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Summary

Substantial advances in Bayesian methods for causal inference have been made in recent years. 

We provide an introduction to Bayesian inference for causal effects for practicing statisticians 

who have some familiarity with Bayesian models and would like an overview of what it 

can add to causal estimation in practical settings. In the paper, we demonstrate how priors 

can induce shrinkage and sparsity in parametric models and be used to perform probabilistic 

sensitivity analyses around causal assumptions. We provide an overview of nonparametric 

Bayesian estimation and survey their applications in the causal inference literature. Inference 

in the point-treatment and time-varying treatment settings are considered. For the latter, we 

explore both static and dynamic treatment regimes. Throughout, we illustrate implementation 

using off-the-shelf open source software. We hope to leave the reader with implementation-level 

knowledge of Bayesian causal inference using both parametric and nonparametric models. All 

synthetic examples and code used in the paper are publicly available on a companion GitHub 

repository.
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1 | INTRODUCTION

Causal inference is broadly concerned with estimating parameters governing the causal 

mechanisms between an intervention or treatment of interest and an outcome. These causal 

parameters can differ substantially from associational ones. Causal inference provides a 

framework for 1) constructing different estimands that have explicitly causal, rather than 

associational, interpretations 2) formulating the assumptions under which we can estimate 
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these using observed data, 3) devising sensitivity analyses around violations of these 

assumptions, and 4) making inferences about these causal estimands via statistical modeling. 

These are just some of the many contributions of the causal inference literature, which we 

will touch on throughout this paper.

Bayesian modeling in causal inference has been growing in popularity. There are perhaps 

several reasons for this phenomenon. First, Bayesian modeling yields full posterior inference 

for any function of model parameters. For instance, point and interval estimates can be 

easily constructed for causal risk ratios, odds ratios, and risk differences by post-processing 

a single set of posterior draws from logistic regression model. Another advantage is the use 

of priors to induce shrinkage and sparsity in causal models - yielding more regularized 

causal effect estimates. We show that these can be more satisfying than the ad-hoc 

alternatives often employed. Priors can also be used to conduct probabilistic sensitivity 

analyses around violations of key causal identification assumptions. Finally, the Bayesian 

literature consists of a large suite of nonparametric models that can be readily applied 

to causal modeling. These nonparametric approaches are appealing because, unlike many 

classical machine learning algorithms, they allow for posterior uncertainty estimation as well 

as robust point estimates.

We begin with an overview of the causal identification and the Bayesian linear model 

before moving to confounder adjustment via standardization in the point-treatment setting. 

Here we highlight how priors can be used to induce shrinkage in a causal dose effect 

curve and partially pool conditional average treatment effect estimates across sparsely 

populated subgroups. Partial pooling shrinks the heterogeneous effects across subgroups 

towards an overall homogenous effect in the absence of data. We introduce the Bayesian 

bootstrap as a method for performing standardization. Next, we move to the time-varying 

treatment and confounding setting where we discuss Bayesian g-computation with priors 

that promote sparsity. Causal inference in these settings requires estimation of a large 

number of nuisance parameters. Priors that regularize these estimates by encouraging 

sparsity can be an attractive alternative to common modeling assumptions, which can be 

quite strict. Estimation for both static and dynamic treatment regimes are discussed. We 

then turn to using priors for causal sensitivity analyses. These follow from expressing 

violations of causal assumptions in terms of non-identifiable parameters, then conveying 

uncertainty about the magnitude/direction of the violation via priors on these parameters. 

We end with a discussion of Bayesian nonparametric causal estimation. We discuss Dirichlet 

process priors, Bayesian Additive Regression Trees, Gaussian processes and survey their 

applications to causal problems. Throughout, we present several pedagogical examples using 

publicly available synthetic data. We hope to demonstrate how readily these models can be 

implemented using existing software. A companion GitHub3 repository contains all relevant 

implementation code that reproduce the results in this paper.

3 https://github.com/stablemarkets/intro_bayesian_causal 
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2 | INGREDIENTS OF BAYESIAN CAUSAL INFERENCE

2.1 | Causal Estimands and Identification Assumptions

In order to make causal inferences, we first need to define and identify the causal estimand. 

After doing so, we will turn to the statistical problem of actually making inferences about 

this estimand. Consider estimation of the causal effect of a binary treatment assignment A 
∈ {0, 1} on some observed scalar outcome Y. In this paper, we formulate estimands in 

terms of potential outcome Ya1. This represents the outcome that would have been observed 

had a subject received treatment A = a. For subjects receiving treatment A = a, we never 

observe their counterfactual outcome, Y1−a. If we did observe both potential outcomes, we 

could estimate each subject’s individual-level effects by taking the difference Y1 − Y0. This 

is the difference in outcome had the subject taken treatment 1 versus 0. We could also 

estimate a population-level average treatment effect (ATE), Ψ = E[Y 1] − E[Y 0], directly by 

simply taking the sample average of the difference, Y1 − Y0, across all subjects. The ATE 

is interpreted as the average difference in the outcome had everyone in the target population 

received treatment A = 1 rather than A = 0. In absence of the counterfactual, we cannot 

estimate the individual-level effects and can only estimate Ψ under certain identification 
assumptions (IAs).

To understand the role of these assumptions, it is helpful to consider the data we actually 

observe. Along with Y (note the lack of superscript) and A, we observe a vector of 

confounders L - these are variables, measured pre-treatment, that impact both treatment 

assignment and outcome. Thus, we could estimate the conditional outcome mean, or 

regression, E[Y | A, L] directly from observed data. The aforementioned identification 

assumptions are required to express Ψ - the difference in average unobserved potential 

outcomes - in terms of E[Y | A = 1, L] − E[Y | A = 0, L] - the average difference in 

conditional outcome means between the two treatment groups. Identification refers precisely 

to this process of expressing (“identifying”) estimands such as Ψ in terms of observed data. 

In this setting with a single baseline treatment, the standard IAs2 are

IA.1: Conditional ignorability: Ya ⊥ A | L.

IA.2: Consistency: P(Ya = Y | A = a) = 1, ∀a.

IA.3: No interference: Y i
a1:n = Y i

ai.

IA.4: Positivity: 0 < P(A = 1 ∣ L) < 1, ∀L ∈ ℒ.

Above, a1:n = (a1, a2, …, ai, …, an) is a vector of treatment interventions for each of 

n observed subjects and Y i
a1:n represents subject i’s potential outcome had each subject 

received their corresponding treatments in a1:n. IA.1 requires that pre-treatment variables L 
fully capture the confounding between treatment and outcome. That is, conditioning on L 
renders the potential outcome under a particular treatment, Ya, independent of the observed 

treatment assignment, A. This can be violated if, for instance, we fail to condition on some 

confounder, such as age, when in fact older subjects tend to be treated with treatment A = 1 

and are likely to have worse outcomes under this treatment, Y1. It is important to note that 

conditioning on inappropriate variables (e.g. colliders or post-treatment variables) may also 
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lead to ignorability violations3. In this paper, we will discuss ways to perform sensitivity 

analyses around violations of this assumption.

