution of m3 cells; red: density
distribution of m5 cells. See Data source file. g Differential expression (MAST algorithm) shows that M1-like inflammatory signaling pathways are
downregulated in m5 compared to the m3 cluster. Blue: downregulated. h Histogram representing the relative ratio between m5- and m3 cluster before
castration (pre-CX, brown), 80 days after castration (residual, red) and 120 days after castration (regrowth, green). Macrophage population belonging to
m5 cluster (M2-like) decreases upon treatment with GSK both at 80 (residual+GSK, pink) and 120 days (regrowth+GSK, light green). The decrease in
m3 cluster is much less pronounced. P values for both m3, and m5 subpopulations were determined using χ2 test and adjusted for multiple comparison
using Bonferroni’s correction method. i–j Treatment with GSK126 inhibits the M2 polarization of THP1-Mθ and THP1-M1 macrophages. i Bar graph showing
the log2 fold change ratio of M2 versus M1 surface markers, in THP1-Mθ (n= 2 independent experiments) or THP1-M1 (j) macrophages cocultured for 72 h
with LNCaP maintained in charcoal-stripped serum (CSS) alone or supplemented with 1 nM DHT or 1 μM GSK126 (n= 2 independent experiments).
Technical replicates are indicated using dots of different colors. Experment 1: black; Experiment 2: gray. The surface expression of the CD80 (M1) and
CD206 (M2) surface markers was determined by flow cytometry. The mean fluorescence intensity of the positive cells was compared with the average
signaling in the DHT condition to calculate the fold change. The ratio was determined by comparing the fold change of the M2 surface marker versus the
M1 surface marker. CSS: blue; CSS+DHT: gray; CSS+GSK126: pink. See Source data file. k Bar graph showing the gene-expression changing in LNCaP
cells of cytokine associated with M2 polarization. Gene-expression levels were measured by RT-qPCR into LNCaP maintained for 4 weeks in DHT, CSS, and
GSK126. The log2 fold change was calculated using actin as reference genes and compared to the DHT condition (n= 2 independent experiments per
condition). Technical replicates are indicated using dots of different colors. Experment 1: black; Experiment 2: gray. CSS: blue; CSS+DHT: gray;
CSS+GSK126: pink. See Source data file. l Treatment with GSK126 reverts the polarization of human M2-like macrophages. Bar graph showing the log2
fold change ratio of M2 (CD163) versus M1 (CD80) surface markers and human M2-like macrophages polarized for 7 days using the supernatant of
LNCaP cells maintained for 4 weeks in DHT, CSS, and GSK126, respectively (n= 5 independent experiment). CSS: blue; CSS+DHT: gray; CSS+GSK126:
pink. See Source data file. Significance was computed using Student’s t test, two-tailed, paired. No P value correction was applied as only one comparison
was performed.
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For EZH2 IHC, slides were analyzed with the Bond-III Automated Staining
System (Leica) using manufactured reagents for the entire procedure. For antigen
retrieval, slides were incubated for 60 min in citrate buffer at pH 6 at 98 °C.
Thereafter, slides were incubated with a rabbit monoclonal antibody against EZH2
(D2C9, CST5246 from Cell Signaling) at the dilution of 1:500. Detections were
performed using the detection refine DAB Kit (Leica). Immunohistochemical
staining was evaluated as the percentage of tumor cells with nuclear positivity for
EZH2 using Aperio ImageScope (Leica).

Cell culture. PC3, DU-145, 22rV1, LAPC4, LNCaP, and THP1 cell lines were
cultured in RPMI-1640 (21875-034, Life Technologies) supplemented with 10%
fetal bovine serum (FBS-11A, Capricorn Scientific), and 1% penicillin/streptomycin
(15140-122, Life Technologies) with 5% CO2 at 37 °C. LAPC4 was also supple-
mented with 1 nM dihydrotestosterone (DHT).

The LNCaP-abl cell line was cultured in phenol red-free RPMI-1640 (11835063,
Life Technologies) containing 10% CSS (FBS, charcoal-stripped, A3382101, Life
Technologies) and 1% penicillin/streptomycin with 5% CO2 at 37 °C.

VCaP and HEK 293T cell lines were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) (61965059, Life Technologies) supplemented with 10% FBS and
1% penicillin/streptomycin with 5% CO2 at 37 °C.

MDA-PCa-2b cell line was cultured in ATCC-formulated F-12K medium (30-
2004) supplemented with 20% FBS, 25 ng/ml cholera toxin (C8252, Sigma), 10 ng/
ml epidermal growth factor (EGF) (AF-100-15, PeproTech), 0.005 mM
phosphoethanolamine (P1348, Sigma), 100 pg/ml hydrocortisone (H0135, Sigma),
45 nM selenium acid (211176, Sigma), 0.005 mg/ml human recombinant insulin
(I1884, Sigma), and 1% penicillin/streptomycin with 5% CO2 at 37 °C.

