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Abstract: Ferroptosis is a new form of programmed cell death characterized by iron-dependent accumulation of 
lipid peroxidation, which plays an important role in cancer biology. Ferroptosis is involved in many biological pro-
cesses, such as amino acid metabolism, glutathione metabolism, iron metabolism, and lipid metabolism. Iron is 
an essential trace element in a variety of normal cell processes, such as DNA synthesis and repair, cell respiration, 
metabolism and signal transduction, etc., and iron metabolism disorder has been considered as one of the meta-
bolic markers of malignant cancer cells. In addition, iron is involved in the regulation of innate and adaptive immune 
responses, suggesting that targeted regulation of iron metabolism may contribute to anti-tumor immunity and can-
cer therapy. In this review, the regulatory mechanism of ferroptosis, the interaction between ferroptosis on tumor 
cell metabolism, and anti-tumor immunity were systematically reviewed. Immunotherapy combined with targeted 
regulation of iron and iron-dependent regulation of ferroptosis should be the focus of future ferroptosis research.
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Introduction

The concept of ferroptosis was formally intro-
duced in 2012 [1]. Ferroptosis has been 
described as an overwhelming mode of cell 
death triggered by iron-mediated lipid peroxida-
tion. From a biochemical point of view, ferropto-
sis is characterized by the accumulation of iron-
dependent peroxidation that produces lethal 
levels. Like other cell death patterns, ferropto-
sis is genetically regulated. Ferroptosis is also 
accompanied by a range of morphological, bio-
chemical features and is highly associated with 
multiple intracellular metabolic pathways. Iron 
metabolism, amino acid metabolism, lipid 
metabolism, and different metabolic pathways 
directly affect the occurrence and development 
of ferroptosis and cells’ sensitivity to this cell 
death.

During the development and progression of 
cancer, the metabolism within cancer cells 
undergoes subtle changes. Cancer cells under-
go stronger oxidative metabolism, along with 

increased dependence and demand for iron in 
cancer tissue. This undoubtedly makes ferrop-
tosis an ideal target for the treatment of cancer 
[2]. But does not rule out the exclusion of some 
cancer cells are indeed sensitive to ferroptosis. 
However, some cell lines have activity against 
ferroptosis, because the regulation of ferropto-
sis is highly relevant and sensitive to cellular 
metabolism. Simultaneously, classical tumor 
suppressor genes such as P53 [3] have also 
been found to be involved in the regulation of 
ferroptosis, which also suggests the complex 
correlation between ferroptosis and metabolic 
pathways. At the same time, ferroptosis is also 
involved in and regulates other processes relat-
ed to cancer cells, such as mesenchymalization 
and metastasis of cancer cells and anti-tumor 
immunity [4]. Those undoubtedly demonstrate 
the important role of ferroptosis in cancer. In 
this review, we list various metabolic activities 
associated with ferroptosis in the hope of pro-
viding ideas and inspiration for further under-
standing and treatment of cancer.
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Characteristics of ferroptosis

Ferroptosis is an iron-dependent mode of  
regulatory cell death caused by the accumula-
tion of reactive oxygen species in lipids. Unlike 
other cell death modes, such as necrosis, 
apoptosis, and autophagy, ferroptosis is mainly 
manifested by pyknosis of mitochondrial mem-
brane, increased membrane density, blurred, 
reduced, or disappeared mitochondrial crest, 
and intact nuclear membrane [5]. In the bio-
chemical aspect, increased iron ion level pro-
duces a large number of reactive oxygen spe-
cies (ROS), decreased glutathione peroxidase  
4 (GPX4) activity, and accumulation of lipid 
metabolites [6]. In terms of molecular mecha-
nism, studies have found that nuclear factor-
erythroid 2-related factor 2 (NRF2) plays a renal 
protective role by inhibiting ferroptosis in folate-
induced acute kidney injury mice [7, 8].

The mechanism of ferroptosis

Lipid oxidation induces ferroptosis: When the 
distribution of iron in the body is abnormal,  
various injuries and diseases will occur. The 
central role of lipid peroxidation in ferroptosis 
in driver cells suggests that ferroptosis can be 
caused by the breakdown of the glutathione 
(GSH) -glutathione peroxidase 4 (GPX4) antio- 
xidant system [9]. Polyunsaturated fatty acids 
(PUFAs) are one of the main components of  
the phospholipid bilayer of cell membranes. 
They play an important role in maintaining cell 
membranes’ fluidity, but excessive PUFAs can 
induce ferroptosis. The main mechanism is  
that Fe2+ oxidizes excess PUFAs to hydroxyl 
radicals through the Fenton reaction, and these 
groups also oxidize PUFAs in a chain reaction 
way, producing a large number of lipid perox-
ides and inducing ferroptosis of cells [10]. Lipid 
peroxidation products of the cell membrane are 
sources of ROS production, and a large accu-
mulation of lipid ROS will directly trigger ferrop-
tosis, a process that can be prevented by lipo-
philic antioxidants and iron chelators (Table 1).

