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A machine learning pipeline 
revealing heterogeneous responses 
to drug perturbations on vascular 
smooth muscle cell spheroid 
morphology and formation
Kalyanaraman Vaidyanathan1,7, Chuangqi Wang2,7, Amanda Krajnik1, Yudong Yu2, 
Moses Choi2, Bolun Lin3, Junbong Jang4, Su‑Jin Heo5, John Kolega1, Kwonmoo Lee2,4,6* & 
Yongho Bae1*

Machine learning approaches have shown great promise in biology and medicine discovering hidden 
information to further understand complex biological and pathological processes. In this study, 
we developed a deep learning-based machine learning algorithm to meaningfully process image 
data and facilitate studies in vascular biology and pathology. Vascular injury and atherosclerosis 
are characterized by neointima formation caused by the aberrant accumulation and proliferation of 
vascular smooth muscle cells (VSMCs) within the vessel wall. Understanding how to control VSMC 
behaviors would promote the development of therapeutic targets to treat vascular diseases. However, 
the response to drug treatments among VSMCs with the same diseased vascular condition is often 
heterogeneous. Here, to identify the heterogeneous responses of drug treatments, we created an 
in vitro experimental model system using VSMC spheroids and developed a machine learning-based 
computational method called HETEROID (heterogeneous spheroid). First, we established a VSMC 
spheroid model that mimics neointima-like formation and the structure of arteries. Then, to identify 
the morphological subpopulations of drug-treated VSMC spheroids, we used a machine learning 
framework that combines deep learning-based spheroid segmentation and morphological clustering 
analysis. Our machine learning approach successfully showed that FAK, Rac, Rho, and Cdc42 inhibitors 
differentially affect spheroid morphology, suggesting that multiple drug responses of VSMC spheroid 
formation exist. Overall, our HETEROID pipeline enables detailed quantitative drug characterization 
of morphological changes in neointima formation, that occurs in vivo, by single-spheroid analysis.

Vascular smooth muscle cells (VSMCs) play key roles in developmental, physiological, and pathological pro-
cesses in the vessel wall. VSMC accumulation and proliferation occur during normal vascular development 
and repair of vascular injury1–3. However, pathologies arise when VSMCs continue to proliferate even after 
vascular remodeling has been completed. Uncontrolled VSMC accumulation and proliferation, which are the 
main pathologic features of vascular injury, restenosis, and atherosclerosis contribute to intimal thickening or 
neointima formation1,4–12. Thus, understanding how to control VSMC behaviors would advance the effort to 
treat vascular diseases. However, clinically effective drug targets for the prevention and treatment of restenosis 
and neointima formation have not been well established. Moreover, drug responses are frequently different 
among patients with the same vascular condition13–21. This phenomenon can be attributed to the heterogeneity 
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of the underlying VSMC biology. In this paper, we present an experimental and computational pipeline called 
HETEROID (heterogeneous spheroid), which combines a VSMC spheroid model (Fig. 1A) and machine learn-
ing (ML) analysis (Fig. 1B,C) to deconvolve the heterogeneous drug responses on VSMC behaviors involved in 
neointima formation.

VSMC interactions among cells (cell-cell adhesion) and between cells and the surrounding extracellular matrix 
(ECM; cell-ECM adhesion) contribute to neointima formation10,11. Integrin-mediated FAK phosphorylation10,22 
facilitates cell-cell or cell-ECM adhesion as well as cell proliferation during VSMC-mediated neointimal hyper-
plasia and formation11,12,23–25. FAK controls these cellular processes by activating its downstream small GTPases 
Rac, Rho, and Cdc42. First, the activation of Rac by FAK promotes cell-cell adhesion and cell proliferation11,12,26. 
Moreover, a previous in vivo study found that VSMC-specific deletion of Rac reduced cell proliferation and 
neointima formation11,12. Second, Rho activity has been shown to not only promote cell contraction and the 
formation of stress fibers and focal adhesion but also control VSMC proliferation27–30. A previous study showed 
that Rho inhibition increased neointima formation and prevented restenosis by increasing VSMC apoptosis after 
vascular injury31. Last, FAK also promotes the activation of Cdc4232–34. Li et al. showed that the inactivation of 
Cdc42 disrupted cell-cell adhesion and cell proliferation in cardiomyocytes34. Collectively, these studies sug-
gest that FAK, Rac, Rho, and Cdc42 are potentially involved in neointima formation; however, their differential 
regulation in VSMC-mediated neointima formation remains unexplored.

In this study, we created VSMC spheroids, which are spherical cellular aggregates consisting of multiple lay-
ers of VSMCs35,36, using a hanging drop culture technique37,38 (Fig. 1A). This new spheroid model can mimic 
VSMC-mediated neointima formation in the vessel wall, similar to animal models8,12,39,40 that simulate human 
pathologies such as restenosis and atherosclerosis. Using this system, we characterized the effects of the inhi-
bition of FAK phosphorylation and Rac, Rho, and Cdc42 activation on spheroid formation and morphology. 
To analyze the image data, we developed an ML framework that combines high-performance deep learning-
based spheroid segmentation (Fig. 1B) and morphological clustering analysis (Fig. 1C) to identify the effects 
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Figure 1.   Overview of the HETEROID framework. VSMC spheroid images (A) were segmented by VGG16-
U-Net semantic segmentation (B), and feature vectors were extracted for additional clustering analyses. A 
two-level clustering framework (C) was used to analyze the presence of morphological subpopulations of VSMC 
spheroids. Initial clustering analysis was focused on the roundness of the spheroids. Subsequent clustering 
analysis was focused on disrupted spheroids.
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of various drug treatments on spheroid morphology and formation. To extract the morphological parameters 
of the spheroids, it is necessary to employ automated image analyses of microscopy images41–46. Therefore, we 
first applied a deep learning approach for spheroid segmentation from phase-contrast images. Specifically, we 
combine two deep learning architectures: U-Net and ImageNet-pretrained VGG16 models47–50. This transfer 
learning approach has been widely used to reduce the size of the training set and minimize overfitting51–54. After 
segmentation, various morphological features were extracted, and unsupervised learning was applied to identify 
distinct subpopulations of VSMC spheroids. Interestingly, our clustering analysis identified the morphological 
variations and subpopulations in drug responses among VSMC spheroids. Thus, our HETEROID pipeline can be 
used to quantitatively assess the effects of various drugs on the VSMC spheroid model for better characterization 
of morphological changes in neointima formation that occur in vascular diseases.