PEI-mediated transfection and lentiviral infection. Lentiviral production was
carried out by polyethylenimine (PEI)-mediated transfection of the HEK 293T with
PHAGE (Empty, Addgene 118692) and PHAGE-EZH2 (Addgene 116738) vectors.
Briefly, The HEK 293T cells were seeded in a 10 cm culture dish (4 × 10–6 cells/
plate) and incubated overnight at 37 °C in a 5% CO2 humidified atmosphere. After
24 h, the vector plasmid (PHAGE or PHAGE-EZH2; 3 μg), the packaging plasmid
(pCMV-dR8.2; 2.7 μg), and the envelope plasmid (pVSV-G; 0.7 μg) were mixed in
Opti-MEM™ I Reduced Serum Medium (300 μl/10 cm culture dish, Thermo Fisher
31985070) with 1.25 mM PEI (Sigma-Aldrich, 919012) solution (ratio μl PEI:μg
DNA 4:1). The DNA/PEI mixtures were incubated at room temperature for
15 min. The DNA/PEI mixture was then added to the supernatant of the HEK
293T cell. Forty-eight hours after the transfection, the viral supernatants were
collected and filtered through a 0.45 m filter. The LNCaP cell line was incubated
with viral supernatant and 8 μg/ml Polybrene (H9268, Sigma) for 72 h and then
selected with 2 μg/ml puromycin (P8833, Sigma) for 2 weeks. Western blotting was
used to verify EZH2 protein abundance.

Animal experiments. All animal experiments were carried out accordingly to
protocol approved by the Swiss Veterinary Authority/Board (TI-42-2018 and TI-
10-2010) and received approval by the ethical committee of the Institute of
Oncology Research. All in vivo studies used 6–8-week-old male NRG (NOD-
Rag1null IL2rgnull, NOD rag gamma) mice.

Housing conditions. Before experimental procedures, mice were housed in indi-
vidually vented cages, maintained at room temperature (20–22 °C) and a 12 h
daylight cycle. Groups of five mice were kept in individual cages of ~465 cm2. The
cages were sealed, autoclaved before use, and used in a “Sealsafe” rack (Techniplast)
with a 0.2-μm aerosol bacteria barrier vent. AII manipulation of the cages (e.g., to
replace bedding) occurred in a cage changing station (CCS, Techniplast), designed
to maintain animals in a sterile airflow environment. For experimental procedures,
mice were housed in groups of 4–5 mice in ~355 cm2 filter-topped cages, on racks
in a specified pathogen-free barrier facility. Cages and filters were autoclaved before
use, and experimental procedures and manipulation of the cages occurred in a
sterile laminar flow hood (Skan AG). PDX LuCaP-147, LuCaP-145.2, LuCaP-78,
LuCaP-35, and LuCaP-23.1 were provided by Dr. Eva Corey41. The LuCaP PDX
series has been established by subcutaneous transplantation of tumor tissue of
patients with metastatic prostate cancer tumors, from 1991 to 2005. Tissue col-
lection for research was approved by the University of Washington Human Sub-
jects Division IRB, which approved all informed consents that were used for tissue
acquisition (IRB #39053). Dr. Marianna Kruithof-de Julio provided PNPCa. The
established PDX was originated from a patient who presented with primary PCa
(Gleason 9). Orchiectomy was performed directly after biopsy sampling; thus, the
tumor was androgen-dependent at the time of collection. The patient included in
the study provided written informed consent (Cantonal Ethical approval KEK 06/
03 and 2017-02295). PDXs tumors were maintained by subcutaneous implantation
of Matrigel-embedded tumor fragment (1–2 mm average diameter tumor or take
rate varied from 1 to 6 months). For the experiment in castration LNCaP or
LuCaP-147 cells (obtained from tumor dissociation, see details in the section
“ex vivo culture of PDXs”) were suspended in PBS and 50% Matrigel and sub-
cutaneously injected into the dorsal flanks of the mice (2 × 106 cells/mouse). Tumor
growth was recorded using a digital caliper, and tumor volumes were calculated
using the formula (L xW2)/2, where L is the length and W the width of the tumor.

Tumor volume was measured two times per week. When the tumor reached the
dimension of 50–100 mm2, mice were surgically castrated. For the GSK126 treat-
ment, the mice were treated 1 week after castration by daily intraperitoneal
injection at a dose of 100 mg/kg for 3 weeks. At the end of the experiment, mice
were euthanized, tumors explanted, and used for molecular assessment.