Antioxidant defense resists ferroptosis: ROS 
produced by oxidative stress can directly or 
indirectly damage intracellular macromole-
cules’ physiological functions such as proteins, 
lipids, and nucleic acids, which is the patho-
physiological basis of many diseases. Nrf2 is a 
key factor in the oxidative stress response of 
cells and controls the cellular antioxidant sys-

tem in cancer cells [11]. By regulating Keap1 
(Kelch Like ECH Associated Protein 1)-Nrf2 
through reaction with antioxidant components 
(antioxidant response element) interaction, reg-
ulating antioxidants’ expression and phase 
alexipharmic alcohol [12-14]. Clinically, cancer 
and other chronic diseases involved in oxida-
tive and inflammatory stress can be prevented 
by enhancing the activity of NRF2 [15]. Recent 
studies have identified the antioxidant enzyme 
Dehydrogenase (DHODH) localized in mitochon-
dria, which acts independently of FSP1 and 
GPX4 to resist ferroptosis [16]. It resists ferrop-
tosis by promoting the production of CoQ10.

Unbalanced iron induces ferroptosis

Iron is essential in the accumulation of lipid 
peroxide and the execution of ferroptosis. 
Therefore, the amount of intracellular iron 
affects the sensitivity to ferroptosis. It is well 
known that intracellular iron metabolism and 
iron homeostasis are in a state of dynamic 
equilibrium. The body maintains iron intake, 
storage, and outflow processes through a com-
plex regulatory network [17]. Transferrin recep-
tor (TFR) and divalent metal-ion transporter-1 
(DMT1) regulate extracellular iron intake, while 
ferroportin (FPN), on the other hand, transfers 
excess iron from intracellular to extracellular in 
order to maintain iron homeostasis in the cell 
[18, 19]. In the periphery, transferrin (Trf) has a 
high affinity with ferric iron (Fe3+), and one Trf 
molecule can transport 2 Fe3+. Trf transfers 
Fe3+ to the TFR1 of the cell membrane and 
then forms Trf- [Fe3+] 2-TFR complex on the on 
the surface of cell membrane [20]. Basuli et al. 
[21] showed that this process could be signifi-
cantly up-regulated in ovarian cancer, breast 
cancer, and other cancers. Studies have shown 
that iron transporter proteins (FER-) are found 
in a variety of cancer cells down-regulation of 
FPN and up-regulation of TFR1 make cancer 
cells have a higher demand for iron than non-
cancer cells, and such “iron addiction” makes 
cancer cells more susceptible to the impact of 
iron overload and ROS accumulation [22-24].

Lipid metabolism associate with ferroptosis

Lipid metabolism is closely related to the sensi-
tivity of cells to ferroptosis. Polyunsaturated 
fatty acids are a double-edged sword, and their 
peroxidation may also cause damage to cells. It 
can be integrated into the membrane by Acyl-
CoA Synthetase Long Chain Family Member 4 
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(ACSK4) and lysophosphatidyl-choline acyl-
transferase 3 (LPCAT3) [25]. The oxidation of 
PUFA can be done either by a non-enzymatic 
free radical chain reaction or enzymatic cataly-
sis. Taking AA as an example [26], ACSL4  
catalyzed the linking of CoA to AA to form the 
intermediate of CoA-AA, which LPCAT3 esteri-

fied to form phosphatidylethanolamine (PE-AA) 
to form arachidonic acid-phosphatidylethanol-
amine (PE-AA). The resulting PE-AA can be oxi-
dized by LOX in the presence of enzymes or by 
autooxidation in non-enzymes to form PE-AA-
OOH, both of which eventually lead to cell 
death. 