Results
Differential VSMC spheroid formation responses to FAK, Rac, Rho, or Cdc42 inhibition.  Since 
FAK phosphorylation is critical in the regulation of both cell-cell adhesion and cell proliferation during the pro-
cess of neointima formation11,12,22,55,56, we first tested the inhibition of FAK phosphorylation on VSMC spheroid 
formation by culturing human aortic VSMCs (Fig. 2) and mouse aortic VSMCs (Fig. S1) to form spheroids in 
the presence of either PF573228 (a selective FAK inhibitor)11 or DMSO (a vehicle control). After the spheroid 
images were acquired at 24 h, total cell lysates were prepared from VSMC spheroids. FAK phosphorylation at 
Tyr397 in both human VSMCs (Fig. 2A, B and Fig. S2A) and mouse VSMCs (Figs. S1A,B, S2B) was reduced by 
approximately 70–80% with 10 μM PF573228 treatment. We also confirmed that VSMC spheroid morphologies 
with DMSO are mostly spherical (Figs. 2C, S1C), as previously shown in other studies35,36. Inhibition of FAK 
phosphorylation significantly disrupted the spheroid formation of both human (Fig. 2C) and mouse VSMCs 
(Fig. S1C). Thus, FAK phosphorylation is required for normal VSMC spheroid formation. More interestingly, 
the PF573228-treated VSMC spheroids had widely varied morphologies in both human (Fig. 2C) and mouse 
VSMCs (Fig. S1C), indicating the existence of heterogeneity in the response to inhibition of FAK phosphoryla-
tion and suggesting the need for further image analysis using the ML approach (Fig. 1B,C).

The activities of Rac, Rho, and Cdc42 are essential for VSMC proliferation, vascular remodeling, and neoin-
tima formation11,31,33,57. Therefore, we tested the effects of the drug inhibition of Rac, Rho, and Cdc42 activation 
on VSMC spheroid formation using EHT1864 (a Rac inhibitor, 5–20 μM), Rhosin (a RhoA inhibitor, 5–20 μM), 
ML141 (a Cdc42 inhibitor, 5–10 μM), or DMSO. Note that this range of concentrations was previously used and 
validated58–63. The formation of VSMC spheroid was undisrupted or slightly disrupted with 5 or 10 μM EHT1864 
(Fig. 3, 2nd and 3rd rows) and 5 or 10 μM Rhosin (Fig. 3, 5th and 6th rows), whereas spheroid formation was 
significantly disrupted with a higher dose (20 μM) of EHT1864 (Fig. 3, 4th row) or Rhosin (Fig. 3, 7th row) and 
5–10 μM ML141 (Fig. 3, 8th and 9th rows), compared to DMSO-treated VSMC spheroids (Fig. 3, 1st row). Inter-
estingly, the inhibition of Cdc42 activation resulted in the formation of multiple small cell aggregates, distinct 
from the disrupted morphologies in cultures treated with FAK, Rac, and Rho inhibitors. More interestingly, we 
also observed that Rac-, Rho-, and Cdc42-inhibited human VSMC spheroids displayed substantially heterogene-
ous morphologies in human VSMC spheroids from relatively unperturbed to clearly disrupted ones. Collectively, 
these observations suggested the existence of some distinctive characteristics (morphological heterogeneity) 
among VSMC spheroids in response to the same and different drug treatments.

Image segmentation of VSMC spheroid images using deep learning.  To deconvolve the hetero-
geneity of morphological subpopulations of VSMC spheroids following drug treatments, we further examined 
spheroid morphological changes using ML-based image segmentation, followed by data clustering analysis to 
identify the presence of morphological subpopulations (clusters) resulting from the drug treatments. Our sphe-
roid images were collected by a phase-contrast microscope, hence reducing the phototoxic effect of fluores-
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Figure 2.   Inhibition of FAK phosphorylation differentially affects VSMC spheroid formation and morphology. 
Human VSMCs treated with FAK inhibitor (PF573228) or DMSO (vehicle control) in high-glucose DMEM 
containing 10% FBS were incubated for 24 h to generate human VSMC spheroids. Total cell lysates were 
immunoblotted (A) for phosphorylated FAK at Tyr397 (pFAK) and GAPDH. The bar graph displays the pFAK 
levels normalized to the DMSO control (B). (C) Cultures were imaged using an upright microscope. n = 3 (A–B) 
and n = 12 (C) biological replicates were used. ***p < 0.001.
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cent probes and avoiding physical damage to the delicate samples due to handling and preparation. Therefore, 
conventional image segmentation algorithms based on intensity thresholding or edge detection are limited for 
robust edge detection, particularly for drug-treated spheroids. Thus, we used a deep learning structure, a U-Net 
integrated with the ImageNet- pretrained VGG16 model, called VGG16-U-Net48 (Fig. 4A), to train the deep 
neural network to segment the phase-contrast images of VSMC spheroids. First, spheroid boundaries were 
manually drawn on a subset of spheroid images using the Pixel Annotation Tool, and these annotated images 
were then used to train the VGG16-U-Net. When tested with new images outside the training set, the trained 
VGG16-U-Net identified spheroid boundaries with 96% accuracy at epoch 30, as demonstrated in the learning 
curves plotted as the Dice coefficient (Fig. 4B) and loss function using binary cross-entropy in training and vali-
dation datasets (Fig. 4C). The VGG16-U-Net produced a significantly higher segmentation accuracy than the 
standard U-Net (Fig. 4D). We also found that VGG16-U-Net significantly outperforms the non-pretrained ver-
sion (VGG16-U-Net-NP) (Fig. 4D). This demonstrates the benefits of the model weights of VGG16 pretrained 
on ImageNet for the image segmentation (Fig. 4B–D). Visually, the trained VGG16-U-Net achieved an excellent 
segmentation performance in comparison to U-Net and VGG16-U-Net-NP (Fig. 4E,F).

