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Spatial Transcriptomics to define transcriptional
patterns of zonation and structural components in
the mouse liver
Franziska Hildebrandt 1✉, Alma Andersson2, Sami Saarenpää2,7, Ludvig Larsson 2,7, Noémi Van Hul 3,7,

Sachie Kanatani1, Jan Masek 3,4, Ewa Ellis 5, Antonio Barragan 1, Annelie Mollbrink2,

Emma R. Andersson 3, Joakim Lundeberg 2 & Johan Ankarklev 1,6✉

Reconstruction of heterogeneity through single cell transcriptional profiling has greatly

advanced our understanding of the spatial liver transcriptome in recent years. However,

global transcriptional differences across lobular units remain elusive in physical space. Here,

we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver

tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined

by lobular zonation. By introducing novel computational approaches, we enable transcrip-

tional gradient measurements between tissue structures, including several lobules in a variety

of orientations. Further, our data suggests the presence of previously transcriptionally

uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity

of the organ. This study demonstrates how comprehensive spatial transcriptomic technolo-

gies can be used to delineate extensive spatial gene expression patterns in the liver, indi-

cating its future impact for studies of liver function, development and regeneration as well as

its potential in pre-clinical and clinical pathology.
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The mammalian liver is a pivotal organ for metabolic
homeostasis and detoxification. It has been ascribed a
central role for the generation, exchange and degradation

of essential biomolecules such as ammonium, fatty acids, amino
acids, and glucose, as well as the conversion and eradication of
various xenobiotic compounds and toxins1.

In mice, the mature liver can be divided into four major lobes:
medial, left (largest), right (bisected) and caudate2. Lobes are
formed by repetitive units, termed liver lobules. In brief, the
lobule, traditionally represented as a hexagon, has a portal vein
(PV) at each junction with the neighboring lobules, through
which nutrient-rich blood from the intestine enters the liver.
Eventually, the nutrient- and oxygen-exhausted blood is drained
in the central vein (CV)3–5.

By volume, the majority of liver resident cells (80%) are par-
enchymal cells, i.e., hepatocytes6. The remaining tissue consists of
liver non-parenchymal cells (NPCs), including liver endothelial
cells (LECs), liver resident macrophages (Kupffer cells) and other
immune cells, hepatic stellate cells (HSCs) and other stromal cells,
biliary epithelial cells (cholangiocytes) and cell types of the vas-
culature (endothelial and smooth muscle cells), which together
make up the heterogeneous functional lobular liver
environment7. Liver resident cells execute distinct functions along
the lobular axis based on their proximity to the CV or the PV8–11.
In mice, this spatial division in metabolic functions, known as
zonation, is primarily based on the differential expression profiles
along the lobular axis and is classically divided into three zones
(zone 1–3). Zone 1 is the region near the portal veins, while zone
2 is defined as the intermediate region between the portal and
central veins, and zone 3 is the region near the central veins11.
More recently these zones between the central and portal vein
were divided into 9 concentric layers with layers 1–3 representing
the central vein area, mid lobular layers 4–6 and layers 7-9
around the portal vein12. Recent findings from single-cell spatial
reconstruction approaches suggest that smaller and less abundant
NPCs also follow distinct spatial expression profiles based on
their position along the lobular axis13,14. These reconstruction
approaches: (I) provide an intricate image of the metabolic
division of labor within the microenvironment of the liver lobule,
(II) identify defining factors of zonation based on differentially
expressed genes (DEG) along the lobular axis12,14–16 and (III)
represent a fundamental resource for the extensively studied
concept of liver zonation7. However, all previous studies either
performed laser capture microdissection16 or used perfusion
techniques12,14, ultimately requiring tissue dissociation prior to
sequencing, resulting in single-cell resolution but also altering the
physiological transcriptional landscape17–19.

Further, previous studies focused on identifying factors
underlying zonation exclusively in the microenvironment of the
liver lobule. Investigation of individual liver sections shows that
studying the theoretical organization of the repetitive liver lobules
is challenging, due to the 3-dimensional organization and the
overall complexity of the complete organ. Lobules across the
tissue are organized in a highly irregular manner and differ
greatly in size and axial orientation. In addition, lobules are
situated in varying proximities to the main sources of blood
supply, namely the hepatic artery and the portal vein.

An additional layer of complexity in the study of liver tissues is
introduced by their organization into several lobes20,21. The
reason for this partitioning is not yet fully understood, however,
certain functional differences of the lobes have been
suggested22–24. Gene expression profiles may also vary between
regions, defined by their distance to other lobes. Therefore, dif-
ferential gene expression patterns among liver cells independent
of the organization in individual lobules and in the extended

tissue context are poorly studied and vital for our full under-
standing of liver function in homeostasis and disease.

Spatial Transcriptomics (ST) enables high-resolution assess-
ment of spatial gene expression across tissue sections, overcoming
the limitations associated with tissue dissociation17–19. Hence, the
generation of Spatial Transcriptomics data from liver sections in
their bona fide tissue context, together with pre-existing knowl-
edge of liver zonation enables the spatial annotation of structures
consisting of small mixtures of cells in the liver microenviron-
ment (lobule) and liver macroenvironment (tissue section).
Moreover, performing ST across liver tissue sections has the
capacity to reveal novel structures, which may be lost when using
protocols that do not allow analysis in a spatial context —
structures that may play crucial roles for the overall architecture
of the liver.

Here, we perform ST on healthy, female mouse liver tissue
sections, assessing spatial factors contributing to spatial liver
heterogeneity at the transcriptional level. By designing and
implementing a variety of computational methods, this study
aims to resolve the spatial relationships of vascular components
involved in liver zonation and explore previously uncharacterized
structures based on their transcriptional profile and in their ori-
ginal tissue context. Our results support the concept that zonation
represents a prominent factor contributing to spatial hetero-
geneity. Computationally tracing the expression levels of tran-
scriptional markers linked to zonation along the lobular axis
allows us to study zonation gradients in physical space, and to
infer the identity of vascular structures based on their neigh-
borhood expression profiles. We anticipate that our results from
ST complement previous findings of different structures and cell
types constituting the overall transcriptional landscape of liver
tissue and enhance our current understanding of liver tissue
organization.

Results
Unsupervised clustering defines spatial distribution of
expression across liver tissues. We used a total of 8 sections of
wild type adult, female mouse livers from the caudate and right
liver lobe for histological staining, library preparation and
sequencing. After mapping, filtering, annotation and normal-
ization of raw sequencing reads (Methods) we obtained curated
expression data consisting of 19,017 genes across 4,863 individual
capture locations (spots) on the ST arrays (summarized over all
sections) and subjected the data to downstream computational
analysis. Only spots under the tissue sections were considered for
analysis and visualization (Fig. 1a). Each spot is covered by a
small mixture of liver cells, not all necessarily of the same cell
type. For a select set of cell types, we used immunofluorescence
staining to estimate the number of cells present in a subset of
projected spot areas in liver cryosections. We performed stainings
for nuclei (Hoechst), hepatocytes (HNF4ɑ), Kupffer cells (F4/80),
and endothelial cells (CD31). Quantification of Hoechst+ nuclei
revealed the range of cell count per spot is 10-60 cells with a mean
value of 32.1 ± 8.73 cells per spot, out of which 56.9% ± 15.8% are
hepatocytes, 12.7% ± 7.4% are Kupffer cells, and ~30.8% ± 17.0%
endothelial cells (Supplementary Fig. 1). Subsequently, we inte-
grated the spatial data of different samples using canonical cor-
relation analysis (CCA) and clustered it in an unsupervised
manner using a graph-based approach, which identified 6 clus-
ters, exhibiting uniform distribution of unique transcripts
(Fig. 1b, top panel, Methods for details, Supplementary Fig. 2). To
put the clusters into context and assess their spatial organization,
spots were projected onto the brightfield image of the same tissue
section stained with Hematoxylin- and Eosin (H&E).
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The projection showed a clear spatial segregation between
spots belonging to certain clusters. Visual inspection showed that
cluster 5 was localized to an exclusive region of the tissue section,
while spots belonging to cluster 1 and cluster 2 aligned with the
vascular structures in the liver tissue (Fig. 1b, lower panel,
Supplementary Fig. 3). To further characterize the identified