Ex vivo culture of PDXs. PDX tumor tissue was cut into small pieces (1–0.5mm)
with a scalpel blade and then digested in Collagenase Type I media solution (200U/ml,
Catalog #: SCR103, Millipore) at 37 °C for 45–60min. After enzymatic dissociation, the
cell suspension was passed through a 100 µM cell strainer (11814389001, Roche) to
eliminate macroscopic tissue pieces and centrifuged. The cell pellet was then resus-
pended in 2-volume RBC lysis buffer (11814389001, Roche), incubated for 3min at
room temperature (RT), and, after centrifugation, resuspended in a complete media that
permitted the propagation of PDX cells by 3D culture. The completed medium con-
sisted of advance DMEM/F12 (Thermo Fisher, 12634010) supplemented with 2mM
glutamine (Thermo Fisher, 25030032), 1% HEPES (Thermo Fisher, 15630080), 1%
B27 supplement (Life Technologies, 17504-044), 10mM nicotinamide (Sigma-Aldrich,
N0636), 5 ng/ml EGF (PeproTech, AF-100-15), 5 ng/ml fibroblast growth factor-2
(FGF-2) (PeproTech, 100-18B), 10 ng/ml FGF-10 (PeproTech, 100-26), 100 ng/ml
Nogging (PeproTech, 120–10 °C), 1 μM prostaglandin E (Bio-Techne, AG 2296),
500 nM A83-01 (Bio-Techne, AG 2939), and 1% of R1-spondin-1 (conditional medium
of R-spondin-1-expressing 293T cell line). The single-cell suspensions in complete
medium (density 106 cells/ml) were finally embedded in 50% phenol red-free Matrigel
(356231, Corning) and plated as a drop in a 96-well-plate (10,000 cells/well in a single
drop of 10 μl Matrigel) and maintained in the medium for 7–10 days.

DHT dose–response assay. 3D culture of PDXs (see section “Ex vivo culture of
PDXs”) or 2D culture of LNCaP cell line (5000 cells/well in 10% CSS medium)
were seeded in triplicate in a 96-well plate and subsequently treated with serial
dilutions of DHT (concentration range of 0.01 nM–30 µM). Proliferation was
assessed after 7–10 days by CellTitre-Glo assay (G9241, Promega) for 3D culture or
MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay (M5655, Sigma) for the
2D culture. For each time point, absorbance (OD, 590 nm) was measured in a
microplate reader (Cytation 3 Imaging Reader Biotek).

Colony formation assay in DHT-free medium. VCAP (5 × 105 cells/well), LAPC4
(2.5 × 105 cell/wells), LNCaP (2.5 × 105 cells/well), or LNCaP-overexpressing EZH2
were seeded in triplicate in 6-well plates in a standard medium. After 24–48 h,
when the cells were attached to the plate and formed a confluent layer, the medium
was replaced with 10% CSS medium (DHT-free medium) with/without 1 µM
GSK126 and kept in culture until the formation of the colonies (4–6 weeks). The
medium/treatment was weekly replaced. At the end time point, the cells were
gently washed with PBS, fixed with 0.01% crystal violet, and 20% of EtOH for
30 min, and then wash out with water. The images of colonies were acquired using
the Fusion Solo IV LBR system and the quantification of colonies was performed
by the ImageJ software.

Antibodies and Western Blot Analysis. The primary antibodies used were: anti-
GAPDH (sc-47724, Santa Cruz), anti-AR (sc-7305, Santa Cruz), anti-DNMT3A
(sc-365769, Santa Cruz), anti-EZH2 (612667, BD Transduction Laboratory), anti-
DNMT(5032S, Cell Signaling Technologies), anti-EED (85322S, Cell Signaling
Technologies), anti-SUZ12 (3737S, Cell Signaling Technologies), anti-Aurora A
(14475T, Cell Signaling Technologies), antiH3K27me3 (9733S, Cell Signaling
Technologies), and anti-PLK1 (B290751, BioLegend).

Tumor tissues (25–30 mg) or cellular pellets were lysates with RIPA buffer
supplemented with cocktail phosphatase inhibitors (4906845001, Roche) and
proteases inhibitors (5892953001, Roche). Protein concentration was determined
by BCA reagent (A52255, Thermo Fisher Scientific); 30–50 μg of whole protein
lysate was separated on 8–12% SDS–polyacrylamide gels and transferred onto
PVDF membrane (88518, Thermo Fisher Scientific). The membranes were blocked
with 5% milk in Tris-buffered saline with Tween-20 (TBST) for 30 min at RT,
incubated overnight at 4 °C with primary antibodies, and incubated for 1 h at RT
with secondary antibodies (anti-rabbit IgG HRP W401B and anti-mouse IgG HRP,
W402B, Promega). The protein bands were visualized using the western bright
quantum reagent (K-12042-D20, Advansta) and quantified using the Fusion Solo
IV LBR system.

Cytokine array profile. Profile of cytokines, chemokines, and other proteic soluble
factors contained in LNCaP-conditioned medium (CM) was detected by using
Human XL Cytokine Array Kit (ARY022B, R&D System) as reported in a man-
ufacturer’s protocols. LNCaP cells were maintained for 4 weeks in CSS alone or
CSS supplemented with 1 nM DHT or with 1 µM GSK126. The medium was
changed two times for a week. Five hundred microliters of each cell culture
supernatant was run on each array for 24 h. Pixel density plots were detected The
protein bands were visualized using the chemiluminescent detection reagent
included in the kit, and quantified using the Fusion Solo IV LBR system. The
images were analyzed using the Image Lab software. The signal (pixel density) of
each duplicate spot was determined. The signaling of a negative spot control was
used as a background value. The average background signal was subtracted from
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each spot. The signaling of each spot was normalized using the average signaling of
two different array-specific positive controls. To calculate the average fold changes
(FCs), the signaling of each normalized spot was compared with the average
normalized signal of the corresponding DHT-treated condition.