Consistency, IA.2, requires that the treatment be well-defined in terms of a clear 

intervention4. For example, suppose A is high/low blood pressure and Y is myocardial 

infarction. The outcome that occurs in a world where we intervene directly to lower 

blood pressure is likely not the outcome that would have occurred had everyone in the 

population had low blood pressure. This is because the mechanism by which we set blood 

pressure likely itself affects the outcome. Whether blood pressured was lowered via changes 

in lifestyle (exercise, better eating habits, etc) versus medication probably impacts the 

outcome. For this reason, consistency is often described as requiring that there is only 

“one version” of the treatment. A more well-defined intervention may be blood pressure 

medication use (versus no use). Other canonical examples of ill-defined exposures include 

race and BMI5.

IA.3 states that no subject’s treatment assignment should affect another’s potential outcome. 

Formally, the itℎ subject’s potential outcome under intervention Ai = a, Y i
ai, need not be 

indexed by the other n − 1 subjects’ interventions in the superscript. Hence, we can simplify 

Y i
a1:n to just Y i

ai. This assumption is often violated if subjects are not independent. For 

example, a study of the effect of prophylactic antivirals on infection using data from 

patients in the same hospital may suffer from interference: the antiviral treatment of subjects 

roomed together affect each other’s infection probability. For concreteness, consider two 

such patients, i and j, with potential infection status, Y i
ai, aj and Y j

ai, aj, respectively. Here, 

intervention a = 1 indicates antiviral therapy and a = 0 indicates control. If the infection is 

contagious, it may be the case that P Y i
0, 1 < P Y i

0, 0 . Even if subject i is untreated, their 

infection probability would likely be lower had their neighbor, subject j, been treated. Since 

we cannot speak of subject i’s outcome separately from subject j’s treatment, we cannot 

drop aj from the superscript in Y i
ai, aj. Causal inference in these settings is more complicated 

and an active area of research6.

Finally, IA.4 requires that the treatment probability be bounded so that there is no subset 

of the population in terms of L for whom treatment is deterministic. Intuitively, if treatment 

assignment was deterministic for a subpopulation of individuals, we would have no data 

about that group’s outcome under the other treatment condition. Positivity violations can 

occur at the population level (e.g. protocols forbidding treatment a for subjects over a certain 

age) or at the sample level due to small sample size (e.g. we observe no male diabetics with 

treatment a). The former are sometimes called structural violations and the latter are called 

random violations of positivity in the literature.

Using these assumptions we can identify both expectations in Ψ. First, under IA.3, 

E Y i
a1:n = E Y i

ai . Omitting subscripts for compactness,

Oganisian and Roy Page 4

Stat Med. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E Y a = ∫
ℒ

E Y a ∣ L dP(L)

= ∫
ℒ

E Y a ∣ A = a, L dP(L)

= ∫
ℒ

E[Y ∣ A = a, L]dP(L)

(1)

The first equality follows from iterated expectation over L. We use ℒ to denote the space of 

L. From IA.1, we know that the potential outcome is independent of assignment conditional 

on L, which allows us to condition on A = a in the second equality. IA.4 ensures that 

we are not conditioning on a zero-probability event. Lastly, IA.2 allows us to drop the 

superscript. Intuitively, (1) identifies the average potential outcome as a regression model 

(under intervention A = a) that is averaged over the marginal confounder distribution. 

Computing marginal causal effect using this expression is called standardization. In this way, 

we have identified each term of Ψ in terms a regression that is estimable from observed data.

2.2 | Statistical Assumptions

Equation (1) usually requires statistical/modeling assumptions about the regression, E[Y | A, 

L]. As an example, consider substituting a linear regression model E[Y | A, L] = θA + L′β 
(where an intercept is included in L). Then, under the IAs, standardization yields

Ψ = ∫
ℒ

E[Y ∣ A = 1, L, ω] − E[Y ∣ A = 0, L, ω]dP(L)

= ∫
ℒ

θ + Li′β − Li′β dP(L) = θ .
(2)

In this special case, the ATE, Ψ, is equal to the treatment indicator coefficient, θ. Thus, an 

estimate of this coefficient is an estimate of the ATE. In the non-linear examples discussed 

later, Li′β will not cancel out as it did above and a probability model for p(L) will be 

necessary to evaluate the integral.

2.3 | Bayesian Modeling

Bayesian causal inference combines Bayesian modeling with the IAs discussed to compute 

a posterior distribution over causal estimands. In this section we introduce these key ideas, 

which will be expanded in future sections. Throughout much of the paper, we assume that 

IAs hold to keep focus on the added benefit of Bayesian modeling.

Suppose we observe data D = {Yi, Ai, Li}i=1:n on n independent subjects, where Ai ∈ {0, 

1} is abinary treatment indicator, Li is a vector of confounders (including an intercept), and 

Yi is the scalar outcome of interest, as defined earlier. Bayesian inference requires both a 

probability model for the conditional distribution of the outcome, Y, (a likelihood) as well as 

a probability distribution over the unknown parameter vector, ω, governing this conditional 

distribution (i.e. a prior). Inference then follows from making probability statements about ω 
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having conditioned on D (via the posterior). From Bayes’ rule we have that the posterior is 

proportional to the likelihood times the prior, p(ω ∣ D) ∝ p(ω)∏i p Y i ∣ Ai, Li, ω .

For instance, if Yi is real-valued, we could specify a Gaussian outcome model with 

conditional mean θAi + Li′β and variance ϕ: p Y i ∣ Ai, Li, ω = N Y i ∣ θAi + Li′β, ϕ . We could 

also set a Normal-Inverse-Gamma prior on the parameter vector ω = (θ, β, ϕ), e.g. p(ω) = 

N(θ | 0, 1)N(β | μ0, Σ0)IG(ϕ | a0, b0). This probability model induces a linear regression 

E[Y |Ai, Li = θAi + Li′β, where we drop explicit conditioning on the parameters. Now it 

remains to find the posterior over the model parameters, p(ω | D) - which includes θ. 

As we showed with the linear model in the previous section, the coefficient θ is the 

ATE, Ψ. So a posterior over θ is a posterior over Ψ. This simple example demonstrates 

a general Bayesian approach to causal inference.First, identify the causal parameter of 

interest as a transformation of the model parameters.The IAs required to achieve this 

will vary by problem and strategy. Mediation7 and time-varying treatment8 settings will 

require extensions of the IAs discussed. Instrumental variables9, difference-in-differences10, 

and regression discontinuity11 strategies all involve their own unique IAs. Second, obtain 

the posterior distribution (or draws from it) of these model parameters which, after 

transformation, yields a posterior over the causal estimand.

In practical settings, the posterior distribution, p(ω | D) does not have known form - so 

that we cannot analytically find the posterior after specifying the likelihood and prior. As a 

result, inference is instead typically conducted using draws from the posterior obtained via 

Markov Chain Monte Carlo (MCMC). Though a crucial topic and active area of research 

in itself, we omit discussion of MCMC methods and keep focus on Bayesian estimation of 

causal effects. We refer the reader to Andrieu et al.12 for an introduction to MCMC. For our 

purposes, it is enough to know that MCMC yields a set of M draws, {ω(m)}1:M, from the 

posterior p(ω | D) given a specified likelihood and prior. Throughout, we assume we have 

sufficiently many draws to closely approximate the posterior. The mean or median of these 

samples can be used as a Bayesian point estimate of ω. Percentiles of these draws can be 

used for credible interval estimation (e.g. .025 and .975 percentiles for a 95% interval).