clusters, we performed differential gene expression analysis
(DGEA) between them. In fact, DEGs in cluster 1 support
periportal gene expression from previous studies while genes
previously associated with pericentral gene expression are
enriched in cluster 2, proposing that cluster 1 and cluster 2
denote regions around the portal and central veins,
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Fig. 1 Study overview of Spatial Transcriptomics on murine liver. a Spatial Transcriptomics was performed on a total of 8 murine liver tissue sections. The
tissue sections were placed in one of six, 6.2 × 6.4 mm frames on the glass slide ST array. Each frame contains 1932 spots, with >200M uniquely barcoded
mRNA capture probes. The distance between centers of each neighboring spot is 150 µm (200 µm for spots in the same row). Initially, each tissue section
was fixed, stained with hematoxylin and eosin (H&E) and followed by imaging. Then, tissue sections were permeabilized, followed by mRNA capture, tissue
removal and sequencing. Thereafter, the count data was subjected to cluster- and differential gene expression analysis (DGEA). The results of the
clustering and DGEA were further analyzed and spatially annotated at the global tissue context and down to the lobular level. For new spatial annotations,
pathway analysis was performed. Liver lobules are classically described by a central vein (CV, red) surrounded by 6 portal nodes (PV, blue) with
neighboring bile-ducts (BD, green). For lobular spatial annotations, clusters have been computationally annotated by comparing expression levels in a set
of genetic markers linked to metabolic zonation along the lobular axis. b Canonical correlation analysis (CCA) was performed to integrate data of 8 liver
tissue sections, the data was subsequently normalized and subjected to graph-based clustering in which 6 clusters were identified (see Methods). The
integrated data was embedded in UMAP space (top) and depicted as an overlay of the spot cluster annotation across the tissue (bottom) (scale bar
indicates 500 µm). c Heatmap depicting expression values of the five most variable genes for each cluster after subjecting the 6 clusters to DGEA, with the
exception of cluster 3, which resulted in only four significantly differentially expressed genes and cluster 0 which did not result in any significantly
differentially expressed genes with the given parameters (Methods). d Visualization of spatial distribution of reported expression markers of Hepatocytes
(Alb), liver endothelial cells (Cdh5), Kupffer cells (Clec4f), Cholangiocytes (Spp1), hepatic stellate cells (Reln) and lymphatic liver endothelial cells (Lyve1) by
spots under the tissue. Pie-charts indicate the respective proportion of cell type markers present in spots under the tissue (scale bar indicates 500 µm).
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respectively12,14–16. Cluster 3 is enriched for genes associated with
hemoglobin, whereas cluster 4 shows enriched expression of
genes involved in immune-related processes25,26. Cluster 5
displays enrichment for mesenchymal genes27–29. Cluster 0 does
not show enrichment of any gene at the set log-fold change
(logFC) threshold of 0.5 (Fig. 1c, Supplementary dataset 1).

Spots of cluster 3–5 are mainly surrounded by spots of different
clusters, while cluster 0–2 form more cohesive groups of spots.
Interestingly, spots of cluster 0, 3, and 4 seem to adjoin spots of
cluster 0, 1, and 2 in descending order, implicating transcriptional
profiles of most clusters are commonly surrounded by periportal
rather than pericentral areas (Supplementary Fig. 4). The
scattered spatial distribution of cluster 3 across sections can
most likely be explained by the fact that the tissue was not
perfused prior to freezing and sectioning, allowing us to detect
blood cell populations throughout the liver. To assess replicability
and the sensitivity of the method to detect the transcripts of
different liver cells per spot, we examined the expression of genes,
previously reported to be marker genes for common cell types in
the liver across spots under the tissue.

In agreement with the histological evaluation of the tissue,
non-zero expression of the hepatocyte marker Alb (expression
value > 0) in 100% of spots indicated a global presence of
hepatocytes. For LECs, 1594 out of 4863 spots showed expression
of Cdh530,31 (~33%). Lymphatic liver endothelial cell and liver
midlobular endothelial cell-marker Lyve132–34 showed expression
in a smaller fraction of 698 spots (~14%). Kupffer cell-marker
Clec4f35–37 showed expression in 1723 spots (~35%) while hepatic
stellate cell-marker Reln38 was expressed in 1870 spots (~38%).
Spp1 is a marker for Cholangiocytes39, expected to only be
present in bile ducts, next to portal veins and is expressed in
1165 spots (~24%) (Fig. 1d). These results demonstrate that
highly abundant, or bigger cells are widespread, while smaller and
rarer cell types are found more scattered across the liver tissue.

While characteristic marker gene expression is a common way
to extrapolate the presence of certain cell types, we wanted to
include a larger set of genes constituting the expression profile of
a specific cell type and compare it to our spatial data. stereoscope,
presented by Andersson et al.40 enables cell types from single-cell
RNA sequencing (scRNA-seq) data to be mapped spatially onto
the tissue, by using a probabilistic model. With stereoscope, we
were able to spatially map 20 cell types annotated in the Mouse
Cell Atlas (MCA)41 on liver tissue sections (Supplementary
Figs. 5–7). Notably, high proportion estimate values are obtained
for periportal as well as pericentral hepatocytes in the MCA
(Supplementary Figs. 5–7). Pearson correlation values between
cell-type proportions across the spots show positive correlation,
to be interpreted as spatial co-localization of nonparenchymal
cells like LECs, epithelial cells and most immune-cells, as well as
stromal cells (Fig. 2a). Interestingly, periportal and pericentral
hepatocytes not only exhibit negative correlation, indicating
spatial segregation between each other but also with most other
cell types (Fig. 2a). A large fraction of spots is assigned to cluster 1
and cluster 2, while these cells only represent a very small fraction
of the MCA data. This observed discrepancy implies that a
relatively small cell type population identified by scRNA-seq can
constitute a large proportion of the spatially profiled cells,
illustrating the power of complementing single-cell transcriptome
data with spatial gene expression data to thoroughly delineate
liver architecture and the transcriptional landscape of liver tissue.
Importantly, the spatial distribution of periportal and pericentral
cell type proportions overlap with spatial annotations for cluster 1
and cluster 2, respectively (Fig. 2a (top right)). Moreover, Pearson
correlations between spots exhibiting high proportions of
periportal and pericentral hepatocytes and correlations between
spots with portal and central annotations (cluster 1 and cluster 2)

show similar trends, advocating for a reliable integration of cell
type annotations from scRNA-seq data and our ST data
(Supplementary Fig. 8, Supplementary Tables 1–2).

Heterogeneous spatial gene expression linked to pericentral
and periportal zonation. Spatial expression of common marker
genes of periportal or pericentral zonation, as well as observed
periportal and pericentral hepatocyte proportions from single-cell
integration across the tissue imply co-localization of cluster 1 and
cluster 2 with portal and central veins, respectively. To support
this observation, venous structures in our sections were annotated
as: a portal vein, central vein, or vein of unknown type (ambig-
uous). The annotations are based on the presence of bile ducts
and portal vein mesenchyme or lack thereof. Comparison of the
histological annotations and the corresponding clusters allowed
us to annotate cluster 1 as the periportal cluster (PPC) and cluster
2 as the pericentral cluster (PCC) (Fig. 2b).

Pearson correlations between genes enriched in the PPC and
genes enriched in the PCC show a negative trend, interpreted as
spatial segregation (Fig. 2c, Supplementary Dataset 2). PCC genes
exhibit positive correlations to all other marker genes present in
the PCC, and PPC marker genes show positive correlations to
other PPC markers, interpreted as spatial correlation (Fig. 2c).
None or lower correlations can be observed between PPC or PCC
marker genes and the remaining 4 clusters (cluster 0 and cluster
3-5) (Supplementary Fig, 9, Supplementary Dataset 2). The
spatial gene expression’s heterogeneity with respect to central and
portal vein proximity is corroborated by the spatial autocorrela-
tion of known marker genes (Methods, Supplementary Fig. 10,
Supplementary dataset 3).

Visualization of representative pericentral (Glul) and periportal
(Sds) marker expression in the UMAP embedding further
demonstrate highest expression values of Glul or Sds in the
pericentral or periportal cluster, respectively. When inspecting
the expression of Glul and Sds in their spatial context, these genes
show the highest expression in areas annotated as central or
portal veins. In addition, no expression of Sds can be found in
areas of elevated Glul expression and vice versa, indicating
expression of genes present in the pericentral cluster 1 and
periportal cluster 2 are spatially distinct and negatively correlated
with each other (Fig. 2d). Based on these observations, we further
investigated the zonation of reported marker genes in the context
of reported immune zonation42. To this end, we investigated
DEGs associated with immune system processes (GO:0002376)
and found more genes with periportal than pericentral zonation
(Supplementary Fig. 11).