RT-qPCR analysis. According to the manufacturer’s guidelines, the RNA extrac-
tion was performed from a cellular pellet of THP1-derived macrophages using an
RNeasy Kit (74106, Qiagen). Quantitative reverse transcription PCR (RT-qPCR)
was carried out using KAPA SYBR® FAST One-Step (KK4600, Sigma) following
the manufacturer’s protocol. The primer sequences were obtained from Pri-
merBank (http://pga.mgh.harvard.edu/primerbank/index.html). The list of the
primer is reported in Supplementary Data 3. Actin was used as a housekeeping
gene. The qPCR analysis was performed using the 2−ΔΔCt method.

Flow cytometry analysis. For phenotype analysis, isolated THP1-derived mac-
rophages or human M2-like macrophages were suspended in PBS containing 1%
fetal calf serum and then stained for 30–45 min at RT with a cocktail of surface
marker antibodies. For staining anti-CD14-BV650, anti-CD80-PE, anti-CD163-
PECy7, and anti-CD206-BV510 antibodies (eBioscience) were used. Samples were
acquired on a BD LSR-Fortessa flow cytometry (BD Biosciences). Data were
analyzed using the FlowJo software. FACS gating/sorting strategy is indicated in
Supplementary Fig. 6.

In vitro differentiation of THP1-derived macrophages. The THP1 cells were
polarized to M1-like macrophages in RPMI medium,10% FBS, and 100 ng/ml of
phorbol‑12 myristate‑13 acetate (PMA) (Sigma, P1585) for 24 h following stimu-
lation with 10 ng/ml interferon-γ (300-02, PeproTech) and 10 ng/ml of lipopoly-
saccharide (Sigma, 916374) for 48 h. The unpolarized THP1-Mθ were derived from
THP1 cells stimulated for 48 h only within PMA in RPMI medium and 10% FBS.
After stimulation, the TH1-M0 or the THP1-M1 cells were maintained in CSS, CSS
1 nM DHT, or CSS 1 µM GSK126 fresh medium or cocultured with LNCAP cells.

In vitro differentiation of peripheral blood mononuclear cell-derived macro-
phages. Buffy coat was mixed 1:2 with PBS. The mixture was then added 3:1 to
Ficoll gradient (Invitrogen, 17-1440-03) and spun down at 1500 r.p.m. for 25 min
at RT (w/o brakes). The leukocyte ring was collected and washed with PBS. Cells
were then resuspended in 0.5% bovine serum albumin in PBS containing anti-
CD14 microbeads (130-050-021, Milthenyi Biotec) and purified for positive
selection using LS MACS column system (130-042-401, Miltenyi Biotec). The
purity of CD14+ cells was analyzed by FACS using an anti-CD14-BV650 antibody
(eBioscience). The CD14+ cells were polarized to M2-like macrophages in RPMI
medium, 10% FBS, 50 ng/ml granulocyte-macrophage colony-stimulating factor
(R&D Systems, 215-GMP), 50 ng/ml macrophage colony-stimulating factor (R&D
Systems, 216-GMP), 20 ng/ml interleukin-13 (200-13, PeproTech), and 20 ng/ml of
IL4 (200-04, PeproTech) for 7 days. In the experiments with CSS, CSS 1 nM DHT,
or CSS 1 µM GSK126 fresh medium and LNCaP-CM, the CD14+ cells were
polarized to M2-like macrophages using the same cocktail of cytokine.

RNA extraction for RNA-seq analysis. According to the manufacturer’s guide-
lines, the RNA extraction was performed from PDX’s frozen fragment (25–30 mg)
of cellular pellet using RNeasy Kit (74106, Qiagen). The RNAs were processed
using the NEB Next Ultra II Directional Library Prep Kit for Illumina (E7765,
NEB) and sequenced on the Illumina NextSeq500 with single-end, 75-base-pair-
long reads.

Single-cell isolation for scRNA-seq. To perform scRNA-seq PDX tumor tissue,
they were dissociated into single cells as described above (see section “Ex vivo
culture of PDX”). After resuspension in PBS, single-cell suspensions were loaded
into a 10x Chromium Controller (10x Genomics, Pleasanton, CA, USA), aiming for
10,000–5000 cells, with the Chromium Next GEM Single Cell 3′ v3.1 Reagent Kit
(PN-1000121, 10x Genomics), according to the manufacture’s instructions.