This paper relies mainly on Stan for MCMC sampling throughout. Stan is an open-source 

programming language for specifying Bayesian models using intuitive syntax. It back-ends 

to C++ to efficiently obtain posterior draws after a likelihood and prior are specified. Stan 
programs are often called in R via the package rstan. For those unfamiliar with Stan and R, 

we provide some guidance with SAS version 9.4 - a popular commercial statistical analysis 

software. Some of the nonparametric models to be discussed cannot be handled in either 

Stan or SAS. For these models, we will rely on specialized R packages.

2.4 | Prior Information

As mentioned earlier, Bayesian inference requires specification of a prior over the 

parameters, p(ω). Throughout this paper we hope to illustrate that, rather than anchoring 

estimates to particular hard-coded values, priors can induce intricate correlation structures 

between parameters. These correlation structures stabilize causal effect estimates when data 

are sparse (as it often is in scientific applications). This is often referred to as “shrinkage”. 
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Priors can also be used to induce “sparsity” on whole parameter vectors. Specifically, for 

high-dimensional vectors, we can place priors that express the belief that some portion of the 

vectors are nearly zero. Priors can also be used to conduct probabilistic sensitivity analyses 

around causal identification assumptions. All of these are pragmatic motivations for taking 

a Bayesian approach to causal estimation, even if one is not a Bayesian “at heart”. We will 

emphasize that, perhaps contrary to intuition, common frequentist approaches can often be 

seen as special cases of these Bayesian estimators with very rigid priors.

3 | PARAMETRIC MODELS IN POINT-TREATMENT SETTINGS

In the following sections, we outline two examples where a Bayesian approach to causal 

inference offers unique benefits in the form of prior shrinkage. Although these examples 

use relatively simple parametric models, they reflect the general approach and intuition of 

Bayesian causal inference and help motivate key tools such as the Bayesian bootstrap.

3.1 | Causal Dose Effects with AR1 Prior

Consider a setting where treatment consists of K dose levels Ai ∈ {0, 1, …, K}, with Ai = 

0 indicating no treatment. Let Aik = I(Ai = k) be an indicator that subject i was assigned to 

dose k ∈ {1, …, K}. Here, we assume the dose values are ordered so that they are increasing 

with k. That is, dose k + 1 is higher than dose k. Consider a linear outcome model,

E Y i ∣ A, Li = θ0 + Li′β + ∑
k = 1

K
θkAik . (3)

Suppose our estimand of interest is a causal incremental dose effect curve on Ψ(k) = 

E[YA=k] − E[YA=k−1]. This is a curve as a function of dose, k. Each point on the curve 

is the causal effect of increasing dose from level k − 1 to level k. Under mild extensions 

of IA.1–IA.4 from the binary treatment setting to the multi-treatment setting we can again 

identify this estimand as

Ψ(k) = θk − θk − 1 k ∈ 2, …, K

Where the first point is Ψ(1) = θ1. We consider several prior choices for θ1:K and 

the induced prior on Ψ(k). Throughout, ua:b for intergers a < b denotes the vector 

u = (ua, …, ub). A first-pass approach may be to express prior independence and 

factorize the joint prior as p θ1:K = ∏k = 1
K p θk . We could specify each term to be 

Gaussian centered at some prior mean, μk, and standard deviation, τk. However, we 

can formulate more useful priors in this setting. The increasing dose levels may give 

us prior reason to believe that the effect of neighboring doses are actually correlated, 

not fully independent. This motivates an alternative (dependent) prior factorization: 

p θ1:K = p θ1 p θ2 ∣ θ1 ∏k = 3
K p θk ∣ θK − 1, θK − 2 . Each term is specified as

θ1 N μ1, τ1
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θ2 ∣ θ1 N 2θ1, τ2

θk ∣ θk − 1, θk − 2 N 2θk − 1 − θk − 2, τk , k > 2,

where μ1, τ1:K are all hyperparameters that we can specify. Alternatively, we could specify 

hyperpriors for these parameters. The above induces the following first-order autoregressive 

(AR1) prior on the causal curve, Ψ(k). For instance, the last line for k > 2 above implies 

that θk − θk−1 | θk−1, θk−2 ~ N(θk−1 − θk−2, τk). This follows from simply subtracting θk−1 

from θk and its mean. Using the definition of Ψ(k), we see that this statement is equivalent 

to Ψ(k) | θk−1, θk−2 ~ N(Ψ(k − 1), τk). Extending this logic, the hierarchical prior on θs 

induces the following prior on the Ψs

Ψ(1) N μ1, τ1
Ψ(k) ∣ Ψ(k − 1) N Ψ(k − 1), τk , k > 1 (4)

This expresses the prior belief that the response from increasing dose to the next level 

should not be too different from the response due to the previous dose level. That is, 

neighboring points on the curve are related. Of course, if we have data suggesting otherwise, 

the data will drive our posterior inference away from this prior. However, in the absence 

of data, this provides valuable shrinkage back towards a sensible prior belief. An example 

using synthetic data is presented in Figure 1a with posterior sampling done in Stan13. 

Implementation details along with a more thorough walkthrough using this synthetic data set 

are available in Appendix A. Implementation via PROC MCMC in SAS is also discussed. 

Notice in the figure that small sample sizes at each dose level lead to erratic MLE estimates. 

In contrast, the Bayesian estimate with the AR1 prior produces a smoother curve. In dose 

level 8, we only have three observations. Thus, the Bayes estimate is aggresively shrunk 

towards the estimate at dose 7.

A common heuristic solution to this issue of decreasing sample size with increasing dose is 

to fully pool patients at, say, dose K and K − 1 and estimate a single effect for both rather 

than allowing separate effects. The prior in (4) is a compromise between these two extremes. 

Recall from (4) that Ψ(K) | Ψ(K − 1) ~ N(Ψ(K − 1), τK) for K > 1. Now notice that the 

heuristic alternative of combining groups K and K − 1 corresponds to the strong prior belief 

that τK ≈ 0. That is, the causal effect at dose K is a point-mass distribution at Ψ(K − 1): 

Ψ(K) | Ψ(K − 1) ~ δΨ(K−1).

3.2 | Partial Pooling of Conditional Causal Effects

Here we consider a more involved model for causal estimation using a logistic regression 

with binary outcome and treatment. Here, the mean function E[Y | A, L] is related to the 

covariates L through a (non-linear) logit link with inverse logit denoted by σ{·}. Thus, the 

integration over L in (1) must be evaluated explicitly. Consider some q–dimensional subset 

of pre-treatment covariates, V ⊂ L. Let W = L \ V be the set difference so that L = {W, V}. 