Table 1. The inducers and inhibitors of ferroptosis
Reagents Target/Funtion Mechamism Reference

Inducers Erastin System xc- prevents cystine import, causes GSH depletion [1]

IKE System xc- prevents cystine import, causes GSH depletion [97]

Glutamate System xc- high extracellular glutamate leads to prevent cystine import, causes GSH depletion [98]

IFNG/IFNγ System xc- Down-regulates the expression of SLC3A2 and SLC7A11, two subunits of system 
xc-

[76]

Sorafenib System xc- Inhibits system xc- in a non-enzymatic target-dependent manner [99]

Sulfasalazine System xc- Inhibition of nuclear factor κB signaling pathway; inhibition of xc-transporter [99]

FIN56 GPX4 Cause GPX4 depletion [100]

FINO2 GPX4 Inactive GPX4 and oxidizes iron [101]

Altretamine GPX4 Inhibits GPX4 activity, causes ROS accumulation [102]

JKE-1674/1716 GPX4 Inhibits GPX4 activity, causes ROS accumulation [103]

ML162 GPX4 Inhibits GPX4 activity, causes ROS accumulation [28]

ML210 GPX4 Inhibits GPX4 activity, causes ROS accumulation [104]

RSL3 GPX4 Inhibits GPX4 activity, causes ROS accumulation [28]

Artemisinin Organic peroxides ROS manufacturing, disruption of antioxidant defenses by downregulates of GPX4 
and GSH causes an imbalance in intracellular oxidative responses

[105]

Artesunate Organic peroxides Causes rapid ROS accumulation [106]

Salinomycin Ferritinophagy Increases intracellular iron, causes peroxidation by activating ferritinophagy [107]

Ironomycin Ferritinophagy Increases intracellular iron, causes peroxidation by activating ferritinophagy [108]

iFSP1 FSP1 Inhibit FSP1 activity, cause the accumulation of lipid peroxidation [109]

BSO GCLC Induces GSH depletion [110]

Doxorubicin HO-1 Induces iron overload [111]

Inhibitors CoQ10 Antioxidant/RTA Prevents lipid peroxidation by the FSP1-catalyzed ubiquinol form [100]

Fer-1 Antioxidant/RTA Prevents the accumulation of ROS by reducing activity [1]

Lip-1 Antioxidant/RTA Inhibits lipid peroxidation directly [112]

Vitamin E Antioxidant/RTA Inhibits lipid peroxidation directly [113]

NAC Antioxidant/RTA Suppresses ferroptosis through supplementing GSH [28]

Ciclopirox Iron chelator Reduces intracellular free iron [1]

Deferiprone Iron chelator Reduces intracellular free iron [114]

Deferoxamine Iron chelator Reduces intracellular free iron [1]

Dexrazoxane Iron chelator Reduces intracellular free iron [115]

Baicalein ALOXs Reduces ROS by inhibits ALOXs, and stabilizes GPX4 to protect cells from exces-
sive lipid peroxidation

[116]

AA-861 ALOXs Inhibits lipid ALOXs-mediated peroxidation [117]

CDC ALOXs Inhibits lipid ALOXs-mediated peroxidation [117]

Triacsin C ACSL4 Prevents the transfer process of PUFA to the cell membrane, inhibits lipid ACSL4-
mediated peroxidation

[118]

Troglitazone ACSL4 Prevents the transfer process of PUFA to the cell membrane, inhibits lipid ACSL4-
mediated peroxidation

[119]

Rosiglitazone ACSL4 Prevents the transfer process of PUFA to the cell membrane, inhibits lipid ACSL4-
mediated peroxidation

[118]

DPI NOXs Inhibit lipid NOXs-mediated peroxidation [120]

TMZ System xc- Induces system xc-expression [121]

KI-696 Keap1 Binds to Keap1 and prevents it from mediating NRF2 degradation [122]

Lactate HCAR1/MCT1 Promotes PUFAs production [123]

MUFAs Lipid Block PUFA peroxidation [124]
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During ferroptosis, the accumulation of lipid 
peroxides, especially phospholipid peroxides, is 
considered a symbolic event of ferroptosis [27]. 
At present, it is generally believed that the ulti-
mate actor of ferroptosis is lipid peroxides, and 
when excessive accumulation of lipid peroxides 
causes plasma membrane damage, eventually 
leading to the occurrence of ferroptosis in cells 
[10]. Inhibition of GPX4 from a genetic or phar-
macological perspective leads to ferroptosis 
even when cysteine/cysteine supplies are suf-
ficient in cells [5, 28]. Studies have shown that 
lipid peroxides cause cell damage in various 
ways [29, 30]. One is the further decomposition 
of lipid peroxides into ROS, which further ampli-
fies the lipid peroxidation process. The other is 
by changing the physical structure of the mem-
brane, such as the thickness and bending 
degree of the membrane, or by forming holes in 
the membrane to release harmful substances 
and disrupt the metabolism in the cell; Third, 
the byproducts (aldehydes) produced in the 
process of lipid peroxidation can cause cell 
damages, such as MDA and 4-HNE.