RNA-seq data processing
Sequencing of xenografts and 2D and 3D cultures. We retrieved bulk RNA-seq data
for cellular models of prostate cancer from various available datasets and extended
these by performing bulk RNA-seq of several prostate cancer Xenografts models
(i.e., PNPCa; LuCaP-78, LuCaP-23, LuCaP-35, LuCaP-145; LNCAP), and their
derived 3D cultures. Additional sequencing was performed for 2D cultures of
LNCaP, LNCaP-all, LAPC4, and VCaP cells (see “Data availability” section).

Prostate Cancer Transcriptome Atlas. To build an integrated resource of transcrip-
tional features representing all stages of prostate cancer progression, we collected raw
sequencing data from a large panel of independent datasets. We gathered raw data for
1223 clinical samples (1104 excluding technical replicates, 1044 excluding multiple
metastatic sites derived from the same individual). The resulting integrated cohort is
representative of various stages of disease progression, namely, normal prostate

specimens (n= 174), primary tumors (n= 714), CRPCs (n= 316), and CRPCs
showing features of neuroendocrine trans-differentiation (n= 19). Raw sequencing files
were retrieved from following sources: (1) Gene Tissue Expression Database; (2) The
Cancer Genome Atlas (TCGA); (3) atlas of RNA-sequencing profiles of normal human
tissues (GSE120795); (4) integrative epigenetic taxonomy of PNPCa (GSE120741); (5)
prognostic markers in locally advanced lymph node-negative prostate cancer
(PRJNA477449); (6) the long noncoding RNA landscape of NEPC and its clinical
implications (PRJEB21092); (7) integrative clinical sequencing analysis of metastatic
CRPC reveals a high frequency of clinical actionability (PRJNA283922; dbGaP:
phs000915); (8) CSER—exploring precision cancer medicine for sarcoma and rare
cancers (PRJNA223419; dbGaP: phs000673); (9) molecular basis of NEPC
(PRJNA282856; dbGaP: phs000909); (10) heterogeneity of androgen receptor splice
variant-7 (AR-V7) protein expression and response to therapy in CRPC (GSE118435);
(11) molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic
CRPC (PRJNA520923; GEO: GSE126078). Depending on the specific dataset con-
sidered, fastq files were downloaded either by using gdc-client (TCGA) or sra-toolkit
(SRA, dbGaP). Detailed information along with all available clinical annotations are
provided in Supplementary Data 1.

RNA-seq data processing of clinical samples. The overall quality of sequencing reads
was evaluated using FastQC (v.0.11.9). Sequence alignments to the reference human
genome (GRCh38) were performed using STAR (v.2.6.1c) in two-pass mode, to sig-
nificantly increase sensitivity to novel splice junctions compared to the regular single
mapping. Briefly, in the two-pass mapping procedure, reads are mapped twice: in the
first pass, the novel junctions are detected and inserted into the genome indices; in the
second pass, all reads are re-mapped using annotated (from the GTF file) and novel
(detected in the first pass) junctions. In particular, gene expression was quantified at the
gene level in the second pass by using the comprehensive annotations made available by
Gencode (v29 GTF File). Strand-specific information was not maintained to avoid
technical differences between stranded and unstranded libraries. Samples were adjusted
for library size and normalized with the variance stabilizing transformation (vst) in the
R statistical environment using DESeq2 (v1.28.1) pipeline. When performing differ-
ential expression analysis between groups, we applied the embedded Inde-
pendentFiltering procedure to exclude genes that were not expressed at appreciable
levels in most of the samples considered. If not otherwise specified, all GSEAs were
performed using the limma (v.3.46.0) package (Camera, use. ranks set to TRUE)75.
Gene-set collections were retrieved either from the Molecular Signature Database
(MSigDB) or from previous publications (AR/NE-Score)76. P values were corrected for
multiple testing using the false discovery rate (FDR) procedure, with the significance
threshold set to 0.05. In addition, GSEA significance was logarithmically transformed in
form of −10log10(p-adjusted), with a bold intercept (x= 13.01) indicating the FDR
threshold depicted in the corresponding plots.

Batch-effect correction and PCA. In the process of integrating different datasets from a
variety of sources, we verified that batch effects did not overwhelm the biological signal.
Batch effects may derive not only from differences across datasets but also may be
consequent of a different sequencing technique (PolyA+; TotalRNA; HCS) or originate
from other unknown sources. We aimed at specifically removing technical batches
rather than real biological variation and tried to preserve biological differences that may
be consequent of a different PSA level, age, tumor grade/stage, or other. PCA, by
identifying the transcriptional features endowed with the highest variance across
samples, is a very useful tool to detect relevant batch effects. When the latter are
overwhelming, they are likely to appear among the top PCs and cluster together
samples sharing the same batch-effect-related features. A PCA analysis performed on
the complete set of 1223 samples (Supplementary Fig. S1B) showed that the largest
source of batch effects was associated with the HCS technique, while no relevant
differences could be clearly associated with the dataset of origin. Only two of the CRPC
datasets (phs000915 and phs000673) contained samples sequenced using HCS, and for
several of these, matched technical replicates sequenced using PolyA+ technology were
also available. This allowed us to assess and remove technology-associated bias in gene
expression (ComBat algorithm, sva package v3.38.0, PolyA+ samples set as reference
batch). We further reduced the possibility of confounding biological with technical
variation by generating a training subset of our data, consisting of 883 PolyA+ samples
(52 normal prostate, 620 primary tumors, 193 CRPCs, 19 NEPCs) and determined the
top 2000 genes showing the highest amount of variation within the PolyA+ training set
only. This way, for PCA representation, we avoid the selection of genes that are possibly
affected by the sequencing technique, despite the correction we had already performed
on the data. Hence, we used the same 2000 genes to generate a PCA plot computed on
the extended set of samples. The PCA is routinely generated using the most variable
genes detected across the entire dataset. DESeq2’s defaults are set to use the top 500
most variable genes only. This number is frequently applied when analyzing the
transcription of protein-coding genes. Conversely, in our scenario we evaluated the
expression of the comprehensive genomic annotations provided by Gencode, which
also includes non-protein-coding genes, reaching a total amount of ~60,000 genes.
Thus, we increased the number of genes used for PCA analysis proportionally to the
above-mentioned number (4 × 500= 2000).