One target estimand of interest in this setting is a causal odds ratio at each level of V

Oganisian and Roy Page 8

Stat Med. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ψ(v) =
E Y 1 ∣ V = v / 1 − E Y 1 ∣ V = v
E Y 0 ∣ V = v / 1 − E Y 0 ∣ V = v

(5)

Causally, this is contrasting the odds of the outcome had everyone in stratum V = 

v taken treatment 1 versus treatment 0. Since we allow for different treatment effects 

for each level of v, sometimes the set of Ψ(v) is referred to as a heterogenous 
treatment effects or conditional treatment effects (i.e. conditional on V = v). Under 

extensions of IA.1 – IA.4, each conditional expectation in Ψ(v) is identified as 

E Y a ∣ V = v = ∫WE[Y ∣ a, V = v, W ]dPv(W ). Where Pv(W) = P(W | V = v) is the 

confounder distribution within stratum v. Note that this is just (1) conditional on V = v. 

The regression model is

E[Y ∣ A = a, V , W ] = σ βw′ W + βv′V + θ0 + θ1:q′ V A (6)

Above, we include an intercept in W. Note that the treatment effect, θ0 + θ1:q′ V , varies 

with levels of V. We defer discussion of the integration over W to Section 3.3. For 

concreteness, suppose V is a vector of indicators for q = 4 race/ethnicity categories: Black, 

Asian, Hispanic, Native American, and White as reference. Often some categories (e.g. 

Hispanic, Asian, Native American) are sparse. In these settings, it is common to combine 

these categories into “Other” and estimate a single odds ratio for these subjects. It is also 

common to simply exclude these subjects and not compute causal effects for these strata 

at all. Neither of these may be desirable and, again, carefully formulated priors can help 

us strike a balance when estimating conditional causal effects. For instance, consider the 

prior assumption that all of these conditional (we have not marginalized over W yet) effects 

within race category (θ0, θ0 + θ1, …, θ0 + θ4) are normally distributed around some 

“overal” treatment effect μ with standard deviation τ. We can achieve this by specifying 

a Gaussian prior for the conditional effect in the reference stratum θ0 ~ N(μ, τ). For the 

conditional effect in stratum V = 1, we specify θ0 + θ1 ~ N(μ, τ). This is the same as saying 

θ1 ~ N(μ − θ0, τ). Following this logic for the other strata, the joint prior over all parameters 

is

p θ0:4 ∣ μ, τ = N θ0 ∣ μ, τ ∏
j = 1

4
N θj ∣ μ − θ0, τ (7)

For categories with many observations, the posterior of the conditional effects with race 

category will be driven mostly by data. However, for small categories, each conditional 

effect shrinks to the overall average across race values, μ. The hyperparameter τ controls 

how aggressively we shrink these conditional effects to the overall average. This allows us 

to estimate regularized race-specific causal effects rather than abandoning the task altogether 

or resorting to ad-hoc groupings of categories. Priors for μ, τ, and the other regression 

coefficients must be specified. Standard guidance14 can be followed when specifying priors 

on these nuisance parameters. Similar to the dose effect example, the heuristic approach of 
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fully pooling sparsely populated race clusters corresponds to a rigid prior. In this case, a 

prior belief that the conditional effect in all the pooled strata are the same.

3.3 | Standardization via Bayesian Bootstrap

To compute conditional causal effects in (5), we must integrate the logistic regression in the 

previous example over Pv(W). As shown earlier, factors involving W would cancel out in a 

linear model - obviating the need for explicit integration. Here, due to the non-collapsability 

of the logit link, W does not cancel. To compute this integral, we need an estimate of Pv(W) 

over which to integrate. Let Sv = {i : Vi = v} be the set of indices of subjects in stratum V = 

v. There are nv subjects in stratum v, so that the size of Sv is nv. A frequentist nonparametric 

approach would be to estimate the distribution empirically as Pv(w) = 1
nv

∑j ∈ SvδW j(w), 

where δW j( ⋅ ) is the degenerate distribution at Wj. This places probability mass 1/nv on each 

of the nv subjects in stratum v. This yields average potential outcome estimate

E Y a ∣ V = v ≈ 1
nv ∑

j ∈ Sv
E Y ∣ A = a, V = v, W = W j

in stratum v. This is ideal in the sense that we impose no parametric model on the 

conditional distribution of W, but is unsatisfactory from a Bayesian point of view because 

it ignores the uncertainty in the empirical estimate. This motivates the Bayesian bootstrap 

(BB)15. The BB begins with a model for W, Pv(w) = ∑j ∈ Sv pvj ⋅ δW j(w). We store all the 

weights in this stratum in an nv–dimensional vector pv = {pvj : j ∈ Sv}.This weight vector 

pv live in a simplex pv ∈ ℝnv: pvj > 0∀jand ∑j ∈ Sv pvj = 1 . Rather than fixing pvj = 1/nv, 

the BB treats the weights as unknown with a flat Dirichlet prior pv Dir 0nv , where 0nv is 

the nv–dimensional vector of zeros. This yields the (conjugate) posterior pv ∣ W Dir 1nv , 

where 1nv is the nv–dimensional vector of ones. The BB makes minimal assumptions about 

the confounder distribution within each stratum: note the posterior mean of each weight is 

also 1/nv (same as the frequentist approach), but allows uncertainty around this mean to flow 

through to the causal effect in that stratum.

The BB was applied to marginal ATE estimation using generalized linear models (GLMs) 

for the outcome by Wang et al.16. When computing a marginal ATE, the BB is used as a 

model for the marginal p(L) not the conditional pv(W). In the outcome model, we no longer 

set V = v since V is included in L = {W, V}, which we integrate over. The BB model is now 

P l ∣ p1:n = ∑i = 1
n piδLi(l). Now we place a Dirichlet prior on the n-dimensional vector p1:n 

rather than the nv-dimensional vectors pv. This marginal estimate will play a key role in the 

nonparametric estimation of Section 6.

Full posterior inference for the causal odds ratio (5) requires just a few additional steps after 

sampling. Suppose we obtain the mtℎ draw of the parameters in (6), βw
(m), βv

(m), θ(m), θ1:q
(m) . 
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Then, for each stratum v, we draw BB weights pv
(m) ∣ W Dir 1nv . Note that here pv

(m) denotes 

the collection pvj
(m): j ∈ Sv . Then, we do the following

1. Integrate under both interventions A ∈ {1, 0}:

μ(m)(a, v) = ∑
j ∈ Sv

pvj
(m)σ βw

′(m)W j + βv
′(m)v + θ(m) + θ1:q

′(m)v a

2. Compute Causal Effects for each v

Ψ(m)(v) =
μ(m)(1, v)/ 1 − μ(m)(1, v)
μ(m)(0, v)/ 1 − μ(m)(0, v)

Doing this for m = 1, …, M posterior parameter draws yields M draws from the posterior 

of the causal estimand: {Ψ(m)(v)}1:M for each v. These draws can be used for posterior 

inference. Figure 1b shows posterior estimates of Ψ(v) with the partial pooling prior in (7) 

using synthetic data. MCMC-based posterior inference was done using Stan. Notice that 

for strata V ∈ {4, 5}, we have relatively few observations. In these strata, the maximum 

likelihood estimate (MLE) is much higher than the others due to small sample variability. 