Amino acid metabolism associate with ferrop-
tosis

Amino acid metabolism is closely related to the 
regulation of ferroptosis [31]. The entry and exit 
of amino acids into and out of the cell require 
specific transporters, cystine/glutamate anti-
porter System Xc-. The XC - system is a Na - 
independent reverse transporter that outputs 
intracellular glutamate and extracellular cys-
tine in a 1:1 ratio [32, 33]. Consisting of two 
subunits connected by a disulfide bond, includ-
ing member 2 of the heavy chain subunit solute 
carrier family 3 member 2 (SLC3A2; CD98 or 
4F2HC) and light chain subunit solute carrier 
family 7 member 11 (SLC7A11; Also commonly 
referred to as XCT). SLC7A11 is a multichannel 
transmembrane protein that mediates cystine/
glutamate antiporter activity in the XC - system 
[34, 35]. SLC3A2 is the chaperone protein that 
maintains SLC7A11 protein stability and proper 
membrane localization [36]. Inhibition of the 
imbalance in amino acid metabolism caused by 
SystemXC - causes ferroptosis, and glutamate 
itself can affect the function of SystemXC -. As 
a substrate of GPX4, GSH participates in the 
intracellular antioxidant system and is a key 
factor affecting the occurrence of ferroptosis 
[37] (Table 2).

Moreover, GSH synthesis is closely related to 
the metabolism of amino acids. Besides, 

indole-3-acetone hydrochloride (I3P) inhibits 
ferroptosis by directly scavenging free radicals 
and activating antioxidant gene expression  
programs. Therefore, interleukin-4-inducible 1 
(IL4I1) is likely mediated by a local iron-promot-
ing pathway in the metabolism of aromatic 
amino acids, suggesting that IL4I inhibitors 
may regulate the death pathway tumor cells 
[38].

Glutamate and glutamine are important regula-
tors of ferroptosis [23]. Extracellular high con-
centrations of glutamate can inhibit cystine 
uptake by inhibiting the activity of SystemXC -, 
resulting in ferroptosis [18, 39]. Notably, out-
side the cell, reduced glutamate levels protect-
ed SystemXC - knockout mice from neurotoxic 
damage [40]. Therefore, the accumulation of 
extracellular glutamate may serve as a natural 
trigger for inducing ferroptosis in the physiologi-
cal environment. Because ferroptosis is consid-
ered an associated cell death [41, 42] mecha-
nism in tissue damage, glutaminolysis targeted 
therapy may effectively treat organ damage 
mediated by ferroptosis. In fact, in experimen-
tal models, inhibition of glutamine breakdown 
has been shown to reduce heart and kidney 
injury and cerebral hemorrhage due to isch-
emia/reperfusion [23, 42, 43].

Other metabolic pathways associate with fer-
roptosis

In addition to iron metabolism, lipid metabo-
lism, and amino acid metabolism, factors 
including Ferropsor suppressor protein 1 
(FSP1), NRF2, heat shock proteins (HSPs) also 
regulate ferroptosis.

In 2019, Conrad and Olzmann et al. respective 
found a new ferroptosis inhibitory protein 1 
(FSP1, previously known as mitochondrial 
apoptosis-inducing factor 2, AIFM2) almost at 
the same time [44, 45]. FSP1 can be used as a 
biomarker of ferroptosis resistance in a variety 
of cancer cells. It has NADPH-dependent coen-
zyme Q oxidoreductase function and can cata-
lyze the regeneration of CoQ10 by NAD(P)H, 
while CoQ10 can inhibit peroxidation and pre-
vent ferroptosis [46]. The FSP1-CoQ10-NAD(P)
H pathway is an independent system that acts 
synergistically with GPX4 and glutathione to 
inhibit phospholipid peroxidation and ferropto-
sis KEAP1-Nrf2-ARE signaling pathway forms a 
complex oxidative stress response system, and 
Nrf2 plays a regulatory role in intracellular Fe2+ 
[6]. Under normal conditions, Nrf2 is inactive, 
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Table 2. Genes involved in ferroptosis
Gene Name Funtion Ref.