Clustering analysis reveals morphological subpopulations.  The morphological features of the sphe-
roid images were extracted from the segmented binarized images without considering the grayscale information 
in the raw spheroid images. Five morphological features (the eccentricity, solidity, extent, circularity, and number 
of colonies; see “Methods” for details) were selected and displayed in a UMAP (uniform manifold approxima-
tion and projection) plot, a dimensionality reduction technique that visualizes a high-dimensional dataset by 
learning the data manifold64 (Fig. 5A). The data points scattered on the UMAP plot revealed the presence of 
morphological variations among the drug-treated VSMC spheroids.

The morphological feature vectors of the VSMC spheroids were further analyzed using a clustering analysis 
with the community detection algorithm65 to identify the distinct groups of spheroid images of similar mor-
phological features. To determine the number of clusters, we first randomly split the data into training and 
testing sets in equal proportion. We varied the number of nearest samples, which is a hyperparameter in the 
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Figure 3.   Inhibition of Rac, Rho, or Cdc42 activation differentially affects VSMC spheroid formation and 
morphology. Human VSMCs treated with Rac (EHT1864), Rho (Rhosin), and Cdc42 (ML141) inhibitors or 
DMSO (vehicle control) were used to generate human VSMC spheroids. VSMC spheroids were imaged after 
24 h of incubation using an upright phase-contrast microscope.
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community detection algorithm, to produce the clustering outcomes of different numbers of clusters in the 
training set. We calculated the quality of each clustering result by evaluating the silhouette value, which is a 
measure of how similar the morphology of a given spheroid is to its own cluster compared to other clusters. 
We chose four as the number of clusters based on the maximum silhouette values for the number of nearest 
samples (Fig. 5B). Then, we performed the same clustering analysis for the testing set using the same number of 
clusters. The silhouette plot of the final clustering analysis showed the least overlap between clusters and mostly 
positive silhouette values (Fig. 5C). The distribution of spheroid morphologies in each cluster is displayed on 
a UMAP plot (Fig. 5D), and the proportion of spheroids in each cluster for a given drug treatment is shown in 
Fig. 5E. Cluster #1 has stereotypical morphologies of unperturbed circular spheroids (Fig. 5D, inset). Clusters 
#2 and #4 are noncircular and dispersed or disrupted. In Cluster #3, the images showed small circular shapes 
but contained more than one spheroid.

Analysis of clustering with the training set gave similar results to the testing set (Fig. S3A,B). Furthermore, the 
robustness of the clustering results was tested by repeating the clustering 100 times using 100 different random 
splits of the training and testing datasets. We counted the cluster assignments of individual spheroid images 
from the repeated clustering, and assigned the majority cluster labels to them. Then we compared the majority 
cluster labels with the cluster labels of spheroid images in each clustering. As demonstrated in Fig. S3C, the 
cluster assignments were highly consistent (Cluster #1: 99.76%, Cluster #2: 97.24%, Cluster #3: 99.63%, Cluster 
#4: 96.57%). Also, clustering of the entire dataset without the data splitting exhibited similar results (Fig. S4).

Different drug treatments produce spheroid subpopulations with different morphology pro‑
files.  For DMSO-treated controls, most (approximately 70%) were in Cluster (or Type) #1 (Fig. 5E), as were 
human VSMC spheroids treated with the lower inhibitor concentrations (5 or 10 µM Rac and Rho inhibitors, 
Fig. 5E). These results indicated that VSMC spheroids in this cluster maintained unperturbed circular morphol-
ogy or had minimal effects with DMSO or lower concentrations of Rac and Rho inhibitors. In contrast, the 
proportion of human VSMC spheroids treated with 10 μM FAK inhibitor was reduced to 10% in Cluster #1 and 
increased up to approximately 50% Type 2 and 40% Type 4 (Fig. 5E). High-dose (20 μM) treatment with a Rac 
inhibitor produced spheroids that were 50% Type 2 and 25% Type 4. A high dose (20 μM) of a Rho inhibitor led 
to the production of spheroids that are 20% Type 2 and 70% Type 4, which are significantly fewer than and more 
than those for FAK and Rac inhibition, respectively. Interestingly, treatment with 5 and 10 μM Cdc42 inhibi-
tor created spheroids that are approximately 80% Type 3. Although the spheroids in Type 3 showed circular 
morphologies, each culture contained multiple small spheroids. In the cultures in which FAK and Rac (20 μM) 
were inhibited, the spheroids were mostly Types 2 and 4 (noncircular and dispersed/disrupted, respectively), 
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Figure 5.   Initial morphological clustering analysis identifying distinct clusters in response to inhibitors 
of FAK, Rac, Rho, and Cdc42. (A) Four morphological features extracted from human VSMC spheroid 
images are displayed on a UMAP plot. The different colored markers are used to represent the various drug 
treatments: FAK (PF573228), Rac (EHT1864), Rho (Rhosin), and Cdc42 (ML141). (B) The silhouette values 
and the number of clusters on the training set were evaluated by varying the number of nearest samples. (C) 
Silhouette plots for the clustering results on the testing set. (D) Four morphological clusters plotted on the 
UMAP plot were observed based on the “roundness of the spheroid”. The different colored markers are used to 
represent the various morphological clusters with the drug treatments. The most representative images were 
overlayed on each cluster (2 images per cluster) in the UMAP plot. Clusters #1 and #3 showed spheroids with 
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morphologies. Only the samples in the testing set were used. (E) Average proportionality plot of the distribution 
of VSMC spheroids in each morphological cluster with the drug treatments from the repeated random splitting 
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Rho-inhibited (20  μM) spheroids were mostly Type 4 (dispersed/disrupted), and Cdc42-inhibited spheroids 
were mainly Type 3 (small fragmented). Interestingly, however, the data shown in Fig. 5E also demonstrated 
that different morphologies of spheroids were generated within a single treatment (i.e., FAK inhibition cre-
ated approximately 10% Type 1, 50% Type 2, 2% Type 3, and 40% Type 4 VSMC spheroids). Collectively, these 
results demonstrate that morphological subpopulations of spheroid formation respond differentially to drug 
treatments, suggesting different cellular states (i.e., proliferative and metabolic states) following drug treatment 
affecting the process of VSMC spheroid formation.