Thus, the Bayesian prior aggressively shrinks the posterior mean estimate away from MLE 

towards the overall effect. From a causal perspective, we can view this as shrinking the 

heterogenous treatment effects towards an overall treatment effect. Details of this synthetic 

data generation and implementation in both Stan and SAS are given in Appendix B. 

The latter relies on PROC MCMC for posterior sampling and PROC IML for the BB 

post-processing step.

4 | TIME-VARYING TREATMENT AND CONFOUNDING

The previous sections focused on the point-treatment setting: estimating the causal effect of 

a single treatment administered at baseline while adjusting for a single set of pre-treatment 

parameters. In many applications, treatment decisions are made sequentially over time as 

a function of covariates measured after baseline. For example, consider a binary treatment 

setting where treatment at time t = 0, A0, is assigned conditional on confounders, L0, 

measured before A0. The subsequent treatment, A1, is assigned conditional on L0, A0, and 

L1, where L1 is measured between A0 and A1, temporally. After treatment, we observe 

a single outcome Y. Suppose we wish to estimate the causal ATE E[Y (1, 1) − Y (0, 0)] 

- the difference had everyone in the target population been always treated versus never 

treated. Note the potential outcomes here are indexed by a treatment vector, not scalar. 

In the literature this vector is often referred to as a “treatment regime” or “treatment 

policy”. In this section, we first discuss causal contrasts comparing outcomes that would 

have been realized under two different static treatment regimes while controlling for time­

varying confounding. Static regimes are treatment vectors that are pre-set to fixed values in 

advance (e.g. always treated, never treated, alternating treatments). Afterwards, we discuss 

an extension to dynamic treatment regimes, where the treatment regime is set sequentially 

over time according to a pre-specified rule (e.g. treat at time point t if blood pressure at time 
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t is lower than some threshold). We refer the reader to Daniel8 for a thorough tutorial on 

time-dependent confounding and modeling.

4.1 | Comparing Static Treatment Regimes

Standard regression methods fail to properly adjust for the time-varying confounder in these 

settings. For instance, if we condition on L1, then we adjust away A0’s impact on Y that 

runs through L1. However, L1 is a confounder of A1 and Y - so failing to adjust for it 

will also lead to bias. Now, generalizing to t = 0, …, T time points, under extensions of 

IA.1 – IA.4 to this sequential setting2 we can identify each term of the causal contrast 

Ψ = E Y a0:T − Y a0:T′  as

E Y a0:T = ∫
ℒ

E Y ∣ a0:T , L0:T × ∏
t = 0

T
p Lt ∣ L0: t − 1, a0: t − 1 d L0:T (8)

Where for t = 0, we define p(L0 | L0:−1,a0:−1) = p(L0). The expression above is known as 

the g-formula and the computation of the integral is referred to as g-computation - it is 

the multi-time point generalization of standardization in (1). Here we ignore the details of 

identification to focus on Bayesian modeling and computation.

In particular, note that the above requires integrating an outcome regression over the joint 

distribution of confounders, conditional on treatment regime a0:T. The outcome regression 

here can be high-dimensional even in common data applications. If we have just two 

time-varying confounders and twelve (e.g. monthly) time points, the outcome model must 

condition on 36 variables. Similarly, each conditional confounder distribution must (usually) 

be modeled conditional on all previous values of Lt and At - another high-dimensional 

modeling task.

The sequential nature of treatment and confounder measurement can be visually depicted 

using a directed acyclic graph (DAG) in Figure 2a for T = 3 timepoints (for compactness). 

Notice L2 is impacted by all previous confounder values (L0 and L1) and treatment values 

(A0 and A1). This is shown by arrows going into L2. Similarly, the outcome is impacted by 

all past L and A values. To simplify this complexity, a Markovian assumption is commonly 

invoked. This assumes that each confounder distribution only depends on the previous 

confounder and treatment values, p(Lt | L0:t−1, A0:t−1) = p(Lt | Lt−1, At−1). A similar 

assumption may be used in the outcome model. This Markov-type assumption is depicted in 

Figure 2b, which is simply the DAG in 2a with all the gray arrows removed. After removing 

gray arrows, each variable is directly impacted only by variables in the preceding time point. 

In Figure 2b, for instance, once we know L1 and A1, we know the distribution of L2. The 

history (A0 and L0) need not be considered since it only affects L2 through L1 and A1. Thus, 

p(L2 | L0:1, A0:1) = p(L2 | L1, A1).

Neither of these extremes - conditioning on full history or invoking Markov - are completely 

desirable. Suppose Lt is an indicator of poor kidney function at day t. The Markov 

assumption presumes that two treated subjects with, say, poor kidney function on the 

previous day, Lt−1, have the same Lt distribution - even if one patient had poor function 

Oganisian and Roy Page 12

Stat Med. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



everyday since t = 0 and the other had good function until day t − 1. This seems unrealistic. 

On the other hand, it may also be unrealistic to say that kidney function on day 1, L1, would 

directly impact function on, say, day 100, L100. In the Bayesian paradigm, we can devise 

priors that balance these two extremes of either conditioning only on previous time period’s 

values versus conditioning on the entire past history. The general idea is to condition on the 

full history, but express a prior belief that values closer in time to the present have relatively 

more direct impact on the present. Conversely, values further back in time have small, if any, 

direct effect.

To continue this example, consider a simple setting where Lt is a continuous measure 

of kidney function and the outcome is viral load, with the treatment, At ∈ {0, 1} 

being anti-viral therapy at time t. Lower viral load is desirable, but comes at the 

expense of nephrotoxicity. So, depending on previous treatment, if the patient shows 

poor kidney function as measured by L, the physician may alter their treatment. To 

evaluate (8), we will need an outcome regression and a sequence of conditional confounder 

models. Consider a linear outcome regression E Y ∣ A0:T , L0:T = γ + L0:T′ βY + A0:T′ θY  and a 

Gaussian conditional model for Lt with conditional mean

μLt L0: t − 1, A0: t − 1 = β + L0: t − 1′ βL + A0: t − 1′ θ, (9)

where βL = (β0, β1, β2, …, βt−1) and θ are length t parameter vectors. We note that these 

parameters should be indexed by t (e.g. βL
t ) as each conditional distribution should be 

allowed to have their own effects, but we omit this indexing for compactness. We consider 

the following prior on each element of βL

βt − k N 0, τkϕ ,   k ∈ 1, …, t . (10)

An identical prior can be used for θ. Consider the specification τk = (1/λk) for some λ > 
1. This corresponds to what is often referred to as a ridge penalty in the machine learning 

literature. However, it differs from the standard ridge regression in that we do not apply 

the same penalty to all coefficients. Rather, the penalty gets increasingly aggressive for 

coefficients going farther back in time. For instance, for λ = 2, the prior standard deviation 

around 0 is halved every step backward in time, providing increasingly aggressive prior 

shrinkage towards 0. This implies a strong prior belief that recent confounder values are 

more likely to influence the present than values farther in the past. Note that the Markov 

assumption follows from a special (strongly informative) case of this prior, where βt−k ~ δ0 

for k > 1: all coefficients but βt−1 follow a point-mass distribution at 0. An example of the 

prior in (10) is provided in Figure 3a with T = 9. The plot shows the coefficients of βL in 

the model μL9 getting increasingly penalized. Note that the posterior estimate of β1 is able to 

break away from this prior to detect a signal (a truly non-zero coefficient value), even though 

it is farther in the past. However, at time point 0 the posterior estimate β0 is strongly shrunk 

to zero (relative to the MLE).