Transcriptional profiling of pericentral and periportal marker
genes across tissue space enable computational annotation of
liver veins. To further investigate zonation in physical space, we
first superimposed the spots under the tissue showing expression
for two representative markers of central veins (Glul, Cyp2e1) and
portal veins (Sds, Cyp2f2), onto histologically annotated veins
(Fig. 3a). The gene Glul encodes the protein glutamine synthetase,
the main enzyme in glutamine synthesis15, while serine dehy-
dratase (Sds) is a key factor for gluconeogenesis43. Cyp2e1 and
Cyp2f2 both belong to the cytochrome P450 family involved in
xenobiotic metabolism44–46. Pericentral expression of Glul is
restricted to spots in very close proximity to the annotated central
veins, while Cyp2e1 is more evenly distributed across spots.
Neither Cyp2e1 nor Glul are detectable near annotated portal
veins. The opposite pattern is observed for the expression of Sds
and Cyp2f2 around the portal vein. Including all marker genes of
the PCC and the PPC and creating module scores (Methods) of
expression of all DEGs of the respective cluster in the spots under
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the tissue, we visualized the common expression gradient along
the lobular axis (Fig. 3a, Supplementary Figs. 12–13). These
described genes are associated with a small subset of liver meta-
bolic processes. However, we were also able to confirm that a
general trend for the enrichment of additional known zonated
metabolic pathways7,47 can be observed between the PPC and
PCC (Supplementary Fig. 14).

Next, we wanted to assess whether gene expression was
influenced by spatial proximity to the different vein types, as
would be expected based on the study by Halpern et al.,

describing expression gradients over a total of 9 layers along the
lobular axis12. For this purpose, we generated what will be
referred to as expression by distance plots, which portray the
normalized gene expression as a function of the distance to a
given vein type. To construct these plots, for each spot and gene,
we pair the observed expression value with the distance from the
spot’s center to the nearest vein border. Finally, to better capture
the relationship between distance and expression, we smooth our
observations with the loess method (Methods). Expression by
distance plots were compiled for a selected set of five periportal
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Fig. 2 Clustering, spatial annotation and computational validation using established scRNA-seq data. a Visualization of cell type co-localization by
Pearson correlations (left). Positive correlation values indicate spatial co-localization of cell types while negative values represent spatial segregation. Non-
significant correlations are highlighted with magenta borders. UMAP embedding of single cell data of the Mouse Cell Atlas (MCA)41 grouped by annotated
cell types (bottom right). Numeration behind the cell types represent annotation of MCA data (B cell-1: Fcmr high, -2: Jchain high, Dendritic cell-1: Cst3
high, -2: Siglec high, Epithelial cell-1: Spp1 high, -2: /, Erythroblast-1: Hbb-bs high, -2: Hbb-bt high, Hepatocyte-1: Fabp1 high, -2: mt-Nd4 high, T cell-1: Gzma
high, -2: Trbcs2 high). Encircled clusters in the plot refer to pericentral or periportal hepatocytes of MCA data. Quantile scales of cell-proportions
annotated as pericentral and periportal hepatocytes (Methods) are mapped on Spatial Transcriptomics spot data (top right). b Visualization of spots
representing gene expression profiles of cluster 1 (portal vein, blue) and cluster 2 (central vein, red) on H&E stained tissue (right), compared with visual
histology annotations of central- (red circles) and portal- (blue circles) veins (left) (scale bar indicates 500 µm). c Pearson correlations of genes expressed
in cluster 1 and 2 ordered by their first principal component (Methods). Genes with high expression in the pericentral cluster (cluster 2) show negative
correlation with genes highly expressed in the periportal cluster (cluster 1) and vice versa. Genes present within cluster 1 or cluster 2 exhibit positive
correlation with genes in the same cluster. d Projection of selected marker genes for central venous expression (Glul, top) and periportal expression (Sds,
bottom) in UMAP space and spots under the tissue (scale bar indicates 500 µm).
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Fig. 3 Expression gradient along the lobular axis and computational annotation of liver vein types. a Enlarged view of a superimposed visualization of
Sds, Cyp2f2 expression in the portal vein module, consisting of selected DEGs of cluster one (Supplementary Dataset 1), all with high values around the
histological annotation of a portal vein (top). Expression of Glul, Cyp2e1 as representative marker-genes of the central vein module expression
(Supplementary Dataset 1), consisting of DEGs of cluster 2 with high values around the histological annotation of a central vein (bottom). b Visualization of
the average expression by distance to vein-type measured within 400 µm from the vein. The top row shows expression by distance of portal markers Sds,
Cyp2f2, Hal, Hsd17b13 and Aldh1b1 to portal veins in blue and central veins in red, while the bottom row shows distances of central vein markers Glul, Oat,
Slc1a2, Cyp2e1, and Cyp2a5 to portal veins in blue and central veins in red (top panel). Red and blue ribbons around the fitted line represent the standard
error of the gene expression within spots along the distance to respective vein type. c Visualization of influence of distance to both vein types on
expression by bivariate expression by distance plots (Methods). Gene expression values are depicted in a gradient from low (dark) to high values (light). The
distance of each gene to central veins between 0 and 400 µm is represented on the x-axis. Simultaneously, distances to portal veins for the same distance
are depicted on the y-axis for each gene. High values in the bottom right corner indicate gene expression is predominantly observed close to portal veins
and far from central veins, while high values in the upper left corner indicate the reverse observation (below graphs). d Visual histological annotations (left)
of central (red) and portal (blue) veins, including ambiguous visual annotations (green), compared with computational prediction, using the 10 marker
genes from b (right). The classification of vein types is based on a weighted (by distance) average expression of the genes’ expression profiles in the
neighborhood of each vein. In addition, the spatial expression data of spots neighboring uncertain morphological vascular annotations (green) can be used
to predict periportal or pericentral vein types in the cases where visual annotations are ambiguous. e Expression by distance of portal—(top panel) and
central—(bottom panel) markers. Probabilities for each class (central and portal) can be extracted from the logistic regression model, here given as
P(central) or P(portal) (scale bar indicates 500 µm). Grey ribbons around the fitted line represent the standard error of the gene expression within spots
along the distance to each of the depicted veins.
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and pericentral marker genes with the highest positive logFC in
the PPC and PCC (Supplementary dataset 1, Supplementary
Fig. 15). Upon inspection of the plots, a clear dependency
between distance and expression becomes apparent. Portal
markers exhibit a gradual decline upon the increased distance
from a portal vein. For central veins, certain genes (e.g., Glul,
Slc1a2, and Oat) show a steep decrease in expression as the
distance from a central vein increases, while others (e.g., Cyp2e1
and Cyp2a5) display a more gradual decline (Fig. 3b). These
results are in agreement with the observed expression gradients in
spatially reconstructed layers in Halpern et al.12, which are
orthogonally validated by smFISH (Supplementary Figs. 16–17).
Additionally, we transferred the mapped proportion values of the
annotated periportal- and pericentral hepatocytes in the MCA
single-cell data along the lobular axis, and observed the same
inverse relationship with the distance of their associated vein
types as for the marker genes (Supplementary Fig. 18).

The aforementioned expression by distance plots illustrate how
the distance to either the portal or central vein influences the gene
expression, and can thus be considered a univariate model. To
also, simultaneously, assess how gene expression varies with the
relative position to both vein types, we employed a bivariate linear
model (Methods). Plots illustrating the results from fitting the
bivariate model to the data will be referred to as bivariate
expression by distance plots. Additionally, the parametric
bivariate model facilitates evaluation of the relevance of each
distance measurement (portal or central vein distance) for gene
expression (Methods). For portal and central vein markers we
observed a gradient from high expression at the portal or central
vein border to low expression at the respective opposite vein
(Fig. 3c). Our analysis revealed that the distance to both veins is
equally influential for the expression of central and portal
markers, as both univariate models are outperformed by the
bivariate model (Supplementary Dataset 4). To further explore
other processes determined by the zonation, we investigated the
relevance of the central and portal distance for the expression of
metabolic pathway markers7,47 (Methods). We were able to
determine genes for which distances to both veins or the distance
to only central or portal veins were influential. However, we also
found genes for which the distance to either vein represented an
explanatory variable for expression (Supplementary Fig. 19,
Supplementary Dataset 4).

The observed differences in gene expression along the lobular
axis of different central and portal vein markers agree with
concepts of dynamically expressed genes along the lobular axis of
the gradient type and stable gene expression of genes of the
compartment type directly at the central or portal vein
borders9,48,49. Spatially stable expression of compartment type
genes is exemplified by the genes Glul, and Slc1a2, important for
glutamate transport at central veins15. Expression of Sds, and the
histidine ammonia lyase (Hal), involved in ammonium produc-
tion are distinctive for stable gene expression at portal veins50.
The dynamic expression of gradient type genes is illustrated by
Cyp2e1 (pericentral) and Cyp2f2 (periportal).