Cluster analysis of noncircular spheroids reveals the differential effects of FAK, Rac, Rho, and 
Cdc42 inhibition.  The morphological features used in the previous analysis were focused more on differen-
tiating circular and noncircular spheroids, which are limited to distinguishing fine-grained clusters among the 
noncircular spheroids in Clusters #2 and #4 (or Types 2 and 4). For a more precise analysis of VSMC spheroids 
treated with inhibitors of FAK (10 μM), Rac (20 μM), and Rho (20 μM), as shown in Clusters #2 and #4 (Fig. 5E), 
we performed further morphological clustering using a wide range of morphological features (Fig. 1C, referring 
to “noncircular spheroid clustering”). Fifteen features were selected to represent the morphologies of noncircu-
lar and dispersed/disrupted VSMC spheroids, including the area, major axis length, minor axis length, eccentric-
ity, solidity, extent, perimeter, convex area, circularity, aspect ratio, actual area, actual equivalent diameter, actual 
circularity, and number of holes. The morphological features extracted from the spheroids from the dispersed/
disrupted noncircular spheroids were plotted on a UMAP plot (Fig. 6A). Subsequently, clustering analysis with 
the community detection algorithm was performed, and a cluster number of four was determined by the local 
maximal silhouette value from the training set in the same manner as the initial clustering (Fig. 6B). The sil-
houette plot of the clustering outcome in the testing set (Fig. 6C) showed mostly positive values and very few 
negative values, indicating the presence of four distinct clusters. The four clusters of drug-treated spheroids with 
representative images were plotted on a UMAP plot (Fig. 6D). The spheroids treated with 20 μM Rac inhibitor 
were almost evenly spread out among the disrupted clusters, Types N1-4, while most of the VSMC spheroids 
treated with 10 μM FAK inhibitor were Types N1, N2, and N4, suggesting that Type N3 morphology arises 
when Rac activation is inhibited, but not when FAK phosphorylation is inhibited (Fig. 6E). Intriguingly, Type 
N3 was enriched (50%) when the VSMCs were treated with 20 μM Rho inhibitors, while Type N1 was depleted 
(5%). Overall, we identified spheroid morphological clusters of VSMCs with unique drug responses, suggesting 
the following: (i) Types N1 and N4 morphologies mostly depend on the disruption of FAK and Rac, (ii) Type 
N3 morphology mainly depends on the disruption of Rho and Rac, (iii) Type N2 morphology depends on the 
disruption of FAK, Rac, and Rho (Fig. 6E,F), and (iv) Cluster #3 morphology from the previous initial cluster-
ing analysis depends on the disruption of only Cdc42 (Figs. 5E, 6F). Regarding the robustness of the clustering, 
the data were assigned to the major clustering labels highly consistently as shown in Fig. S5C (Cluster #N1: 
97.64%, Cluster #N2: 96.65%, Cluster #N3: 98.22%, Cluster #N4: 98.52%). Also, clustering of the entire dataset 
without the data splitting exhibited similar results (Fig. S6).

Discussion
We used scaffold-free 3D spheroid culture systems to better mimic in vivo cellular microenvironments of complex 
tissues than traditional 2D monolayer cell culture by forming more complex cell-cell and cell-ECM interactions. 
Consequently, spheroids are considered valuable experimental models for investigating the effects of drugs on 
signaling pathways that control cellular functions66–69. Because a spheroid’s structure depends on the collective 
functions of its constituent cells (including their adhesion properties, stiffness, proliferation, apoptosis, and 
migration behaviors), spheroid morphology can be a very sensitive indicator of cellular responses to drugs or 
other manipulation. Recently, spheroid-based in vitro angiogenesis models have been explored to mimic in vivo 
vessel sprouting, with co-culture of endothelial cells and VSMCs or pericytes70,71. That model system recapitulates 
similar physiological architecture of healthy blood vessels and evaluates potential angiogenic modulators. In 
addition, Barnes et al. used VSMC spheroids to show that membrane type-1 matrix metalloproteinase expressed 
by VSMCs can limit the progression of proliferative atherosclerotic lesions in apoE-null mice72. Collectively, 
these recent studies suggested that 3D vascular spheroid systems can be used in vascular biology and pathology.