The Bayesian literature has explored several such “sparsity” priors, including the 

horseshoe17, LASSO, and spike-and-slab priors18 - all of which could be applied to g­
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computation. These priors can all be characterized by their ability to both shrink noise, while 

being able to break away from the prior to detect signals17. For instance, a horseshoe type 

prior on the components of βL can be specified by placing half-Cauchy hyper-priors on τk 

and ϕ in (10):

τk C+ 0, 1/2k

ϕ C+(0, v)

where ν is a specified scale parameter that controls overall shrinkage across time. Similar to 

the ridge-type prior, the scale on the distribution of τk is halved every step backward in time.

The integration in (8) can be done via Monte Carlo after obtaining MCMC draws from 

the posterior of all the parameters governing the conditional confounder and outcome 

distributions. Conditional on these draws, we can simulate confounder values from these 

distributions and take the average of our regression model over these simulated values. Let 

ωy(m) denote the mtℎ draw of the parameter vector governing the regression in (8). Similarly, 

denote the parameter vector governing each conditional confounder distribution p(Lt | L0:t−1, 

a0:t−1) by ωLt
(m). For instance, these would include draws of the regression parameters β, βL, 

θ in (9) along with the Gaussian variance parameter. In the viral load example discussed 

earlier, ωy(m) would consist of ωy(m) = γ(m), βY
(m), θY

(m)

To compute the causal ATE Ψ = E Y a0:T − Y a0:T′  of regime a0:T versus a0:T′ , with each 

posterior draw of ωY
(m) and ωLt

(m) we:

1. Draw confounders, for t ∈ 0…T sequentially

Lt p Lt ∣ L0: t − 1, a0: t − 1, ωLt
(m)

Denote these draws L0:T = L0, L1…, LT . Repeat this a total of B times to obtain 

L0:T
(b)

1:B
= L0:T

(1) , L0:T
(2) , …L0:T

(B)

2. Integrate the outcome model E[Y | a0:T, L0:T] over L0:T
(b)

1:B
 conditional on 

current set of draws ωy(m), under both interventions. In the viral load example, this 

would be

μ(m) a0:T = 1
B ∑

b = 1

B
E Y ∣ a0:T , L0:T

(b) , ωy(m)

= 1
B ∑

b = 1

B
γ(m) + L0:T

′(b) βY
(m) + a0:T ′θY

(m)

Similarly, repeat Step 1 and 2 under a0:T′ .
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3. Compute Causal Contrast

Ψ(m) = μ(m) a0:T − μ(m) a0:T′

This procedure yields M posterior draws of Ψ, which can be used to form posterior 

mean and credible intervals. This can also be implemented in Stan using the “generated 

quantities” block as demonstrated in the our code on GitHub. The number of draws B 
should be large so that the Monte Carlo error of the integration of (8) is sufficiently low. 

In general, analyses with more time points and time-varying confounders will require larger 

B. In practice, we can try running steps 1–3 for a single posterior draw (say, draw m), 

over successively larger B. Keeping track of each repetition, we can check at which point 

increasing B only marginally increases precision in the estimate of Ψ(m). We can then 

set B to this value across all posterior draws. A nice feature of this Bayesian approach 

is that uncertainty about the confounder and outcome models at all time points naturally 

flows through to the posterior of Ψ or any other causal contrast. For instance, we could 

have computed posterior draws of causal ratio contrast E Y a0:T /E Y a0:T′  in Step 3 as 

μ(m) a0:T /μ(m) a0:T′ . In contrast, the frequentist approach would require many bootstrap 

estimates of the parameter vectors. Then, we would repeat Steps 1–3 using these bootstrap 

draws in place of the posterior draws. In the Bayesian framework, we need not re-estimate 

the model. We simply post-process the same set of draws differently.

4.2 | Dynamic Treatment Regimes

In the previous section we compared static treatment vectors a0:T = (a0, a1, …, aT), where 

each element is fixed at baseline. A dynamic treatment regime is a treatment regime where 

the elements are determined dynamically post-baseline via a pre-specified decision rule. 

A decision rule is a function that, at each time point t, maps the confounder history and 

treatment history (L0:T, A0:T) to a treatment value at ∈ {0,1}. For simplicity, here we 

discuss treatment rules that determine assignment based on current confounder values only. 

That is, rules rt( ⋅ ):ℒ 0, 1  maps from the space of confounders to a treatment decision. 

Expanding on the viral load/kidney function example from earlier, consider a treatment rule 

that administers treatment at time t only if kidney function at time t is higher than some 

threshold κ: rt(Lt) = r(Lt) = I(Lt > κ). We denote the average potential outcome under the 

dynamic treatment regime a0:T
r = r L1 , r L2 , …, r LT  as E Y a0:T

r
. Of interest may be to 

compare the average difference in outcome had everyone been treated according to rule r 

versus rule d:Ψ = E Y a0:T
r

− Y a0:T
d

We note that these rules can be quite complex. For example, treatment at time t may only 

be assigned if kidney function has been above κ for the previous two periods as well as the 

current time period:

rt L(t − 2): t = I Lt > κt ⋅ I Lt − 1 > κt − 1 ⋅ I Lt − 2 > κt − 2
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Here, rt( ⋅ ):ℒ3 0, 1 . In general, the rule may include previous treatment history as well 

as confounder history. In this section we consider the simple rule r(Lt) = I(Lt > κ), but the 

procedure is the same for more complicated rules.

As shown in all previous examples, Bayesian causal inference can be done quite easily 

provided we have posterior draws of the model parameters. Once these are obtained, 

computing causal contrasts is just a matter of post-processing. In this case, we only need to 

modify the g-computation post-processing steps from the previous section to sequentially set 

each element of the treatment vector as confounders are simulated, rather than use a pre-set 

treatment vector a0:T.

Consider the same scenario as in the static treatment setting, with posterior draw of ωY
(m) and 

ωLt
(m), but this time with a specified dynamic treatment rule r(Lt) = I(Lt > κ). We compute a 

draw, μ(m)(r), from the posterior of the average potential outcome under rule r, E Y a0:T
r

, as 

follows

1. Starting from t = 1, perform the following two sub-steps sequentially until t = T

a. Simulate Confounder

Lt p Lt ∣ L0: t − 1, a0: t − 1, ωLt
(m)

b. Determine Treatment according to rule

at = r Lt = I Lt > κ

Denote these draws L0:T = L0, L1…, LT  and A0:T = a0, a1, …, aT . 