Given the strong association between the DEGs in the PPC and
PCC, as well as the convincing demonstration of co-localization
with histologically annotated central and portal veins, we aimed
to explore whether veins could be computationally annotated
solely based on gene expression (Fig. 3d). Computational
annotation of veins as a complement to manual annotation is
of relevance for multiple reasons. First, manual annotations
sometimes prove to be difficult when only histological images of
suboptimal quality or without immunohistological staining are
available. Second, annotation is a labor-intensive process that
requires thorough histology training. Thus, a computational
model not only provides the possibility to validate the manual

vein annotations but also to predict the type of unannotated veins
based on their surrounding gene expression profiles. The model
constructed in this study (Methods) corresponds convincingly to
manually annotated central and portal veins based on the
expression profile of their respective neighborhood across all
sections from different biological origins (caudate and right liver
lobe) (Supplementary Fig. 20). Based on the confident evidence of
overlapping visual- and computational vein annotation, we
continued to computationally annotate veins with ambiguous
identity. With our method, we could assign the 72 ambiguous
veins as being either portal-or central veins, only relying on the
neighborhood expression profiles of 5 central and 5 portal vein
markers (Fig. 3e, Supplementary Dataset 5). For proximate tissue
sections of selected samples, we also show that the majority of
computational predictions is supported by immunofluorescence
staining for the respective central and portal protein markers GS
and SOX9, serving as an orthogonal validation of our results
(Supplementary Figs. 21–22). The prediction of vein types based
on the spatial expression profile of surrounding spots demon-
strates the potential to use spatial gene expression data for a
variety of annotation-based applications.

Exploration of components contributing to spatial hetero-
geneity across liver tissues. Spots assigned to cluster 5 on the
H&E images demonstrate exclusive spatial organization in one or
two distinct regions across the tissue (Fig. 4a, Supplementary
Fig. 23). Therefore, we asked how this cluster fits into the spatial
liver organization based on its expression profile. Additionally, we
wanted to assess whether the spatial organization of this cluster
can give indications regarding the function of the underlying
distinct structure in the tissue, which is characterized by
morphologies resembling potential tissue partitioning.

DGEA identified Gsn, Col1a2, Col1a3, and Vim, as highly
upregulated marker genes of cluster 5 (Supplementary Dataset 1).
Spots not belonging to cluster 5 show no expression or low
expression of these genes (Fig. 4b, Supplementary Fig. 24). In fact,
pathway analysis of the cluster 5 marker genes demonstrates the
strongest enrichment of genes belonging to the process “collagen
and fibril organization” (Fig. 4c, Supplementary Dataset 6).
Collagen fibrils have been reported to be the main component of
the irregular connective tissue composing the Glisson’s capsule in
several animals, including rodents51, giving first indications for a
structural function of cluster 5. In addition, processes contribut-
ing to structural formation and development, such as “extra-
cellular matrix organization” and “extracellular structure
organization” and pathways related to innate immunity, namely
“response to cytokine” and “antigen processing and presentation
of peptide or polysaccharide antigen via MHC class II” show
enrichment within cluster 5 (Fig. 4c, Supplementary Dataset 6).

Module scores of marker genes involved in “collagen and fibril
organization” are highest in spots of cluster 5 and in their direct
proximity in the tissue and show low scores across the remaining
tissue. This is supported by additional unsupervised analysis
using Spearman correlations (Methods), exhibiting negative
correlation between increasing distance to cluster 5 and
expression of Gsn, Col1a2, Col1a3, and Vim (Supplementary
Fig. 25).

In contrast, module scores of marker genes involved in the
response to cytokines (H2-Eb1, Timp2, Timp3, H2-Aa, Cd74,
H2Ab1, Spp1, Gsn, Col3a1, and Vim) are more evenly distributed
across the tissue (Fig. 4d, Supplementary Fig. 26). This result
supports the higher significance of processes involved in
structural formation and development of the tissue area at and
around cluster 5. Moreover, we compared marker genes of cluster
5 with marker genes of annotated cell types of scRNA-Seq data
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and found high overlap with mesenchymal cell types (fibroblasts,
HSCs and vascular smooth muscle cells (VSMCs) (Supplemen-
tary Fig. 27).

Taken together, unsupervised correlation analysis of cluster 5
markers, histological morphology in the respective tissue area and
high overlap with mesenchymal cell markers advocates for the
spatial organization of cluster 5, independent of liver zonation.

Discussion
Applying Spatial Transcriptomics to the mammalian liver
represents a compelling venue to explore its transcriptional and
functional heterogeneity while also complementing the previous
data7,18. Recent scRNA-seq studies including integration of spa-
tial information by reconstruction provide high-resolution
information of single-cell transcriptomes12,15,16, but the spatial
organization of these cells within the same tissue is lost due to
tissue dissociation, which additionally increases the risk of
undesirable transcriptional changes13,19. In contrast, ST preserves
the spatial information of the gene expression in its true tissue
context, thus complementing single-cell transcriptomics approa-
ches. The emerging possibilities of combining Spatial Tran-
scriptomics data with single-cell and other omics data of the same
tissue offer unprecedented levels of insight into the biology of the
tissue40,52.

Here, we estimated cell type information in the spatial data in
two different ways. First, we assessed the expression of char-
acteristic marker genes within a wide range of expression levels
and second, we deconvolved gene expression profiles of the mixed
cells in spots using stereoscope.

A recent study suggests predominant localisation of Kupffer
cells in the periportal area of the liver lobule and neutrophil
recruitment upon bacterial infection42. While our data does not
indicate elevated Kupffer cell proportions in the periportal cluster
compared to the remaining clusters, we found more genes related
to immune system processes with periportal enrichment in
comparison to the pericentral zone providing initial support for
implications of previously proposed immune zonation42. The
liver is constantly exposed to toxic and microbial threats from the
periportal blood, requiring an efficient balance between the
immune hyporesponsiveness and effective clearance of
pathogens53. Therefore, it will be of high interest to perform
Spatial Transcriptomics to study the effect of infection and
inflammation on immune zonation.

Next, scRNA-seq integration shows that proportion values are
highest for pericentral and periportal hepatocytes. The observed
discrepancies between our and the MCA data may result from the
different technical limitations that scRNA-seq and spatial data
generation face, emphasizing the current limits of scRNA-seq
data integration. For instance, transcriptionally highly active or
physically large cells might mask cell types with moderate to low
transcriptional levels in ST data. Therefore, technical and com-
putational advances to enhance resolution may benefit tran-
scriptional profiling of rare cell types within a tissue.
Nevertheless, comparisons to scRNA-seq data confirm general
trends observed in our ST data, highlighting the importance of
combining ST with scRNA-seq data.

We annotated two clusters with anti-correlating spatial dis-
tributions and characteristic marker gene expression that align
well with the visually annotated portal or central veins in the
H&E image as periportal (PPC) and pericentral (PCC) clusters.

a b
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Col1a2 Gsn

high

low

collagen fibril organization::GO:0030199 response to cytokine::GO:0034097
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Fig. 4 Identification of liver tissue regions with unique transcriptional patterns. a Projection of spots including transcriptional patterns of cluster 5 in the
UMAP and tissue (Fig. 1b), on the respective part of a histological section of the caudate lobe (left) and spot location in the entire tissue section (right).
b Visualization of Vim, Col3a1, Col1a2 and Gsn expression in spots of the same tissue section as in a. c Gene-ontology (GO:BP) enrichment for marker genes
present in cluster 5. The Enrichment is given as the negative log10 algorithm of the adjusted p-value (g:SCS correction, Methods) of the differentially
expressed marker genes in cluster 5. d Module scores of cluster 5 marker genes (Methods) associated with the two biological processes with the highest
enrichment scores: “collagen fibril organization” and “response to cytokine” are visualized on spots across the tissue.
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Overall, the spatial data generated in this study supports the
hypothesis that the main source of spatial heterogeneity across
liver tissue are transcriptional differences between zones along the
lobular axis between the portal and central veins12,14,15.

Moreover, the expression of central markers Glul and Slc1a2
and portal markers Sds and Hal illustrate compartmentalization
of gene expression for genes performing opposing tasks like
glutamine and ammonium synthesis, necessary to prevent futile
cycles54. We further affirm the established relevance of zonation
of multiple metabolic pathways along the porto-central
axis5,7,9,11,12,14–16,55,56, by tracing expression gradients from
outer vein borders and across physical space.