Atherosclerosis and vascular injury are characterized by neointimal hyperplasia and formation caused by 
VSMC accumulation and proliferation within the vessel wall1,4,5,9–12. In response to vascular injury, VSMCs tran-
sition from a highly differentiated state to a dedifferentiated state, in which they exhibit increased proliferation 
and constitute a substantial part of the neointima1–3. While this process resolves smaller injuries to the vessel 
wall, its persistence in chronic injury becomes pathological, generating cellular occlusions in the vessel lumen, 
reducing blood flow, and creating the need to resolve these changes. Thus, understanding how to control VSMC 
accumulation and proliferation would advance the effort to treat vascular diseases. Here, we created a 3D VSMC 
spheroid model to mimic VSMC-mediated neointima formation observed in the arterial wall, similar to in vivo 
animal models of restenosis, vascular injury, and atherosclerosis, and tested the effects of FAK, Rac, Rho, and 
Cdc42 inhibition on the formation and morphology of VSMC spheroids.

FAK and its downstream small GTPase proteins (Rac, Rho, and Cdc42) are reported to be key regulators of 
VSMC adhesion and proliferation, mostly by using a 2D cell culture system and several animal studies. Here, 
using a 3D VSMC spheroid model system, we showed that the inhibition of FAK phosphorylation led to marked 
disruption during the process of spheroid formation. This result suggests that FAK phosphorylation is required 
for VSMC spheroid formation potentially through N-cadherin-mediated cell-cell adhesion12,73, which is known to 
be regulated by Rac, Rho, and Cdc4212,26,30,34. Interestingly, we observed that inhibition of Rac and Rho activation 
with high dose drug treatment, but not Cdc42 inhibition, caused severe disruption of VSMC spheroid forma-
tion. Our data can be explained by previous observations from a study using stem cells showing that N-cadherin 
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Figure 6.   Clustering analysis of noncircular spheroids and the presence of distinct clusters with disrupted morphologies. 
(A) Fifteen morphological features extracted from human VSMC spheroid images from Clusters #2 and #4 were visualized 
on UMAP plots. The different colored markers are used to represent the various drug treatments. (B) The number of nearest 
samples between 10 and 100 was evaluated on the training set, and the silhouette values were plotted. A cluster number of 4 
was selected. (C) The silhouette values and the number of clusters on the training set were evaluated by varying the number 
of nearest samples. (D) Four morphological clusters were observed in the testing set based on the noncircular spheroids 
from Clusters #2 and #4 obtained from Fig. 5. The different colored markers are used to represent the various morphological 
clusters. (E) Average Proportionality plots of the distribution of VSMC spheroids in each morphological cluster from the 
repeated random splitting of training and testing sets. Only testing sets were used. *p < 0.05, **p < 0.01, ***p < 0.001, and ns not 
significant. (F) Summary of the clustering analysis results.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23285  | https://doi.org/10.1038/s41598-021-02683-4

www.nature.com/scientificreports/

mediated cell-cell adhesion is modulated by Rac signaling74. Moreover, other previous studies demonstrated that 
there is an increase in Rac activity after a fine-wire vascular injury to the intimal layer, but VSMC-specific deletion 
of Rac and N-cadherin reduced neointima formation following vascular injury12. In addition, Feil et al. showed 
that N-cadherin-dependent cell-cell contacts destabilized when endogenous Rho was inhibited75. Collectively, 
these observations and our results suggest signaling pathways where FAK controls the process of VSMC spheroid 
formation through FAK-Rac- or FAK-Rho-mediated cell-cell adhesion.

The direct connection of Cdc42 to VSMC-mediated neointima formation in response to vascular injury or 
atherosclerosis remains largely unexplored. We showed that Cdc42 inhibition disrupted the formation of the 
spheroid but generated multiple small spheroids. This result might indicate that levels of N-cadherin expression 
are being rescued and functional N-cadherin-mediated cell-cell adhesion within each small spheroids restored. 
Cdc42 is known to regulate the attachment of actin fibers to the sites of cell-cell adhesion that are stabilized 
by the junctional proteins. Thus, inhibition of Cdc42 could have reduced levels of junction proteins other than 
N-cadherin such as occludin76, which might have resulted in disruption of the spheroids.

A salient result achieved by our HETEROID pipeline is that it computationally identifies the presence of 
heterogeneous morphologies (morphological variations) of the spheroids resulting from drug treatment with 
FAK, Rac, Rho, and Cdc42 inhibitors. We used VGG16-U-Net segmentation, which combines the U-Net and 
ImageNet-pretrained VGG16 models47–50. Unlike simple ML algorithms that use binary thresholding or filtering, 
deep learning is designed to learn more in-depth pixel information to identify spheroid edges (or boundaries). 
This design is particularly useful for brightfield or phase-contrast microscopy, which is more suitable for high-
throughput applications than fluorescence microscopy. Indeed, our unsupervised ML algorithm combined with 
the clustering analysis approach identified that FAK, Rac, Rho, and Cdc42 inhibitors differentially affect the 
spheroid morphology of VSMCs. More specifically, we observed that FAK inhibition disrupted VSMC spheroid 
formation and morphology most likely through Rac but not Rho or Cdc42 (Fig. 6E). Furthermore, we identified 
that Cdc42 inhibition disrupted VSMC spheroid formation and morphology independent of the FAK-mediated 
signaling pathway (Figs. 5E, 6F). These new findings obtained by our HETEROID framework suggest that mul-
tiple distinct pathways govern the process of VSMC spheroid formation.