The results depicted in the PCA plot shown in Fig. 1a clearly show that the
positioning of tumors at the same stages of cancer progression overlap with each
other irrespectively of the dataset of origin and the sequencing technology. This
indicates that the different positioning of normal prostate, primary tumors, CRPCs,
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and NEPCs is due to a real biological signal and not consequent to an unwanted
dataset-specific batch effect.

Integration and validation of additional bulk RNA-seq samples and pseudotime inference.
We developed a method to include new prostate tumor samples in our current analysis
by starting from raw counts, which allows the computation of pseudotime and PCs
without modifying the original data and plots. Ideally, RNA-seq should be quantified
using the sample genome (hg38) and references used for the current study (Gencode
v29). Predictions can be performed sequentially, one sample at a time. For each new
sample of interest, raw counts will be merged with the ones composing our full set. The
obtained numeric matrix (the original matrix+ 1 extra sample of interest) undergoes
the same normalization and processing steps up to the computation of the PCA. Here,
coordinates may slightly differ from the original ones, due to the adding of a new
sample that might exert a small effect on the global re-normalization of all samples. To
address this behavior, we apply a machine learning-based approach (glmnet package
v4.1) that generates at runtime three elastic net models, one for each of the top 3 PCs,
and train them to predict the error between the original coordinates and ones that are
recomputed following the addition of the extra sample of interest. Hence, we apply
these models to adjust the computed PC1, PC2, and PC3 coordinates of the extra
sample, which can now be added to the PCA plot and pseudotime can be determined
using slingshot.

Trajectory analysis. Trajectory and pseudotime inference are frequently used in
scRNA-seq data analysis to model developmental trajectories through smooth curves
following dimensionality reduction and clustering. Here, we applied one of these tools,
slingshot (v1.6.0), to infer progression-associated trajectory and pseudotime from our
integrated set of bulk RNA-seq samples. We selected slingshot because of its capability
to also determine branches along the trajectory if any. PCA positioning (PC1–PC2) of
the individual samples was used as input for slingshot, along with the information that
the computed trajectory had to start from the normal tissue cluster. The analysis was
performed using 1106 samples, discarding all technical replicates, in order not to
overweight some samples and influence the computation of the trajectory. Metastatic
lesions from the same individual but localized in different organs were admitted for this
analysis. Subsequently, we could associate a pseudotime for each sample, ranging from 0
to 250 (Fig. 1b).

Correlation of genes and pathways to pseudotime. Having defined a unique pseu-
dotime value for each sample, we computed the correlation between pseudotime
and mRNA expression for each gene. For this purpose, we used Pearson’s corre-
lation over Spearman’s because we aimed at identifying the strength of the linear
relationship between gene expression and pseudotime. However, to be more robust
to outliers, we opted for ten times repeated leave one-third out procedure. Pre-
cisely, we randomly selected ten subsets composed of 66% of the samples and
computed correlation coefficients between pseudotime and expression of each gene
in all subsets. Finally, we averaged these values and ranked them according to their
correlation coefficient to pseudotime. Subsequently, using this ranking we applied
Camera to perform GSEA procedure (use.ranks= TRUE) and determined which
gene sets were mostly directly or inversely associated with pseudotime (Supple-
mentary Fig. S1F).

Correlation of mRNA expression and protein abundances. Proteomics data were
retrieved from the Proteomics Identifier Database (PRIDE: projects PXD009868,
PXD003430, PXD003452, PXD003515, PXD004132, PXD003615, PXD003636, see
“Data availability” section). The dataset includes 28 gland-confined prostate
tumors and 8 adjacent non-malignant prostate tissues obtained from radical
prostatectomy procedures, plus 22 bone metastatic prostate tumors obtained from
patients operated to relieve spinal cord compression. To compute the correlation
between mRNA expression and protein abundance, we first computed, for each
gene, the average FC (log2) between CRPC and primary tumors based on mRNA
expression. Then, the same was applied to the proteomics data to obtain for each
protein a log FC representing differential abundance between CRPCs and primary
tumors. For protein/mRNA correlation purposes, we discarded all genes that had
not been evaluated in the proteomic data. Finally, we used Pearson’s method to
evaluate the strength of correlation and the associated statistical significance.