In addition, we investigate the relationships between the
marker gene expression of both portal and central veins simul-
taneously. Marker gene expression across annotated veins in the
tissue is insufficient to confirm the proposed schematic organi-
zation of the liver lobe of one central vein surrounded by six
portal nodes. Nevertheless, the results illustrate the overall rela-
tionships of zonation markers, including metabolic pathway and
immune markers with central and portal veins across the tissue,
suggesting whether the distances to central and/or portal veins
represent stronger explanatory variables for gene expression
independent of the schematic organization of lobules in
physical space.

Based on the convincing evidence for robust expression profiles
of central and portal veins across the tissue we were able to
generate a computational model to predict the vein type in cases
where visual annotations were ambiguous, based on the expres-
sion profiles of neighboring spots. This computational model
demonstrates the potential of ST to support morphological
annotations, providing probability values for the certainty of the
computational annotation of morphological structures at their
natural tissue location by transcriptional profiling. We anticipate
that this method will provide a multitude of applications in future
spatial transcriptomics studies, e.g., linked to pathology or
infection.

Cluster 5 consists of a small number of spots with distinct
spatial localization, which exhibit expression of mesenchymal
cell-marker genes14,29 and are associated with “collagen fibril
organization” pathways. We propose that cluster 5 might repre-
sent parts of the Glisson’s capsule, composed of collagen fibrils
together with its underlying mesothelium, representing the con-
nective tissue encapsulating the liver and regions with thicker,
hilar periportal mesenchyme. The capsule preserves the structural
integrity of the loosely constructed liver and enables the division
into lobes51.

The mesenchymal cell-marker Vim is reported to maintain
mesenchymal cell structure and serves as an indicator for cell
proliferative activity in liver cells27,57. Gsn encodes the actin-
binding protein gelsolin which has an anti-apoptotic role in the
liver58. Anti-apoptotic effects and enrichment of connective tis-
sue, possibly from the Glisson’s capsule, might be crucial in fra-
gile positions of the organ or close to connection positions of liver
lobes. The two additional pathways involved in the structural
integrity in cluster 5, namely “extracellular matrix organization”
and “extracellular structure organization”, further advocate for a
structural function of cells in this cluster. Enrichment of gene
ontologies associated with response to cytokines are observed in,
but not limited to, cluster 5; hence they are contributing rather
than defining components of the cluster’s expression profile and
function of the structure.

The functional basis for the division of the liver into multiple
lobes and the establishment and maintenance of the organ’s
structural integrity are yet to be fully understood20,59. Con-
sidering the sample size used in this study, we can provide initial
indications rather than general claims of the function of this

proposed structure. In addition to capturing and supporting
previously observed trends of tissue heterogeneity in the mam-
malian liver, our study serves as a valuable resource to further
investigate the spatial expression of structural components and
gene candidates involved in the aforementioned processes.

In summary, this study presents an effective approach to
investigate the transcriptional landscape of liver tissue through ST
and innovative computational approaches. We designed and
implemented computational tools allowing physical distance
measurements and predictions of vein-type identity. In addition,
we observe the presence of transcriptionally distinct structures in
liver tissues, which have not been characterized by previous
transcriptomic studies, likely due to the rarity of cells contributing
to these structures.

With expected future advances in the spatial genomics field,
the increased resolution will promote detailed investigations of
rare cell types in tissue space. This study constitutes a compelling
initial exploration of the benefits that spatial transcriptomics
provides for studies of the liver and we consider it a valuable data
resource for the hepatology field. We further anticipate that ST
will be highly beneficial for future studies addressing liver
development, sexual dimorphisms of liver zonation, immunity
and general pathology in the mammalian liver, including
humans.

Methods
Ethical statement. The Regional Animal Research Ethical Board, Stockholm,
Sweden, approved experimental procedures and protocols involving extraction of
organs from mice (N135/15, N78/16 and 9707-2018), following proceedings
described in EU legislation (Council Directive 2010/63/EU). The mice used in this
study were kept at a 12 h night/day cycle and 22 °C ambient temperature, with free
access to food and water under specific pathogen‐free conditions at the Experi-
mental Core Facility, Stockholm University and were euthanized between 8 and
12 weeks of age.

Total RNA extraction. To test for the RNA quality of the tissue for further
downstream analysis, the tissue was sectioned and up to eight 10 µm sections were
placed in Lysing Matrix D tubes (MPBiomedicals, cat.no.: 116913050-CF) con-
taining Buffer RLT Plus (Qiagen, cat.no.: 1053393) and ß-Mercaptoethanol
(Thermofisher, cat.no.: 31350010) and homogenized in a Fastprep instrument
(ThermoSavant). The flowthrough was collected through a gDNA Eliminator
column and 250 ul of pure ethanol was added. Total RNA was further extracted
using the RNAeasy mini kit (Qiagen, cat.no.: 74104) according to manufacturer’s
instructions. The RNA integrity number (RIN) for each sample was assessed
performing Bioanalyzer High Sensitivity RNA Analysis (Agilent cat.no.: 5067-
1535).

Collection and preparation of liver samples. Female C57BL/6 mice (Charles
River), were euthanized between weeks 8 and 12 and livers were collected, and four
lobes were separated. Each lobe was segmented so cryosections would fit on the
6,200 × 6,400 µm areas of the Codelink-activated microscope slides and frozen in
−30 °C 2-Methylbutane (Merck, cat.no.: M32631-1L). The frozen liver samples
were embedded in cryomolds (10×10 mm, TissueTek) filled with pre-chilled (4 °C)
OCT embedding matrix and frozen (CellPath, cat.no.: 00411243). For downstream
experiments, the frozen samples were sectioned at 10 µm thickness with a cryostat
(Cryostar NX70, ThermoFisher). Each subarray on the slide is covered with
1934 spots with a 100 µm diameter, containing approximately 200 million uniquely
barcoded oligonucleotides with poly-T20 VN capture regions per spot (Barcoded
slides were manufactured by 10X Genomics Inc, probes were manufactured by
IDT). The full protocol, including sequencing and computational analysis was
performed for 8 sections across 3 samples. Sample 1 and sample 3 each include
three sections of the caudate lobe. Sample 2 includes two sections of a liver piece of
the right liver lobe. All sections of all samples have undergone the same treatment.

Histological staining and annotations. We performed the ST workflow according
to Ståhl et al. and Vickovic et al., respectively60,61. After 10 minutes of formalin
fixation of the tissue on the slides they were dried with isopropanol and stained
with Mayer’s hematoxylin (Dako, cat.no.: S330930-2) and bluing buffer (Dako,
cat.no.: CS70230-2) followed by Eosin (Sigma-Aldrich, cat.no.: HT110216-500ML)
(H&E), diluted in Tris/acetic acid (pH 6.0). The stained sections were mounted
with 85% glycerol (Merck Millipore, cat.no.: 8187091000) and covered with a
coverslip. Bright-field images were acquired at 20x magnification, using Zeiss
AxioImager.Z2 microscope and the Metafer Slide Scanning System (Metasystems).
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The liver images were assessed by a mouse liver expert (NVH) who annotated the
portal (blue) and central (red) veins, based on the presence of bile ducts and portal
vein mesenchyme (PV) or lack thereof (CV). When the quality of the sample did
not allow for annotation, “ambiguous vein” (green) was reported.

Immunofluorescence assay (IFA). For immunofluorescence labeling, liver sec-
tions were (co-)stained with antibodies directed against GS (1:1000; ab73593,
Abcam), SOX9 (1/100; AB5535, Millipore), F4/80 (1:100; MCA497RT, BioRad),
HNF4ɑ (1/100; sc6556, Santa Cruz) or CD31 (1:200; MEC13.3, BioLegend). Sec-
ondary antibodies were either anti-rabbit AlexaFluor 488; or anti-rabbit, anti-goat
or anti-rat AlexaFluor 647 (1:1000, Invitrogen). Hoechst (1:10 000, 62249, Thermo
Scientific) was used to counterstain the nuclei. Liver sections were imaged using the
Zeiss AxioImager.Z2 microscope.