Antioxidant defense GPX4 glutathione peroxidase 4 Reduces lipid ROS with the aid of GSH [1]

FSP1 ferroptosis suppressor protein 1 Reduces lipid peroxidation mediated by ubiquinone (CoQ10) [109, 125]

GCH1 GTP Cyclohydrolase 1 Prevents lipid peroxidation by its metabolic derivatives BH4/BH2 [126]

FANCD2 Fanconi anemia complementation group D2 Regulats ferroptosis by affacting GPX4 expression [127]

Peroxidation ALOXs lipoxygenases Directly mediates lipid oxidation [128]

DPP4 dipeptidyl peptidase 4 Assists NOXs-mediated oxidation reaction [129]

NOXs NADPH oxidases Transfers electrons through the biofilm and reduces oxygen to superoxide, thus enabling the 
accumulation of ROS

[1]

POR NADPH-cytochrome P450 reductase Promotes lipid peroxidation by Catalyzing the Production of H2O2 [130]

CyB5R1 NADH-cytochrome b5 reductase Promotes lipid peroxidation by Catalyzing the Production of H2O2 [130]

Iron metabolism ELAVL1 embryonic lethal, abnormal vision, Drosophila-like 1 Selectively active ferrotinophagy as an RNA binding protein [131]

ZFP36 zinc-finger protein 36 Selectively inactive ferrotinophagy as an RNA binding protein [132]

FTMT mitochondrial ferritin Stores free iron in mitochondria [133]

Prominin2 Prominin2 Mediates iron ion export by the exocytic form [134]

HO-1 heme oxygenase-1 Elevates intracellular free iron levels by promoting heme degradation [135]

SLC39A14 solute carrier family 39 member 14 Sensitizes cells to ferroptosis by mediating the transport of NTBI [136]

SLC11A2 solute carrier family 11 member 2 Sensitizes cells to ferroptosis by mediating the transport of NTBI [136]

SLC39A8 solute carrier family 39 member 8 Sensitizes cells to ferroptosis by mediating the transport of NTBI [136]

SLC40A1 solute carrier family 40 member 1 Sensitizes cells to ferroptosis by mediating the transport of NTBI [136]

Trf transferrin Extracellularly binds iron [137]

TfR transferrin receptor Mediates Transferrin bound iron import [138]

CISD1 CDGSH iron sulfur domain 1 Increases iron-mediated intramitochondrial lipid peroxidation [139]

HSPB1 heat shock protein beta-1 Inhibits of ferroptosis by affecting iron metabolism [140]

NFS1 l-cysteine desulfurase Inhibits ferroptosis by maintaining iron-sulfur cofactor stability [141]

Lipid metabolism LPCAT3 lysophosphatidyl-choline acyltransferase 3 Involves in key steps of PUFA synthesis [25, 128]

ACSL4 Long-chain acyl-CoA synthetase-4 Mediates PUFA insertion into cell membranes [118]

AMPK AMP-activated protein kinase Energy stress-mediated regulation of PUFA synthesis [142]

ELOVL5 elongation of very longchain fatty acid protein 5 Affects the synthesis of PUFAs necessary for ferroptosis [143]

FADS1 fatty acid desaturase 1 Affects the synthesis of PUFAs necessary for ferroptosis [143]

PPARα peroxisome proliferator-activated receptor α Regulates intracellular lipid homeostasis [144]

ACSL3 Long-chain acyl-CoA synthetase-3 Mediates MUFA insertion into cell membranes [124]

SCD1 Stearyl-coenzyme A desaturase 1 Prevents ferroptosis by modulating ACSL4 activity [123]

RAB7A member RAS oncogene family 7 Regulates lipophagy [145]

Amino acid metabolism SLC7A11 solute carrier family 7 member 11 Transports cysteine by composing the system xc- [34]

SLC3A2 solute carrier family 3 member 2 Transports cysteine by composing the system xc- [34]

mTORC1 mechanistic tar-get of rapamycin complex 1 Promotes degradation of SLC7A11 in lysosomes [146]

mTORC2 mechanistic target of rapamycin complex2 Inhibits the activity of the SLC7A11 transporter by phosphorylating serine 26 of SLC7A11 [147]

CD44v CD44 variant Stabilizes system xc- activity [148, 149]
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GCLC glutamylcysteine ligase Involves in the synthesis of GSH, but also has unconventional anti-ferroptosis activity [150, 151]

CBS Corticobasal Syndrome Participates in the rate-limiting step of the transsulfuration pathway [152]

CGL coagulation prevents cellular ferroptosis when cysteine acquisition is limited [152]

SLC38A1 solute carrier family 38 member 1 Mediates glutamate import and sensitizes ferroptosis [153-155]

SLC1A5 solute carrier family 1 member 5 Mediates glutamate import and sensitizes ferroptosis [153-155]

BECN1 Beclin 1 Directly binds to system xc - and blocks its activity [156]

GLS2 glutaminase 2 Prevents ferroptosis by mediating the degradation of glutamate [153]

Other metabolic pathways ACSF2 acyl-CoA synthetase family member 2 Regulates mitochondria-associated lipid metabolism [1]

VDAC2 voltage-dependent Anion Channel2 Iron transporter on mitochondria, affects iron availability [157]

FXN Frataxin Affects the availability of iron as well as some antioxidant enzyme activities by controlling 
the synthesis of iron-sulfur clusters

[158]

NFE2L2 nuclear factor erythroid synthase 2 Affects ferroptosis by affecting the expression of a variety of ferroptosis-associated proteins [159]

TP53 tumor protein 53 Affects ferroptosis by affecting the expression of a variety of ferroptosis-associated proteins [160]

YAP Yes-associated protein Regulates lipid metabolism in the presence of high cell density [68, 161, 162]
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and when exposed to electrophile reagents or 
reactive oxygen species, it can induce a series 
of protective proteins to inhibit ferroptosis [47].