Zanoni et al. demonstrated that various morphologies of tumor spheroids exist that correspond to the viability 
of the tumor cells within the spheroid77. Moreover, a recent study on pancreatic cancer spheroids by Laurent 
et al. reported that the cells in multicellular tumor spheroids showed varying effects in response to antiprolif-
erative drugs78. This variation in results was attributed to the size of the spheroids and the packing of cells in 
the spheroids. Thus, with our data obtained from VSMC spheroids with our computational framework, further 
investigation of global changes in transcriptome or proteome in VSMC spheroids using ‘Omics’ technologies 
will establish the molecular and functional significance of these distinct morphological clusters (or types) and 
result in understanding the morphology of the biological relationship. These further investigations will lead us 
to (i) determine the biological and functional roles of FAK, Rac, Rho, and Cdc42 during the process of VSMC 
spheroid formation and (ii) understand why only a subpopulation of VSMCs underlying the site of vascular 
injury is actively involved in hyperplasia during the process of VSMC-mediated neointima formation6. There-
fore, these previous studies and our current and future studies will potentially be a development in helping to 
identify specific drug targets for VSMC spheroids based on heterogeneous responses in spheroid morphologies.

Conclusion
This study tested the effect of FAK and its downstream small GTPase manipulation on VSMC spheroid formation 
and used a machine learning approach to reveal heterogeneous responses to FAK, Rac, Rho, and Cdc42 inhibi-
tion on VSMC spheroid morphology. The machine learning framework was designed to extract morphological 
features of the spheroids from phase-contrast images without using fluorescent staining. The results shown in our 
study suggest that there is significant drug-induced heterogeneity in spheroid formation and morphology, which 
has been overlooked in previous analyses and studies. These detected subpopulations (clusters or types) could 
give rise to the biological significance of various drug responses upon further study. For instance, examining the 
effects of drug treatment on global changes in the transcriptome or proteome and on viability, proliferation, or 
apoptosis in VSMC spheroids within each morphological cluster (shown in Figs. 5D and 6D) can further reveal 
the biological and functional significance associated with spheroid morphological changes. The biological and 
functional significance of FAK-, Rac-, Rho-, and Cdc42-mediated spheroid formation and morphology will be 
a stepping stone in identifying potential pharmaceutical drug targets for preventing neointima formation or 
hyperplasia. This is our first step towards developing an automated method for quickly and precisely analyzing 
the heterogeneity of VSMC spheroids using machine learning. This machine learning approach can be used to 
study the effects of different pharmacological drugs on VSMC spheroid models for better characterization of 
the pathophysiologic progression of diseases such as atherosclerosis, hypertension, and restenosis. The long-
term goal of future studies is to be able to use machine learning algorithms to assist in personalized medicine by 
testing the effects of pharmacological drugs on patient-specific spheroids before prescribing drugs to patients.

Methods
Cell culture and drug treatment.  Primary human vascular smooth muscle cells (Catalog No.: 354-05a; 
Lot No.: 2435; Source: normal human aorta from 33-year-old male; Cell Applications) and primary mouse 
VSMCs (Catalog No.: C57-6080; Lot No.: 090915; Source: normal mouse aorta from mixed-gender mice; Cell 
Biologics) were cultured as previously described8,11,79. The human and mouse VSMCs were used at passages 3–8 
and 3–5, respectively. For serum starvation to synchronize cells, near-confluent VSMCs were incubated for 48 h 
in serum-free DMEM containing 1 mg/ml heat-inactivated, fatty-acid free bovine serum albumin (BSA; Tocris). 
For the FAK, Rac, Rho, and Cdc42 pharmacologic inhibitor experiments, cells in suspension culture were treated 
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with 10 μM FAK-specific inhibitor PF57322811 (Sigma), 5–20 μM Rac-specific inhibitor EHT186458 (Tocris), 
5–20  μM RhoA-specific inhibitor Rhosin60 (Tocris), or 5–10  μM Cdc42-specific inhibitor ML 14163 (Tocris) 
reconstituted in dimethyl sulfoxide (DMSO) for selected times up to 24 h.

Generation of VSMC spheroids.  VSMC spheroids were generated by the hanging drop technique37,38. 
Briefly, serum-starved cells were trypsinized, centrifuged, and resuspended in fresh high-glucose (4.5  g/L) 
DMEM containing 10% fetal bovine serum (FBS). The cell suspension was diluted to approximately 2000 cells 
per 20 μL of high-glucose DMEM with 10% FBS and treated with either pharmacological inhibitors (PF573228, 
EHT1864, Rhosin or ML141) or DMSO (vehicle control) before plating. Approximately 20–30 cell suspension 
droplets were dispensed on the hydrophobic surface of the lid of a 100-mm tissue culture dish. Note that the 
drops were seeded sufficiently apart to avoid the mixture of each adjacent drop. To prevent the evaporation of 
the drops, a water reservoir (hydration chamber) was made by adding 8 ml of sterile water and 2 ml of DMEM 
at the bottom of the tissue culture dish. The lid was then carefully inverted so the cells remained suspended and 
were allowed to aggregate by gravity. The cultures were maintained at 37 °C and 10% (human VSMCs) or 5% 
(mouse VSMCs) CO2. VSMC spheroids formed after 24 h of incubation. Images were taken at 10X magnification 
using an upright microscope (Olympus BH-2) equipped with a digital camera (AmScope) to monitor spheroid 
formation.