Permeabilization, cDNA synthesis, tissue removal, and probe release. Next,
the slides were put in mask holders (ArrayIT) to enable separated on-array reac-
tions in each chamber as described previously61. Each tissue section was pre-
permeabilized using Collagenase I for 20 min at 37 °C. Permeabilization was per-
formed using 0.1% pepsin in 0.1 M HCl for 10 min at 37 °C. cDNA synthesis was
performed overnight at 42 °C. Tissue removal from the arrays prior to probe release
was performed using Proteinase K in PKD buffer at a 1:7 ratio at 56 °C for 1 h. Last,
the surface probes were released and cDNA library preparation followed by
sequencing was performed.

cDNA library preparation and sequencing. Released mRNA-DNA hybrids were
further processed to generate cDNA libraries for sequencing. The sequencing
libraries were prepared as described in Jemt et al.62. In short, the 2nd strand
synthesis, cDNA purification, in vitro transcription, amplified RNA purification,
adapter ligation, postligation purification, a second 2nd strand synthesis and
purification were done using an automated MBS 8000+ system. To determine the
number of PCR cycles needed for optimal indexing conditions a qPCR was per-
formed, as described previously61. After the determination of the optimal cycle
number for each sample, the remaining cDNA was indexed and amplified. The
indexed libraries were then purified using an automated system as previously
described63. The average length of the indexed cDNA libraries was determined
with a 2100 Bioanalyzer using the Bioanalyzer High Sensitivity DNA kit (Agilent,
cat.no.:5067-4626), concentrations were measured using a Qubit dsDNA HS Assay
Kit (Thermofisher, cat.no:Q32851) and libraries were diluted to 4 nM. Paired-end
sequencing was performed on the Illumina NextSeq500 platform, with 31 bases
from read 1 and 46 bases from read 2 resulting in the generation between 15 and
32.1 million raw reads per sample. To assess the quality of the reads fastqc (v
0.11.8) reports were generated for all samples.

Spot visualization and image alignment. The staining, visualization, and imaging
acquisition of spots printed on the ST slides were performed as previously
described60. Briefly, spots were hybridized with fluorescently labeled probes for
staining and subsequently imaged on the Metafer Slide Scanning system, similar to
the previous acquisition of the H&E images. The previously obtained brightfield of
the tissue slides and the fluorescent spot image were then loaded in the web-based
ST Spot Detector tool64. Using the tool, the images were aligned and the spots
under the tissue were recognized by the built-in recognition tool. Spots under the
tissue were slightly adjusted and extracted.

Computational analysis
Mapping, gene counting and demultiplexing. Processing of raw reads was performed
using the open-source ST Pipeline (v 1.7.6)65. In short, quality trimming was
performed and homopolymer stretches longer than 15 bp were removed. The reads
were subsequently mapped to the annotated reference genome (GRCm38 v86 and
corresponding GENCODE annotation file) using STAR (v 2.6.1e)66. After filtering,
PCR duplicates were removed and gene count matrices were generated.

Dimensionality reduction and clustering. Main computational analysis of spatial
read-count matrices was performed using the STUtility package (v 0.1.0)67 in R (v
4.0.2). The complete R workflow can be assessed and reproduced in R markdown
(see code availability section). First, count matrices and metadata were loaded,
translating Ensembl IDs to gene symbols simultaneously. Reads of individual
samples were filtered to keep only protein-coding genes and subsequently nor-
malized using the SCTransform function in Seurat68,69. The created objects were
then integrated using the canonical correlation analysis (CCA) with the MultiCCA
function provided in https://github.com/almaan/ST-mLiver70. Normalization of
integrated data was performed, regressing out sample identities using the
SCTransform function in Seurat. Thereafter, the CCA vectors were subjected to
shared-nearest-neighbor (SNN) inspired graph-based clustering via the Find-
Neighbors and FindClusters functions. For modularity optimization, the louvain
algorithm was used and clustering was performed at a resolution of 0.3 for clus-
tering granularity.

Visualization and spatial annotation of clusters. To visualize the clusters in low-
dimensional space and on the spot coordinates under the tissue, non-linear
dimensionality reduction was performed using UMAP with the CCA vectors as
input. Visualization and annotation of identified clusters in UMAP space, on spot
coordinates as well as superimposed on the H&E images was performed using the
Seurat and STUtility package.

Differential gene expression analysis (DGEA) and expression programs. Differential
gene expression analysis of genes in identified clusters was performed using the
function FindAllMarkers from the Seurat package. Following the default option of
the method, differentially expressed genes for each cluster were identified using the
non-parametric Wilcoxon rank-sum test. Initial thresholds were set to a loga-
rithmic fold-change of 0.25 to be considered differentially expressed in a cluster
and to be present in at least 10% of the spots belonging to the same cluster.
Representative markers for each cluster were further selected, by choosing genes
with a positive logarithmic threshold above 0.5 and an adjusted p value below 0.05.
P value adjustments are based on Bonferroni correction using all genes in the
dataset.

After the identification of marker genes of the individual clusters, we identified
expression programs of genes (module scores) for clusters we identified to have
spatial distribution in our data. These were cluster 1 (periportal cluster), cluster 2
(pericentral cluster) and cluster 5. The creation of expression programs was
performed using the AddModuleScore function in Seurat. In brief, we stored the
marker genes of each cluster in a list to serve as input for the function. From this
input, the average expression of each program (list of markers) was calculated for
each spot under the tissue and subtracted by the aggregated expression of a control
gene set. Here, the control gene set included all genes present in our data. All
analyzed genes were then binned based on averaged expression and with the
default number of 24 bins for the function, and 100 control genes of the control
feature set were randomly selected from each bin. Higher scores indicate more
marker genes of the program to be highly expressed in a spot, while lower scores
indicate that no or only a small number of genes is expressed at low levels in
the spot.

Zonation based DGEA of immune system process and metabolic pathway markers.
To infer on DEG of immune system processes and metabolic pathways (ha-ras,
chronic hypoxia and pituitary hormone metabolic pathways) between cluster 1 and
cluster 2, DGEA between genes associated with immune system processes
(GO:0002376) and metabolic pathways (KEGG) was performed. Each resulting list
was cross-referenced with the normalized spatial data and the expression matrix
was subset according to the respective cell type followed by DGEA between cluster
1 (portal) and cluster 2 (central) with a logFC threshold of 0.01 and significance
(p_val_adj) below 0.05. The same sets of genes were used to perform bivariate
expression by distance analysis on (see “Bivariate expression by distance analysis”
and “Model comparison”).

Spatial autocorrelation. To explore the correlation between spatial distribution and
expression of all genes in our data spatial autocorrelations using the CorSpa-
tialGenes function of the STUtility package was performed. The method is based on
building a connection network from the spot-coordinates for each spot and the
four surrounding neighbors at a maximum distance of 150 µm. Thereafter, indi-
vidual connection networks are combined to a tissue-wide connection network to
compute autocorrelations for the whole dataset. Based on the neighbor groups of
each spot, lag vectors for all input features are calculated, essentially being the sum
expression of the respective feature in the neighbor spots. This considered,
neighboring spots with high spatial autocorrelation of features demonstrate similar
expression levels. This allowed us to compute the correlation score between the lag
vector and the actual expression vector to estimate spatial autocorrelations.

scRNA-seq data. Publicly available scRNA-seq data were analyzed to compare and
complement the spatial data in our studies. For this purpose, we used the scRNA-
seq dataset of cells originating from liver tissue from the Mouse Cell Atlas (accessed
2020-10-06)41.

For comparative analysis and visualization, scRNA-seq data of the Mouse Cell
Atlas was analyzed using the Seurat package (v 3.2.2). The count-data was first
filtered for mitochondrial genes and normalized using the SCTransform function.
Dimensionality reduction was performed using PCA and graph-based clustering
was performed using the FindNeighbors and FindClusters function with a
resolution of 0.8 for clustering granularity. Visualization of the clusters in low-
dimensional space was performed using non-linear dimensionality reduction
(UMAP). Clusters were grouped by the cell type annotations provided by the
metadata of the single-cell dataset. The second dataset used for comparative
analysis was extracted from single-cell spatial reconstruction data15. Differential
gene expression data between layers of zonation was compared to markers for
pericentral or periportal zonation in our dataset using R (v 4.0.2).

Correlation analysis. Correlation analyses between genes of clusters were per-
formed using Pearson correlation, establishing linear correlations between differ-
entially expressed genes of the clusters in base R. Visualization of correlation values
was carried out using the corrplot package (v 0.84). The correlation coefficients of
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the matrix were ordered using the method “FPC”, describing the first principal
component order of the correlation coefficients.

To explore the correlation relationship between single cells (assigned to the
classes “pericentral hepatocytes” and “periportal hepatocytes”) and the spatial
transcriptomics “pericentral (cluster2)” and “periportal (cluster1)” clusters,
Spearman rank correlation coefficients were calculated. First module scores of
genes assigned to each cluster were calculated for each dataset: ST and scRNA-seq
of the Mouse Cell Atlas. Notably, not all genes present in one dataset were present
in the other, therefore only genes present in the respective dataset were considered.
Thereafter, Spearman rank correlation between the scores for all groups
(“pericentral hepatocytes”, “periportal hepatocytes”, “periportal (cluster1)”,
“pericentral (cluster2)”) were performed. The relationships were visualized using
the corrplot package, with values ordered in the original input order.