Heat shock protein B1 (HSPB1) is also a regula-
tor closely related to ferroptosis [48]. Overex- 
pression of HSP is induced under stress condi-
tions such as heat shock, pH shift, and hypoxia 
[49]. Phosphorylated HSPB1 inhibits ferropto-
sis by reducing cellular iron uptake and lipid 
ROS production. Therefore, inhibition of HSPB1 
expression or phosphorylation can increase 
ferroptosis mediated by Erastin, providing a 
new research direction for cancer cells to avoid 
ferroptosis [48].

The interaction between ferroptosis and tu-
mor metabolism

The metabolic specificity of tumor cells con- 
fers their particular relationship to ferroptosis. 
Nowadays, it has been proved that ferroptosis 

plays an important role in oncogenes and tumor 
suppressor genes, as well as tumor migration 
and invasion, tumor microenvironment and 
immunity. Elucidating the relationship between 
ferroptosis and these neoplastic events could 
help to develop better targeted ferroptosis 
treatment strategies.

Tumor suppressor genes

P53 has been a recognized tumor suppressor 
since its discovery [47], and it plays an impor-
tant role in tumor metabolism [50, 51]. In  
2015, Jiang et al. linked p53 with ferroptosis 
for the first time [52], indicating that p53 can 
inhibit SLC7A11 transcription and thus inhibit 
SystemXC - to absorb cystine (Figure 1), there-
by regulating ferroptosis and playing a key role 
in tumor inhibition. In addition to SLC7A11, 
some p53 target genes, such as Spermidine/
Spermine N1-acetyltransferase 1 (SAT1), pros-
taglandin peroxidase synthase 2 (PTGS2) and 

Figure 1. Schematic description of the signaling pathway of ferroptosis. polyunsaturated fatty acids (PUFA); Acyl-CoA 
synthetase long-chain family member 4 (ACSL4); lysophosphatidylcholine acyltransferase 3 (LPCAT3); phosphati-
dylethano- lamines (PEs); ferroptosis suppressor protein 1 (FSP1); lipoxygenases (LOXs); glutathione peroxidase 4 
(GPX4); Glutathione (GSH).
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Glutaminase 2 (GLS2) can promote ferroptosis 
in cells [23, 28, 53]. Coding mutant p53 pro- 
tein accumulation within the tumor cells pro-
motes oncogenes’ function or promotes differ-
ent cell proliferation. The wild-type p53 can 
suppress abnormal cell proliferation by regulat-
ing cell cycle arrest, thus promoting tumor 
occurrence and development [54, 55]. P53 
known effects on cell metabolism are complex, 
involving multiple control nodes [56], through 
the transcription or transcriptional regulation, 
activity in various metabolic pathways, such as 
glycolysis, mitochondrial oxidative phosphory-
lation, etc. P53 also controls the cancer cells to 
the fitness of nutrients and oxygen condition. 
This is the key to survival under metabolically 
impaired conditions formed in the tumor micro-
environment [57].

EMT

EMT refers to the transformation of epithelial 
cells into mesenchymal cells under certain 
physiological and pathological conditions. Fer- 
roptosis is known to be sensitive to epithelial-
mesenchymal transition (EMT) cells [58]. 
Studies have confirmed that transcription  
factors (such as Snail [59-62], Twist [63-65], 
ZEB [66], etc.) and microRNAs [67] play an 
important role in EMT. Activation of transcrip-
tion factors such as YAP1 and WWTR1 (also 
known as TAZ), which are involved in the Hippo 
pathway, promotes ferroptosis during growth by 
regulating ferroptosis-related expression fac-
tors as ACSL4, TFRC, EMP1, and AngPTL4 [68]. 
Viswanathan et al. [69] found that anti-therapy 
cancer cells undergoing epithelial-mesenchy-
mal transformation (EMT) are more likely to be 
killed by ferroptosis inducers than non-drug-
resistant cancer cells [70-72], which may serve 
as a starting point for the application of ferrop-
tosis in tumor metabolism. Importantly, through 
the study of EMT related experimental results, 
the exaggerated expression in breast cancer 
cells significantly lower iron deprivation of Fpn 
get the transfer capacity of EMT marker expres-
sion and damaged [73], but Mangmang CSO 
and others [58] found - SS - Cy7 - Hex/SPION 
SRFN compound self-assembly mediated ferri-
tin acid, can resist EMT during breast cancer 
drug resistance, more aggressive and meta- 
stasis. Cell adhesion promoters, such as integ-
rin subunits α6 and β4, also protect breast 
cancer-derived cells from ferroptosis in vitro 