Repeat this a total of B times to obtain L0:T
(b)

1:B
 and A0:T

(b)
1:B

2. Integrate the outcome model μ(m)(r) = E Y ∣ a0:T
r , L0:T  over L0:T

(b)
0:T

 and 

A0:T
(b)

1:B
 conditional on current set of draws ωy(m) , under both interventions. In 

the viral load example, this would be

μ(m)(r) = 1
B ∑

b = 1

B
E Y ∣ A0:T

(b) , L0:T
(b) , ωy(m)

Similarly, we can draw from the posterior of average potential outcome under an alternative 

rule d, E Y a0:T
d

. Denote this by μ(m)(d). Taking the difference yields a posterior draw of 

Ψ, Ψ(m) = μ(m)(r) − μ(m)(d). The sum over B is a Monte Carlo estimate of the integral in 

(8). This highlights the advantage of full posterior inference. A posterior over the model 
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parameters induces a posterior over functions of those parameters - in this case, ATEs that 

contrast dynamic treatment regimes.

5 | PRIORS OVER SENSITIVITY PARAMETERS

So far we have demonstrated how priors can be used to induce various correlation structures 

between model parameters. In Section 3.1, we were able to estimate a smoothed causal 

curve by inducing correlation between neighboring points. In section 3.2, we were able to 

estimate conditional causal contrasts for sparsely populated subgroups by shrinking their 

estimates towards the overall average. Lastly, in the previous section we explored ridge-like 

and horseshoe priors for inducing principled sparsity on a high-dimensional covariate vector. 

In this section, we present a different use of priors focused explicitly on causality rather than 

modeling - outlining how they can be used to express uncertainty about causal identification 

assumptions.

We consider a binary point-treatment setting with a continuous real-valued outcome. 

Suppose that conditional ignorability (IA.1) does not hold, so that Y a ⊥ A ∣ L, for a ∈ {0, 1}. 

This implies that E[Y a | A = 1, L] ≠ [Y a | A = 0, L]. That is, the mean of each potential 

outcome differs between those actually treated and untreated, even after conditioning on L. 

Suppose they differ by

Δa(L) = E Y a ∣ A = 1, L − E Y a ∣ A = 0, L

This could be a result of selection bias. For instance, if higher outcome values are beneficial 

then E[Y0 | A = 1, L] < E[Y0 | A = 0, L] implies those assigned to treatment would have had 

worse outcomes even if they had not been treated, relative to those not assigned treatment. 

This could be caused by “confounding by indication” where patients worse-off to begin with 

are more likely to be treated with more advanced drugs. Not accounting for this selection 

bias may make these drugs look ineffective and, perhaps, even harmful.

In this setting, if we were to incorrectly assume IA.1, then standardization in (1) would yield 

a biased estimated of the causal effect Ψ = E[Y1 − Y0]:

∫
ℒ

μ(1, L) − μ(0, L) dP(L) = Ψ + ξ

where the bias term, ξ, is a function of Δa(L) and the propensity score e(L) = P(A = 1 | L)

ξ = ∫
ℒ

Δ0(L)e(L) + Δ1(L)[1 − e(L)] dP(L) . (11)

Above, ξ fully characterizes the implication of an ignorability violation on our estimate, 

but has a complicated form: it is a function of the treatment probability and two unknown 

functions, Δ1(L) and Δ0(L). Since ignorability is an untestable assumption, it is inherently 

impossible to learn about Δ1(L) and Δ0(L) through the observed data. To proceed, we must 
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make assumptions about the form of the ignorability violation. The art of sensitivity analysis 

lies in making assumptions that balance the tradeoff between the range of violations that 

can be explored against the interpretability of the sensitivity parameters. If they are not 

interpretable, we cannot form sensible prior beliefs about them. But if they are too simple, 

we will fail to explore realistic violations.

As an example, suppose that Δ1(L) = Δ0(L) = Δ so that both potential outcomes differ by 

some constant amount between those assigned and unassigned treatments. That is, there is 

some constant boost that one treatment group is getting under both hypothetical treatment 

interventions. We also assume this bias is constant with respect to measured covariates, 

so that we learn nothing about the bias by conditioning on L (a worse-case scenario). In 

this setting, the bias reduces to ξ = Δ∫ℒdP(L) = Δ. These assumptions reduce (11) to be a 

function of a single parameter which, as mentioned earlier, can be viewed as the amount of 

selection bias: Δ = E[Y0 | A = 1, L] − E[Y0 | A = 0, L]. If higher Y values are beneficial, 

then Δ < 0 implies treated subjects would have had outcome values Δ units lower than 

those not assigned treatment, even had they not been treated. This could be because of a 

lurking unmeasured confounder (e.g. baseline disease severity) that impacts both treatment 

assignment and outcome. Interpretation of magnitude will depend on the units of Y. If 

Y were standardized, we could interpret Δ as a standard deviation difference in average 

potential outcomes between the two treatment groups. Suppose we believe that there is 

strong possibility of a selection bias in the Δ < 0 direction and no chance of bias in the other 

direction, we can set Δ = −Δ*. We could then specify a prior Δ* ~ Gam(a, b), which has 

prior mean E[Δ*] = a/b and variance V ar[Δ*] = a/b2. For instance, if we have a prior belief 

of a one standard deviation bias, we can set (a/b) = 1 and set b to, say, b = 3. This is a fairly 

tight prior around Δ* = 1 with standard deviation 3−1/2.

To illustrate, we generate some synthetic data with a single binary treatment, single 

continuous observed confounder, a single continuous unobserved confounder, and a 

Gaussian outcome with mean being a function of treatment and both confounders. We then 

fit the Bayesian linear regression in Equation (2), excluding the unmeasured confounder. 

Appendix C describes this synthetic data generation and implementation in more detail. If 

we had included it, standardization would yield an accurate estimate of the ATE, Ψ = E[Y1 

− Y0], which equals Ψ = 1 in this simulation. However, because we mistakenly exclude 

the unmeasured confounder, our estimate will be biased by some Δ. Conducting a sensitive 

analysis involves specifying different priors for Δ. Because we have no data about Δ, the 

posterior is the same as the prior and so the usual standardization algorithm can be modified 

as follows:

1. Perform standardization as usual to obtain Ψ(m). Because we are using a linear 

model in this simulated example, Ψ(m) is simply the mtℎ posterior draw of the 

coefficient on the treatment dummy in our regression - as shown in Equation (2).

2. Draw sensitivity parameter from some specified prior, e.g. Δ*(m) ~ Gam(1, 3), 

transform to get Δ(m) = −Δ*(m), and compute

Ψs(m) = Ψ(m) − Δ(m) .
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In this case, our sensitivity analysis produces the usual posterior draws Ψ(m) that are 

perturbed by draws of Δ(m). We can also view it as “subtracting off” the bias in (11) from 

the standardization estimate, Ψ(m). This perturbation incorporates our prior uncertainty 

regarding the magnitude of the bias due to a pre-specified form and direction of an 

ignorability violation. Figure 3b presents perturbed posteriors under three different priors 

for this synthetic example: Δ ~ N(0, sd = 3−1/2), Δ ~ Gam(1, 3), and Δ* ~ Gam(1, 3). 