Retrieval of genetic information and correlation with progression. Matched genetic
information respective to mutations and copy-number status could be retrieved for
763 samples through cBioportal. Samples for which this information was available are
indicated in Supplementary Data 1. To determine associations between mutations and
tumor progression, for each gene we compared the pseudotime of mutant versus wild-
type samples, by performing statistical testing using Wilcoxon’s rank-sum test (two-
tailed). Mutations were ordered according to their FDR-adjusted P values and analyses
were performed separately in primary and CRPC+NEPC tumors, to determine the
relative contribution of mutations at various stages of disease progression. We only
screened for genes being mutated in more than five individuals (Supplementary
Fig. S1L). To determine associations between copy-number alterations and tumor
progression, we associated for each gene a value of either −2 (homozygous deletion),
−1 (heterozygous deletion), 0 (wild type), 1 (gain), 2 (amplification), and subsequently
computed Pearson’s correlation between these values and pseudotime. We restricted
this last analysis to genes being frequently deleted or amplified in prostate tumors,

namely, MYC, AR, RB1, PTEN, and TP53 (Fig. 1e). The above-described analyses were
performed discarding technical replicates. Metastatic lesions from the same individual
but localized in different organs were admitted for this analysis.

Quantification of immune infiltrates and correlation with progression. Quantifica-
tion of immune infiltrates for all samples in our cohort was inferred from tran-
scriptomic data using CibersortX77 by using the default signature matrix “LM22” to
deconvolve 22 immune cell subsets from bulk RNA-seq (absolute quantification
mode). The abundance of inferred immune populations was correlated to pseu-
dotime using the same strategy applied to correlate gene expression and pseudo-
time. We opted for ten times repeated leave one-third out procedure. Precisely, we
randomly selected ten0 subsets composed of 66% of the samples and computed
correlation coefficients between pseudotime and each immune population in all
subsets. Finally, we averaged these values and ranked them according to their
correlation coefficient to pseudotime. Pearson’s correlation-associated P values
were corrected for multiple testing using the FDR.

Macrophage polarization index. The macrophage polarization index, indicating
polarization towards M1 or M2 phenotypes, was computed for all bulk RNA
samples in our cohort using MacSpectrum78–83.

scRNA-seq data processing
Quantification of gene expression. Fastq files were generated by demultiplexing raw
data using cellranger (v3.1.0). To make single-cell gene-expression quantification
more comparable to those of bulk RNA-seq, we generated a custom genome with
cellranger, using the very same reference (GRCh38.p12) and annotations (Gencode
v29) we had used for STAR when performing bulk RNA-seq analysis. To dis-
criminate between human and murine cells that may infiltrate the tumors in the
in vivo setting, we created a Mouse-Human reference, by creating a hybrid genome
(GRCh38.p12+GRCm38.p6) and hybrid gene-annotations (Gencode v29 and
M25, for human and mouse genes, respectively). To avoid conflicts, mouse
genomic coordinates were preceded by a prefix (i.e., mm_chr1, mm_chr2, etc.).
Subsequently, cellranger was used to quantify gene expression in the form of an h5
filtered matrix where Ensembl gene IDs are used as identifiers.

Data filtering and clustering. Expression quantification files were imported in R sta-
tistical environment using Seurat (v3.1.5) package. We discarded individual cells from
our data matrix by using two filtering procedures: first, we aimed at detecting tran-
scriptional outliers, and second, we looked for putative doublets, which we also dis-
carded. Briefly, we computed per-cell quality control metrics using scater (v1.16.1). The
total amount of mitochondrial and ribosomal gene expression was quantified for both
human and mouse cells. The number of genes being detected per cell, the total amount
of reads per cell and the mitochondrial and ribosomal fraction of the transcriptome
were used to determine the skewness-adjusted multivariate outlyingness for each cell
(robustbase v0.93-6). Outliers were detected by median absolute deviation and removed
at both tails. Counts were then normalized (Seurat::NormalizeData, method=
LogNormalize, scale.factor= 1000) and the top 2000 most variable features were
selected (Seurat::FindVariableFeatures, method= vst). Data were then scaled (Seur-
at::ScaleData) and PCA was performed up to the top 50 components (Seurat::RunPCA).
Subsequently, we identified and eliminated putative doublets using DoubletFinder
(v2.0.3). Having identified outliers and doublets, we removed them from the original
count data and went through the preprocessing step again (i.e., normalization, scaling,
and pca reduction). We proceeded to the determination of the k-nearest neighbors of
each cell and the construction of a shared nearest-neighbor (SNN) graph (Seur-
at::FindNeighbors), then we identified clusters using the SNN modularity optimization-
based clustering algorithm (Seurat::FindClusters, resolution= 0.5). Finally, we per-
formed Umap dimensionality reduction on the first ten PCs, annotated the previously
identified clusters, and generated plots accordingly.