To identify genes that exhibited spatial zonation with respect to cluster 5, we
employed the concept of modelling feature values (e.g., expression) as a function of
the distance to a given structure (e.g., veins), see methods section “Features as a
function of distance” for a more elaborate account of these ideas. In this analysis,
we let cluster 5 represent our reference structure, and “measured” the minimal
distance for every spot to the reference. As cluster 5 represents a small cluster with
distinct localization in a specific region of the tissue and to include more data
points for the reliable investigation of gradual expression from this cluster a higher
threshold of 800 µm (TN= 284 pixels), compared to 400 µm for vein-distance
analyses was chosen. Next, for every gene, we calculated the Spearman correlation
between the spots’ expression values and distances to cluster 5. Genes with a
positive Spearman correlation value have an elevated expression as the distance to
cluster 5 increases, while the opposite is true for genes with a negative correlation
value. Notably, the relationship between distance and expression is not necessarily
linear as the Spearman correlation — in contrast to Pearson correlation — assesses
monotonicity rather than linearity. The Spearman correlation does not assume
normality, and accurate p-values can be analytically derived, but must (in our case)
be corrected for multiple hypothesis testing, for this purpose we use the
Holm–Šidák method (implemented in the statsmodels submodule stats.multitest
function multipletests). Having corrected the p-values, genes with a significant
(adjusted p value < 0.05) correlation value could be extracted and further
examined.

Pathway analysis. Functional enrichment analysis of marker genes of clusters was
performed using g:Profiler2 (v 0.1.0). For the analysis, we extracted the gene
symbols of each cluster and stored them in a list. The function “gost” of the
g:Profiler2 package was then used to perform gene set enrichment analysis on input
marker gene lists. In short, the function maps genes to known functional infor-
mation sources and detects statistically significantly enriched terms. Since our data
consists of murine liver sections, the organism was set to mus musculus and the
source was set to Gene Ontology (GO) biological processes. Visualization of the 5
most significantly enriched processes for cluster 5 was performed using ggplot2 (v
3.3.2). Significance was adjusted using g:SCS (Set Counts and Sizes), as originally
described by the authors of the g:Profiler package71. Enrichment scores are
represented as the negative log10 algorithm of the corrected p-value. For visuali-
zation of functional enrichment on the tissue coordinates, marker genes of cluster 5
were referenced against all genes belonging to the gene ontology (GO) terms for
“collagen fibril organization (GO:0030199)” and “response to cytokine
(GO:0034097)”, extracted from the GO browser of the Mouse Genome Informatics
database. Gene expression programs were generated for genes belonging to each
GO term as described before and visualized on the spots.

Single-cell data integration (stereoscope). The spatial data were integrated with the
MCA dataset using stereoscope, a probabilistic method designed for spatial map-
ping of cell types40. In short, stereoscope assumes that both single cell and spatial
data follows a negative binomial distribution, learns cell type-specific parameters
from the (annotated) scRNA-seq data, and then uses these parameters to decon-
volve the gene expression profile associated with each spot into proportion values
of each cell type. stereoscope uses a stochastic gradient descent approach, leveraging
the PyTorch framework, to obtain the maximum likelihood/maximum a priori
estimates of both the parameter estimates and proportion values. In both steps
(parameter estimation and proportion inference) a batch size of 2048 and 50000
epochs were used, a custom list of highly variable genes—see next section for
details—was used rather than the full expression profiles; default values were used
for all other parameters. stereoscope can be accessed at https://github.com/almaan/
stereoscope, where more detailed documentation regarding the parameter values is
provided. The stereoscope version used in the study was v.0.3 (commit:
aacd5f775b73b138e504c35ff0cb3ffafbfc78ff).

The cell type proportion values were overlaid on the tissue section images by
using the FeatureOverlay function in the STUtility package. To make our
visualization more robust to outliers, we scaled all the proportion values using what
we refer to as quantile scaling. Here, this procedure was performed in two steps:
First, all values larger than the 0.95 quantile are changed to this quantile value (i.e.,
the data is clipped); then, within every cell type and section we divide the clipped
values by their maximum, effectively mapping them to the unit interval [0,1].
Thereafter, the proportion values for all 20 cell types in the single-cell dataset were
plotted on the spot coordinated and overlaid on the H&E stained tissue sections.

Pearson Correlation of cell-type proportions. The estimated cell-type proportion
values do not comply with most of the assumptions to analytically compute con-
fidence intervals for (e.g., normality and heteroskedasticity). Therefore, we used a
bootstrap approach to compute confidence intervals (CI), and thus be able to call
signals as significant (zero not being included in the CI) or not (zero being included
in the CI). For each pair of cell types, we generated 10,000 bootstrap samples and
let the mean of these samples constitute a representative correlation value, while a
95% confidence interval was constructed around this by using the 2.5th and 97.5th
percentiles as lower and upper limits. Pairs where the confidence interval overlaps
with zero, i.e., being nonsignificant, are indicated with a magenta border.

Selection of highly variable genes for stereoscope. Seurat (v 3.2.2) was used to extract
a set of highly variable genes from the MCA single-cell data, following the pro-
cedure recommended in the online Seurat Clustering Tutorial [https://satijalab.org/
seurat/v3.2/pbmc3k_tutorial.html]. To elaborate, the following two steps were
applied to the MCA single-cell dataset in sequential order: data normalization
(NormalizeData, default parameters), and identification of highly variable genes
(FindVariableFeatures, selection.method= “vst”, features= 5000). The complete set
of extracted genes used in the stereoscope analysis are listed in Supplementary
dataset 7.

Cluster interaction analysis. To gauge the extent to which the expression-based
clusters interacted in the spatial data, we constructed a simple interaction analysis
based on a nearest neighbor approach. First, for every spot within each cluster, the
cluster identity of the four nearest neighbors within a distance threshold are
identified. To avoid confusion, note how these distances refer to the separation of
spots in the ST array and not in gene expression-space. The distance threshold is
used to ensure that only spots in the actual physical neighborhood are included in
the count, as might not be the case for spots near the edge otherwise. Second, once
neighbor identities have been registered for all members of a cluster, we convert
these integer values to a fraction by dividing them with the total number of
neighbors associated with the cluster. Thus, for any given cluster we have a set of
n_cluster values representing the total fraction of neighbors that belong to each one
of the clusters. Since spots need to be positioned somewhere in space, clusters with
a large member count will by default neighbor more spots than a cluster with low
member count. Hence, to assess whether an interaction seems to be present or not,
one must account for cluster size and spatial organization of the spots; here done
by random permutation of the cluster labels (100 times) followed by re-calculation
of the same neighborhood fraction values. This allows us to put the observed
neighborhood fractions into context, to what might be expected by random chance
given the cluster cardinalities and spot organization. It is by this approach that
Supplementary Fig. 4 was generated, where each bar represents the observed values,
the dashed black line the empirical mean value from the permutation analysis, and
the magenta envelopes filling the area of two standard deviations from the mean.

Features as a function of distance. To examine how certain features of interest (e.g.,
gene expression or proportion values) were influenced by the physical proximity to
morphological structures (e.g., central and portal veins) in the tissue samples, an
approach to model these values as a function of the distance to said the structure
was devised. This procedure is described in detail below:

Using the brightfield H&E-images, a mask was created for each morphological
structure. These masks covered all pixels considered to belong to the structure.
Each structure was assigned an individual (numerical) id, and one or more class
attributes related to it (e.g., “vein type”). As the spots’ (capture locations) positions
relate to pixel coordinates in the H&E-image, it was possible to—computationally
—measure the distance from a spot to each of these structures.

The distance (d(s,t))) from a spot s to a structure t was here defined as the
minimal (euclidean) distance from the center of spot s to any pixel p belonging to the
mask of t”. In other words, if Mt is the set of all pixels in the mask belonging to
structure t then:

dðs; tÞ ¼ argminp2Mt
dðs; pÞ ð1Þ

The same procedure was used when determining the distance to a specific class
attribute (e.g., vein type), except that the union of all masks associated with a
structure of said class was used instead of only a single mask. That is, ifMC is the set
of all pixels belonging to any structure of class C, then the distance (d(s,C)) between
spot s and class C is:

dðs;CÞ ¼ argminp2MC
dðs; pÞ ð2Þ

Univariate expression by distance analysis. Once distances were determined, for a
feature x of interest (e.g., expression value) and a structure t, a tuple (d(s,t),xs) was
formed for each spot s; i.e. the distance for every spot was associated with the value
of the feature. This set of distance-feature tuples could then be visualized in graphs,
in order to depict the feature values’ dependence on their distance to the structure.