Protein extraction and immunoblotting.  Total cell lysates were prepared from human and mouse 
VSMC spheroids. The spheroids were collected in 1.7  ml Eppendorf tubes, centrifuged, and extracted in 1× 
TNE lysis buffer [50 mM Tris–HCl (pH 8.0), 250 mM NaCl, 2 mM EDTA, 1% Nonidet P-40, plus a protease 
and phosphatase inhibitor cocktail composed of a proprietary mix of AEBSF, aprotinin, bestatin, E64, leupep-
tin, and pepstatin A to promote broad-spectrum protection against endogenous proteases]. Equal amounts of 
extracted protein were mixed with 5× sample buffer [250 mM Tris–HCl (pH 6.8), 10% SDS, 50% glycerol, 0.02% 
bromophenol blue, 10 mM 2-mercaptoethanol], denatured by boiling samples at 100 °C, subjected to 8% sodium 
dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and transferred to a polyvinylidene difluoride (PVDF) 
membrane. The PVDF membranes were blocked with either 5% BSA or 5% milk in 1× TBST (Tris-buffered 
saline, 0.1% Tween 20) for 1 h and probed with primary antibodies against phospho-FAK (Invitrogen, 44-624G; 
diluted 1:500) and GAPDH (Proteintech, 60,004-I-Ig; diluted 1:5000). After overnight incubation at 4 °C, the 
PVDF membranes were washed with 1× TBST and probed with horseradish peroxidase-conjugated secondary 
antibodies (Bio-Rad) for 1–2 h at room temperature. Immunoblot signals were detected using chemilumines-
cence (Bio-Rad).

Deep learning‑based segmentation of the spheroid images. 

	 i.	 Data labeling A deep neural network was trained to automatically segment the spheroid images. To train 
the deep neural network, we selected a set of 23 diverse VSMC spheroid images from the whole dataset. 
Depending upon the drug treatment conditions, the contrast of the spheroid edges was highly varied. 
Therefore, we selected these training images to represent these variations of edge contrast. And, then 
spheroid boundaries were manually drawn using the Pixel Annotation Tool (https://​github.​com/​abreh​
eret/​Pixel​Annot​ation​Tool). The images of the hand-drawn boundaries were used to generate binary mask 
images. The masks were used as the training dataset from which the deep neural network learned to 
identify the boundaries of the spheroids.

	 ii.	 Training dataset preparation We randomly cropped 200 image patches (128 × 128 pixels) from each raw 
image (1128X832 pixels). In total, we had 4600 (200 × 23) image patches for the training. 60% of the 
cropped patches contained the edge boundary, and 40% contained only the foreground or background 
(not containing edges). After the image patches were cropped, the means and standard deviations of the 
collected image patches were calculated for further normalization. After preprocessing, we split them 
into training and validation sets at a ratio of 8:2 (3200 for training and 800 for validation). Then, the 
standard data augmentation process was applied using the ImageDataGenerator class implemented in 
the Keras package. The parameters used in ImageDataGenerator for data augmentation are as follows: 
rotation_range = 90; horitontal_flip = true; vertical_flip = true fill_mode = ‘reflect’.

	 iii.	 Training the deep neural network The deep neural network is divided into two parts: an encoder that 
extracts image features and a decoder that identifies the edge locations using the extracted features. The 
VGG16 model was used in the encoder and extracted features at multiple levels. The initial weights for the 
VGG16 model were from the pretrained model using the ImageNet DB. The VGG16 weights were fixed 
during training. The decoder from U-Net was incorporated to combine the VGG16 features to generate the 
segmented images. The generated masks were then overlapped with raw images to visualize the learning 
efficiency of the algorithm. The binary cross-entropy loss was used as a loss function for training. Adam 
was used as the optimizer, the initial learning rate was set to 5 × 10–4, and the other parameters were set 
to the default values in Keras. To avoid overfitting, we used an early stopping strategy. We stopped the 
training when the validation loss did not decrease by 0.0001 in three consecutive epochs. The maximum 
number of epochs was 30, and the batch size was 32. Neural network training was performed using Keras 
with the TensorFlow backend on a computer equipped with an NVIDIA GTX 1080 Ti or Titan X GPU.

	 iv.	 Performance evaluation of edge localization We used the labeled data that were not included in the training 
process (training/validation sets) for the performance evaluation. We generated binarized mask images by 
thresholding the softmax output images using a threshold value of 50 (> 50: foreground, ≤ 50: background. 
Pixel value range: 0–255). The edge images were predicted for all the image frames, including the labeled 

https://github.com/abreheret/PixelAnnotationTool
https://github.com/abreheret/PixelAnnotationTool
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and unlabeled images. We used the predictions of labeled images not used for training to evaluate the 
edge localization performance.

		    We calculated Dice coefficients to evaluate the segmentation performance along the edge boundary as 
follows. We applied a binary AND operation between the dilated edge masks and the ground-truth masks 
and the predicted masks from VGG16-U-Net using the bitwise_and function in the OpenCV package. 
Then, we calculate the Dice coefficient between the ground truth and the predictions for each image frame 
using the following formula:

where |A ∩ B| are the common elements between sets A and B and |A| and |B| are the numbers of elements 
in sets A and B.

	 v.	 Comparison with the baseline models We compared our model, VGG16-U-Net with the baseline models, 
U-Net and VGG16-U-Net-NP (a non-pretrained version of VGG16-U-Net). The weights of U-Net and 
VGG16-U-Net-NP were randomly initialized. We repeated five-fold cross-validation 10 times. For each 
cross-validation, a single subsample was used for testing and the other four subsamples were used for 
training. Then, we performed the statistical analyses using the Dice coefficients from the cross-validations.