Identification of cell cycle phase and cell type. We retrieved the list of cell cycle
markers84,85 and subdivided it into markers of G2/M phase or S phase, according to
Seurat’s annotations. We then used this information to infer the cell cycle phase in our
samples (Seurat::CellCycleScoring). Murine cells could be clearly distinguished from
human cancer cells, because of the intrinsic differences that could be easily spotted
owing to the alignment and quantification performed using a hybrid human-mouse
genome. Murine cell types were identified using SingleR (v1.2.4)86, using ImmGen
repository87.

Dealing with drop-out events. Drop-out events are very frequent in the single-cell
experiment performed using 10x Chromium technology. To address these issues,
we applied Markov affinity-based graph imputation of cells (RMagic v2.0.3)88.

Differential expression analysis and gene-set enrichment. Differential expression was
performed between different cell clusters and between clusters subjected to different
treatment conditions (Seurat::Findmarkers) using a hurdle model tailored to scRNA-seq
data (MAST method). Genes were subsequently ranked for log2 FC, and the Camera
algorithm (pre-ranked) was used to determine gene-set enrichments for each com-
parison. Cell-specific gene-set enrichments were determined using single-sample GSEA,
computed using gene-expression values of each cell following RMagic imputation.
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Macrophage polarization index of macrophages. The macrophage polarization
index, indicating polarization towards M1 or M2 phenotypes was computed for all
cells being identified as macrophages from SingleR analysis (https://
macspectrum.uconn.edu).

Macrophage reclustering. We could identify a sustained number of murine mac-
rophages infiltrating all xenograft models, except for PNPCa cells. We isolated
them and performed a cell-type-specific analysis by repeating all previously
described processing steps (i.e., normalization, scaling, and pca reduction). Drop-
out events were addressed using RMagic, and cell-specific enrichments were
computed using a single-sample GSEA.

Integration of scRNA-seq with bulk RNA samples, PCA, and pseudotime inference.
Single-cell experiments can be easily integrated with bulk RNA experiments by
simply summing up together gene counts for all individual cells into one meta-
element. This has proven to be comparable in terms of pseudotime inference and
PCA positioning, as scRNA-seq and bulk RNA-seq experiments performed on the
same cells are overimposable to each other. The same applies for the integration of
single-cell-derived clusters, provided that the number of cells composing each
cluster is not so critically low that the number of drop-out events results in a matrix
composed of too many missing genes. If this is the case, or if just a single cell is to
be integrated into the analysis, we suggest running RMagic to deal with the drop-
out events, and then simply proceed as previously described.

Additional resources
PCaProfiler. We provide a resource for the research community endowed with a
web-based interface to facilitate the mining of the Prostate Cancer Transcriptome
Atlas, called the PCaProfiler (https://www.pcaprofiler.com). Using this resource,
scientists can easily interrogate the atlas, recapitulate the findings shown in this
study, and extend these by exploiting correlations between genes of interest and
prostate cancer progression. PCaProfiler will allow integration and pseudotime
inference of new cancer transcriptomes that the user can directly upload, compute,
and visualize on the server. All results can be downloaded and re-uploaded to
PCaProfiler when needed. Preloaded are PCA positioning and pseudotime infer-
ences of the cell line, xenografts, and organoid models, as well as single-cell clusters
and additional transcriptional datasets not included in the current study (i.e.,
PRJEB25542, ESCAPE Trial). PCaProfiler will be updated frequently with new data
as new samples are being released or under specific requests.

Quantification and statistical analysis. Quantification methods and statistical
analysis methods were described and referenced in the respective “Method details”
subsection. If not otherwise specified, all statistical tests were corrected for multiple
comparisons using the FDR correction method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The bulk RNA-seq data generated in this study have been deposited in the EMBL-EBI
database under accession code E-MTAB-9930. The single-cell RNA-seq data generated in
this study for LuCaP PDX models and LNCaP cells have been deposited in the EMBL-
EBI database under accession code E-MTAB-9903. The publicly available RNA-seq data
used in this study are available in GEO (Gene Expression Omnibus), SRA (Short Read
Archive), and EMBL-EBI databases under accession codes GSE12079523, GSE12074119,
GSE11843522, GSE12607821, PRJNA47744989, PRJEB2109290, and E-MTAB-9656.
The Proteomics data used in this study are available in the PRIDE database under

accession codes PXD009868, PXD003430, PXD003452, PXD003515, PXD004132,
PXD003615, and PXD003636.
A minimum dataset to reproduce our findings containing vst-normalized expression

data, along with its annotations, was made available (Zenodo repository, https://doi.org/
10.5281/zenodo.5546618). All the software used for the analyses is described and
referenced in the respective “Method details” subsections. All gene sets used for
enrichment analyses were retrieved from the Molecular Signature Database
(MSigDB). Source data are provided with this paper.
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