To better capture general trends in the data, scatterplot smoothing (using the
loess function from the scikit-misc package, v 0.1.3, default values for all
parameters), was applied to generate smoothed estimates. The smoothed values
would then serve as an approximation of a function f such that xs = f(d(s,t)), to be
interpreted as if the feature value was a function of the distance to the structure.
Plotting the smoothed values against their associated distances results in a
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visualization of the function approximation over the distance domain; these plots
are referred to as “feature by distance” plots; where the feature for example could be
expression or proportion.

Unless otherwise stated, feature-distance tuples across all sections were
aggregated when generating features by distance/distance-ratio plots. The
envelopes encapsulating the smoothed approximation represent one standard error
(SE) as given by the loess algorithm.

Bivariate expression by distance analysis. To better account for synergies between
structures of various classes we also introduce a bivariate model, where we model
the gene expression as a function of the distance to multiple reference structures.
Rather than using a nonparametric function approximation—as in the univariate
case—we favored a bivariate linear model, which would allow us to compare the
influence of each independent variable (vein distances) on the explanatory power
of the model. We define what will be referred to as the full model as:

ysg � β0g þ β1gdsc þ β2gdsp ð3Þ
Where ysg is the gene expression of gene g in observation s, while dsc is the distance
to the nearest central vein for observation s, and dsp is the distance to the nearest
portal vein. βig are coefficients specific to each gene, which are to be estimated from
the data. For parameter estimation we use the OLS class from the statsmodels
package submodule regression.linear_models, no regularization was used.

To visualize the results, we create a grid over the domain of distances to the
central and portal veins that we seek to survey. Then for every node s in the grid,
we apply Eq. (3) to get a prediction of the gene expression. Finally, we plot the grid
and let the intensity of the nodes be proportional to the predicted value, using
linear interpolation between the grid points to color the whole domain.

Model comparison. The bivariate model also allows one to test whether the
inclusion of covariates such as distance to either vein-type significantly improves
the model’s performance, or if a reduced model is sufficient to use. We thus
introduce the three following reduced models:

ysg � β0g þ β1gdsc ð4Þ

ysg � β0g þ β2gdsp ð5Þ

ysg � β0g ð6Þ
We refer to the models described in Eqs. (4)–(6) as reduced since they are all

nested with the full model, meaning that their performance can be compared with a
likelihood ratio test; using one degree of freedom for the two reduced models with
one distance covariate, and two degrees of freedom for the intercept-only model.
The outcome of the likelihood ratio test (presented as a p value), states whether the
full model significantly (p value < 0.05) outperforms the reduced model, accounting
for the additional model parameters.

We selected genes to be subjected to bivariate expression by distance analysis in
two different ways. First, in the case of metabolic pathway gene markers12 for
glucagon and Wnt targets, we extracted 12 known Wnt pathway markers genes
with most elevated expression levels in the central cluster (cluster 2) in the spatial
data. For the glucagon targets we chose 10 known marker genes with the most
elevated levels in the portal cluster (cluster 1) and 2 genes with highest up- or
downregulation (Mup20, Mdm2) in glucagon deficient mice47. Secondly, for the
remaining bivariate expression by distance analyses of gene markers (immune
system process, ha-ras, chronic hypoxia, pituitary hormones), we selected 2–3
genes exhibiting most elevated expression levels for each, the central (cluster 2) and
the portal cluster (cluster 1). These markers were identified as described in the
Methods section: “Zonation based DGEA of cell type and immune system process
and metabolic pathway markers”.

Expression-based classification. To assess whether the gene expression of a struc-
ture’s (e.g., central or portal vein) neighborhood held sufficient information to infer
its class, we constructed a classifier designed to predict structure-class based on
gene expression data. The steps of data processing and explicit details for the
classification procedure are described below:

First, a neighborhood expression profile (NEPs) was created for each structure,
representing weighted (by distance) average expression of a set of features (here
genes) in the neighborhood of a structure. The neighborhood (N(t)) of a structure t
was defined as the set of spots with a distance less than a threshold TN to t. That is:

NðtÞ ¼ fs 2 Sjdðs; tÞ<TN g ð7Þ
Where S is the set of all spots, while distances between spots and structures (d(s,t))
are defined and computed as described in the section “Features as a function of
distance” above. In this study, we set the distance threshold (TN) to 142 pixels. This
threshold equals 400 µm and represents the longest distance between three
consecutive spot centers in the same row. Having formed the neighborhoods, their
associated expression profiles for a feature (xN(t)) were assembled accordingly:

xNðtÞ ¼ ∑
s2NðtÞ

wtsxs ð8Þ

Where wts are the distance-based weights given by:

wts ¼
ŵts

∑k2NðtÞŵtk
; ŵts ¼ expð�dðs; tÞ=σÞ ð9Þ

In this analysis, σ was set to 20. As multiple features are used, NEPs are represented
by a vector of N (the number of features used) elements, denoted as xN(t). Each
NEP was then given a class label, portal or central, based on the associated
structure’s annotations. The task of predicting class labels from the NEPs then
surmounts to a multivariate binary classification problem, for which a logistic
regression model was employed. Implementation-wise the logistic regression was
performed by using the LogisticRegression class from sklearn’s (v 0.23.1)
linear_model module, a l2 penalty was used (regularization strength 1), the number
of max iterations was set to 1000, default values were used for all other parameters.

In short, the logistic model considers the class label (zt) of a structure t as
Bernoulli variable conditioned on the NEPs, i.e:

zt � Ber pt
� �

; log
pt

1� pt

� �
¼ βxN tð Þ þ β0 ð10Þ

Fitting the model equates to finding the maximum likelihood estimates of β and
β0 given the observed data and regularization terms. Once fitted, the class of a
structure t is taken as class 1 if pt ≤ 0.5 and class 2 if pt > 0.5. However, pt is a
continuous value that also can be interpreted as the probability of a structure
belonging to each class (low values indicate more similarities with class 1 and vice
versa)—offering a form of soft classification.

To validate performance, cross-validation strategies were implemented at two
different levels: section and sample. In the former K-sections were set aside forming
a test set while the remaining sections constituted the training set. The model was
trained on the training set and evaluated on the K sections in the test set. This
procedure was iterated for all combinations of the pairs. Cross validation on the
sample level was conducted in a similar fashion, but splitting w.r.t. samples rather
than individual sections; here setting aside a sample is equivalent to excluding all
sections associated with the given sample.

As the number of samples—and thus structures—were fairly low, using the
complete expression profiles (i.e., all genes) would likely have led to an overfitted
model (n_features ≫ n_samples). Thus, a reduced set of genes were used to
construct the NEPs, extracted from the set of marker genes identified in the
previously described differential gene expression analysis—this set of genes can be
found in Supplementary Fig. 15.

Statistics & Reproducibilty. Samples were chosen according to the number of the
available experiments. Each Spatial Transcriptomics slide contains 6 sub-arrays. All
samples resulting in cDNA libraries of correct size and concentration of all per-
formed experiments were considered. No statistical method was used to pre-
determine sample size. Only data that was handled the same way during samples
freezing and library preparation was considered for consistent final analysis. The
experiments were not randomized and the investigators were not blinded to allo-
cation during experiments and outcome assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available in
the doi-minting zenodo repository “Spatial Transcriptomics to define transcriptional
patterns of zonation and structural components in the liver [https://zenodo.org/record/
5595907]72. The raw expression data and spot files can be accessed at the Gene
Expression Omnibus database with the accession code “GSE165141”. The data used for
comparative analysis of previously published data can be accessed at 12 and Gene
Expression omnibus (accession code “GSE84498”) as well as at 41[http://bis.zju.edu.cn/
MCA/]” with raw data accessible at Gene Expression omnibus (accession code
“GSE108097”) and29 with raw data accessible at Gene Expression omnibus (accession
code “GSE137720”). Where applicable, GO terms extracted from the gene ontology
browser of the “Mouse Genome Informatics database [http://www.informatics.jax.org/]”.
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
All code to reproduce the analysis can be accessed in a “GitHub repository [https://
github.com/almaan/ST-mLiver]”70, and further instructions to reproduce the data
analysis have also been deposited to a “doi-minting repository [https://zenodo.org/
record/5595907]”72. Functions and classes pertaining to the feature by distance and
classification analysis have been assembled into a Python module (hepaquery), while the
workflow used to produce the results is given in a set of notebooks. A CLI program to
prepare the data for the distance-related analysis once masks have been created is also
provided. See the repository documentation for more information regarding
reproduction of the analyses.
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