[74]. Meanwhile, Peng Chen et al. [75] found 
that β-element combined with cetuximab can 
inhibit the migration of KRAS mutant CRC cells 
by inhibiting EMT and inhibiting the growth of 
KRAS mutant tumor, which provides a new 
treatment strategy for CRC patients with RAS 
mutation. In conclusion, EMT plays a key role in 
the mechanism of ferroptosis in tumor metabo-
lism (Figure 2), but its potential value is unclear.

Ferroptosis and tumor immunity

Current studies have confirmed that ferroptosis 
plays an important role in cancer immunity. 
Ferroptosis, as a mode of cell death, is trig-
gered by immune cells as a target. IFNγ relea- 
sed by CD8+ T cells [76] and TGFβ1 released  
by macrophages [77] can induce ferroptosis in 
cancer cells by reducing the expression of fer-
roptosis-related inhibitory proteins. The meth-
od of constructing nanoplatforms, such as oxy-
gen-enhanced photodynamic therapy with a 
nanoplatform of Ferro hemoglobin, successful-
ly induced IFNγ release from T cells, which sen-
sitized cancer cells ferroptosis [78]. The “eat 
me” signal is an important way for cells to be 
recognized and remove [79]. Recent studies 
have found that peroxides produced by ferrop-
tosis on cell membranes can act as “eat me” 
signals recognized by the immune system and 
thus removed [80]. This also demonstrates that 
ferroptosis regulates tumor immunity through 
peroxidation products. Therefore, it is argued 
that oxidases like ALOX act as triggers of  
ferroptosis and modulate immune signaling. 
Notably, the reduction of GPX4 inhibited the 
release of proinflammatory mediators such as 
HETE, LTB4, and thus the oncogenic process 
[81]. Also, oxidized phospholipids catalyzed  
by ALOXs can modulate immunity by promoting 
DC maturation and differentiation of helper T 
cells [82]. Besides, oxidolipids and lipid drop-
lets are also involved in the regulation of antitu-
mor immune responses. In the tumor microen-
vironment, dendritic cells accumulate a large 
amount of peroxidation, leading to antitumor 
immunodeficiency [83]. Lipid species of the 
external environment can also affect cancer 
migration through ferroptosis, and the lymphat-
ic system protects melanoma cells from iron 
ptosis by increasing ACSL3-dependent MUFAs 
production, thereby promoting tumor metasta-
sis [84].
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In addition to peroxidation, damage-associa- 
ted molecular patterns (DAMPs) of ferroptosis 
release can modulate immune progression. 
There has been controversy as to whether fer-
roptosis is immunogenic. Luliia et al. found that 
ferroptosis released ATP and HMGB1 in a time-
dependent manner and demonstrated that  
ferroptosis is immunogenic both in vitro and  
in vivo [85]. The release of DAMPs mediates 
immunogenic cells’ death and inflammatory 
responses that promote tumor growth [86, 87]. 
HMGB1, as a member of DAMPs, is released  
by iron-dead cancer cells and promotes their 
inflammatory reaction by binding to AGER of 
macrophages. There is evidence that induction 
of ferroptosis in cancer cells increases the 
release of PGE2, an important immunomodula-
tor. And this process may be negatively corre-
lated with GPX4 activity. PGE2, on the one 
hand, blunts the function of CDC1-type cells 
and prevents the infiltration of CDC1 cells  
[88] into the immune microenvironment by NK 
[89] cells. Besides, PGE2 is active in T cells. 
Although further studies are needed regarding 
the downstream signaling of PGE2, it has  

been demonstrated that PGE2 impairs tumor 
immune function by acting on the innate 
immune system. Since the formation of PGE2 is 
negatively correlated with GPX4 activity, it can 
be speculated that iron-death-sensitive cell 
lines can more easily release PGE2 and ensure 
tumor development by means. It has been 
shown that PGE2 is released from tumors and 
neighboring cells during chemotherapy cycles, 
which is essential for tumor repropagation of 
cancer stem cells [90].