Unsupervised spheroid morphology learning.  We used all 856 images of the spheroids treated with 
DMSO and the inhibitors of FAK, Rac, Rho, and Cdc42 as described in Table 1 (the training images for deep 
learning segmentation were excluded from these images).

	 i.	 Feature extraction The segmented spheroid images were processed for extracting the morphological fea-
tures. The morphological features were used during unsupervised learning to characterize the responses of 
the spheroids to drug treatments. The morphological features extracted are listed in the following cluster-
ing analysis section. Once the features were quantified, feature standardization was used to achieve a zero 
mean and unit variance in each experiment to remove batch effects, followed by principal component 
analysis in each step of clustering below. The feature vectors extracted from the spheroids were visualized 
by a UMAP plot.

	 ii.	 Clustering analysis The feature vectors generated from the spheroid images were analyzed to identify the 
presence of morphological subpopulations. The community detection clustering analysis was performed 
using the feature vectors in two steps: the clustering of whole spheroids (step 1) and the clustering of 
noncircular and disrupted spheroids (step 2). The number of clusters was determined by the maximum 
of silhouette values in the clustering results80.

We set up a two-step clustering pipeline based on our observation about the morphological changes by 
the drug treatments. The control (DMSO) spheroids are mostly circular, and the roundness of the spheroids 
was affected dramatically and globally by the drug treatments. The control or mildly affected spheroid are well 
described by the morphological features related to the roundness of the spheroids while highly irregular sphe-
roids require more comprehensive features. Therefore, in the first step, we used the limited features set related 
to the roundness. After we identify noncircular and disrupted spheroids, we use more morphological features 
to further cluster them.

a.	 Clustering of whole spheroids (step 1) Five morphological features relating to the roundness of the spheroids 
were used to cluster the spheroids. The features were the circularity (4π area/perimeter2), extent (the sphe-
roid colony with the largest area), solidity (proportion of the pixels in the convex polygon that is also in the 
region), eccentricity (a measure of how much an ellipse is different from being circular. An ellipse whose 
eccentricity is 0 is a circle), and the number of colonies. Then, PCA was applied to these roundness-related 
features. The resulting clusters were expected to show clusters of spheroid images with round morphologies 
and clusters with noncircular and disrupted morphologies.

b.	 Clustering of noncircular and disrupted spheroids (step 2) Clusters containing the noncircular spheroids 
(Clusters #2 and #4; Fig. 5E) were selected, and more features were extracted from the selected spheroids for 
further clustering analysis. Additional morphological features were extracted from the noncircular spheroid 
clusters. These morphological features were more focused on exploring morphology with various complex 
patterns of the spheroid. The morphological features extracted include the area (the area of all the pixels in 
the largest external contour), major axis length (the length in pixels of the major axis of the ellipse that has 
same normalized second central moments as the region), minor axis length (the length in pixels of the minor 

Dice(A,B) =
2|A ∩ B|

|A| + |B|

Table 1.   The numbers of images used for unsupervised spheroid morphology learning.

Inhibition DMSO FAK Cdc42 Rac Rho Total

Dose (μM) – 10 5 10 5 10 20 5 10 20

# of images 109 112 87 88 93 44 85 87 88 63 856
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axis of the ellipse that has same normalized second central moments as the region), eccentricity, solidity, 
extent (the ratio of the number of pixels in the region to the number of pixels in total bounding box, returned 
as a scalar), perimeter (distance around the boundary of the region, returned as a scalar), convex area (number 
of pixels in the bounding box of the region), circularity, aspect ratio, actual area, actual equivalent diameter 
(the diameter of a sphere with the same volume as the region), actual circularity, and number of holes (number 
of internal contours). Then, PCA was applied to these morphological features.

c.	 Determination of the number of clusters We randomly split the data into training and testing sets in equal 
proportion. By varying the number of nearest samples in the community detection algorithm, we generated 
the clustering results for different numbers of clusters in the training set. We calculated the silhouette values 
of the clustering results of the different number of clusters. We determined the optimal number of clusters 
from the local maximum silhouette values. Then, we performed the same clustering analysis for the testing 
set using that number of clusters.

d.	 Clustering evaluation We randomly split the data into training and testing sets in equal distribution 100 
times. We performed the clustering in each splitting and evaluated the consistency of the clustering results. 
Because the sequences of the cluster labels in each run of clustering are random, we visually checked the 
clustering result in each run and manually reassigned the labels to the same types of clusters. We counted 
the cluster label assignments of individual spheroid images from the repeated clustering, and the majority 
cluster label for each image was determined. Then we calculated how often the majority labels correspond to 
the cluster labels in each run of clustering. The consistency of clustering is indicated by how close the cluster 
assignments to the majority labels are to 100%.

e.	 Drug effects We quantified the drug effect based on the cluster proportion calculation as follows. We counted 
the number of spheroid images of each cluster for the control and drug treatment experiments. Then, the 
number was resampled using the bootstrap() function in MATLAB to build 10,000 different bootstrapped 
datasets, and the distribution of the proportions in each experiment was generated. Based on these distri-
butions, p-values were calculated by estimating the probability that the cluster proportion was greater than 
or less than that of the other experiment. In addition, the 95% confidence intervals of the proportions were 
estimated by bootci() function in MATLAB.

Statistical analysis.  The data are presented as means ± standard errors of the mean (SEM) for the indicated 
number of independent experiments. The data in Figs. 2B and S1B were analyzed using Student’s two-sided 
paired t-tests. The Kolmogorov–Smirnov normality test was performed and the null hypothesis of the normality 
could not be rejected. The statistical analysis in Fig. 4D was performed by Wilcoxon rank sum test, which does 
not rely on the normality assumption. The statistical analysis in Fig. 6E was performed by bootstrap sampling 
where the cluster labels were resampled to build 10,000 bootstrapped dataset and p-values were calculated by 
estimating the probability that the proportion of one cluster is different from that of the other. The differences 
with p-values less than 0.05 were considered statistically significant.

Data availability
The datasets used in the current study are available from the corresponding authors on reasonable request.

Code availability
The code used in the current study is available from the corresponding authors upon reasonable request.
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