In recent years, immune checkpoint inhibitors 
(ICIs) have made effective progress in cancer 
treatment. Among them, the anti-PD-L1 anti-
body can promote ferroptosis in cancer cells. 
The phenomena of ferroptosis induced by ICIs 
is very similar to cancer cell killed by cytotoxic T 
cells and macrophages mentioned above. For 
example, interferon γ released by T cells acti-
vates the JAK-STAT1 pathway and downregu-
lates the expression of SLC7A11 and SLC3A2, 
which leads to the development of ferroptosis 
in cancer cells. Reduced SLC3A2 names in 
melanoma patients are consistently associat-

Figure 2. The role of EMT in ferropto-
sis. In epithelial cells, the intercellular 
contact portion inhibits ferroptosis 
through cadherin 1-mediated inhibi-
tion of YAP1 transcriptional activity. 
In contrast, cells in the mesenchymal 
state are susceptible to ferroptosis 
due to loss of intercellular contact and 
activation of factors involved in epithe-
lial to mesenchymal transition (EMT), 
such as ZEB1, SNAI1, and Twist1.
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ed with enhanced response to ICIs [7]. It can be 
speculated that the immune checkpoint PD-L1 
also palys a role in reducing ferroptosis. But 
whether anti-PD-L1 antibodies enhance the 
progress of ferroptosis only remains to be 
determined because multiple ligands activate 
the JAK-STAT pathway. 

Ferroptosis also acts on immune cells and 
plays a role in regulating tumor immunity [91]. It 
was found that CD4+ T cells and CD8+ T cells 
lacking GPX4 underwent ferroptosis with the 
rapid accumulation of ROS. This undoubtedly 
prevents the expansion of T cells, rendering 
them incompetent for immune activity [92]. In 
contrast, overexpression of FSP1 and GPX4 in 
immune cells ensured CD8+ T cells’ immune 
activity. Interestingly, knockdown of ACSL4, 
while sparing CD8+ T cells from ferroptosis, 
impaired their immune activity [93]. There are 
few studies on B cells, but it has been demon-
strated that B cells have a constant sensitivity 
to ferroptosis [94]. GPX4 activity is unneces-
sary in the process by which some types of  
B cells remain immunocompetent. Similar to  
B cells, M1 and M2 macrophages also have  

related to cell metabolism. The metabolic 
reprogramming of cancer cells, as well as the 
tumor microenvironment, gives cancer cells dif-
ferent responsiveness from normal tissue cells 
to ferroptosis. Recent studies have shown that 
ferroptosis can provide a new research direc-
tion for inducing targeted removal of tumor 
cells and overcoming tumor drug resistance 
[163, 164]. In radiation therapy, induction of 
ferroptosis can greatly reduce tumor resistance 
to radiation; while in immunotherapy, the immu-
nogenicity of ferroptosis has been confirmed, 
and cancer cell ferroptosis is one of the out-
comes of cells performing immune killing. 
However, more clinical studies are needed to 
prove the value of inducing ferroptosis for exist-
ing clinical treatment modalities. At the same 
time, although the upstream metabolism and 
signaling pathways of ferroptosis have been 
explored, it is still inconclusive what the final 
effector downstream of ferroptosis is, and it is 
not certain that peroxidation directly leads to 
ferroptosis. In future studies, it will become the 
general trend to further elucidate the effector 
mechanism of ferroptosis, as well as the appli-
cation of ferroptosis in clinical treatment.

Figure 3. The link between cancer and immunity. Immune cells regulate the 
ferroptosis sensitivity of cancer cells on the one hand. CD8+T cells and mac-
rophages affect the expression of ferroptosis-related genes in cancer cells 
by secreting INFγ and TGFβ1, respectively, sensitizing ferroptosis. On the 
other hand, DAMPs released from iron-dead cells result in M2 polarization 
of macrophages, leading to immune remodeling.

different sensitivities to fer-
roptosis (Figure 3). In con-
trast, M1-type cells are more 
susceptible to induction of  
ferroptosis, this process re- 
gulated by cellular Inos [103]. 
In addition, ferroptosis pan-
creatic cancer cells release 
KRAS-G12D and can be taken 
up by macrophages, leading 
to M2 polarization that pro-
motes the tumor phenotype 
[95]. This strongly demon-
strates that ferroptosis can  
be a promising target to drive 
immune reprogramming [96]. 
Existing studies have demon-
strated the importance of reg-
ulating immune cells in tumor 
immunity, but the mechani- 
sms regulating ferroptosis in 
immune cells still need fur- 
ther investigation.

Conclusion and perspective

As a new type of cell death, 
ferroptosis is highly closely 
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