Note that ignorability (i.e. no unmeasured confounding) can be expressed as a strong prior 

belief that Δ follows a point-mass distribution at 0, Δ ~ δ0. As shown in Figure 3b, this 

yields a posterior estimate centered far from Ψ = 1. The first prior expresses symmetric 

belief about the direction of the bias, and so increases uncertainty in the posterior, without 

shifting its mean. Consequently, in Figure 3b we see the wider posterior interval that now 

has more mass around Ψ = 1. The second prior expresses prior belief that Δ > 0 and the third 

expresses the belief that Δ < 0. Thus, the former shifts our posterior lower to correct for the 

upward bias and the latter shifts our posterior up to correct for the downward bias.

While sensitivity analyses around IAs are unique and application-specific, they follow the 

general procedure we outlined above:

1. Find the bias induced by an IA violation, ξ.

2. Make assumptions about the nature of the violation so that ξ is expressed in 

terms of interpretable sensitivity parameters.

3. Express your belief about the direction and degree of the violation via priors on 

these sensitivity parameters.

4. Use draws from these priors to perturb the causal effect.

5. Assess the perturbed posterior.

We contrast this approach with the usual frequentist approach that computes point and 

interval estimates for Ψ under a pre-specified range of Δ. Usually this range is wide 

enough so that we can see where perturbation “reverses” some statistically significant effect, 

as measured by a change in p-value from significant to non-significant. In the Bayesian 

approach, we see how perturbation impacts the entire posterior distribution of the estimand 

- telling us how posterior mean, median, quantiles, variance, etc are all affected by the 

uncertainty in our sensitivity parameters.

The literature on Bayesian sensitivity analysis is large and growing. For instance, 

McCandless et al.19 develop a sensitivity analysis for unmeasured confounding of the 

effect of a binary exposure on an outcome and assess the quality of posterior inference 

via extensive simulations. Gustafson et al.20 develop a Bayesian sensitivity analysis 

framework for unmeasured confounding where it is assumed measured confounders are 

measured with error. This highlights a strength of Bayesian approach: sensitivities around 

multiple violations (in this case, measurement error and ignorability) can be done at once 

with suitable priors. Mediation analyses require more complex ignorability assumptions 

to estimate natural direct and indirect effects. Bayesian sensitivity analyses have been 

developed for such problems within the context of hazard models for survival outcomes21. 

Bayesian sensitivity analysis for mediators have also been explored with nonparametric 
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Bayesian models22. Other work by Gustafson et al. focus on Bayesian sensitivity for 

partially identified bias parameters23. They discuss an application to average causal effect 

estimation in a randomized trial with non-compliance (i.e. not all patients randomized to 

treatment A = a take treatment a).

6 | FLEXIBLE MODELS VIA NONPARAMETRIC BAYES

In previous examples, we considered parametric regression models μ(A, L) = E[Y | A, L] 

that were indexed by finitely many parameters. In the Gaussian example of Section 2, the 

regression was determined completely by (θ, β). In Section 3.2, the logistic regression was 

a function of (βw, βv, θ0, θ1:q). In our discussion of time-varying confounding, models for 

the confounder distribution were required at every time point, in addition to an outcome 

model. These models impose restrictive functional forms of the covariate and treatment 

effect. For instance, they assume that the treatment effects are linear and additive on 

some transformation of the conditional outcome mean. However, it is possible that the 

treatment effect is a complex, nonlinear function of L. Suppose all relevant confounders 

sufficient for IA.1 to hold are measured and included in the model. Even in this scenario, 

msisspecification of the functional form of that model will, in general, yield inaccurate 

posterior causal effect estimates. In this section we will provide a brief overview of causal 

effect estimation using Bayesian nonparametric (BNP) models - a class of flexible models 

that make minimal functional form assumptions. We focus here on the point-treatment 

setting, with the understanding that these methods can be applied to other settings, including 

conditional mean modeling in g-computation, mediation, marginal structural models, and so 

on. Throughout, D = {Yi, Ai, Li}1:n will denote the observed data consisting of outcome, 

treatment, and confounder vector for n independent subjects. We will define a covariate 

vector Xi = (1, Ai, Li) for compactness.

6.1 | Dirichlet Process Mixture Models

We return to the linear model of Section 2 and specify a more flexible alternative. First, 

define conditional regression μi(X) = X′βi. We specify the following model for the joint data 

distribution

Y i ∣ Xi, βi, ϕi N μi Xi , ϕi
Xi ∣ θi p Xi ∣ θi
ωi ∣ G G
G ∣ α, G0 DP αG0

(12)

ωi = (θi, βi, ϕi) denotes the full parameter vector. There are two key additions in this model. 

First, we have saturated the model with more parameters than there are observations in the 

data. This is nonparametric in the sense that the number of parameters is growing with the 

sample size. Second, this is a generative rather than conditional model. That is, we model 

the joint distribution p(Yi, Xi | ωi) = p(Yi | Xi, ωi)p(Xi | ωi) rather than just the conditional 

distribution of the outcome.

The parameters of the joint distribution follow an unknown prior, G. Above, we specify 

a Dirichlet process (DP) prior on G. Realizations of this stochastic process are discrete 
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random probability distributions centered around a base distribution, G0(ωi), with dispersion 

controlled by α. This discreteness induces ties among the ωi which, in turn, induces 

posterior clustering of data points. Specifically, subjects are partitioned into groups with 

similar joint data distributions and each group’s joint is modeled using a separate ωi. In this 

way, the posterior conditional regression is a mixture of many cluster-specific regressions. 

In the machine learning literature24 these are often called “mixture of experts” learners, 

since each component regression in the mixture (referred to as an “expert”) has “expertise” 

in a particular region of the data. Predictions are formed by averaging over the component 

experts’ predictions. These are distinct from ensemble models, which model the entire data 

using separate candidate models - rather than assigning different data regions to different 

models.

Induced Posterior Regression—Such DP mixture models have been discussed in the 

BNP literature for some time. Shahbaba and Neal (2007) first described a DP mixture 

of regressions25. Blei et al. (2011) later extended this to a DP mixture of GLMs, which 

generalizes (12) to any conditional outcome and covariate distribution in the exponential 

family26. There is extensive literature on posterior sampling strategies for this model, though 

the most common approach in causal inference tends to be Neal’s Algorithm 827. We 

will use software to conduct the sampling, but it is instructive to show that the posterior 

regression can be expressed as a mixture of regressions at each iteration in the sampler. Let 

ω1:n
(m) be a draw of all the subject-level parameters and let μi

(m)(X) = E Y ∣ X, ωi
(m)  denote the 

posterior regression at each iteration, given by

μi
(m)(X) = w0

(m)μ0
(m)(X) + ∑

i = 1

n
wi

(m)μi
(m)(X) (13)

Note that this is a mixture with n + 1 components and mixture weights {w0
(m), w1:n

(m)}. Above, 

μ0
(m)(A, L) is the regression under a prior draw β0

(m) G0 - we will call this a “prior regression”. 

The weights wi
(m) have the form

wi
(m) =

p X ∣ θi
(m)

αp X ∣ θ0
(m) + ∑i = 1

n p X ∣ θi
(m) , (14)

where θ0
(m) G0 is a prior draw. The weight on the prior regression is

w0
(m) =

αp X ∣ θ0
(m)

αp X ∣ θ0
(m) + ∑i = 1

n p X ∣ θi
(m) (15)

The induced posterior regression is a complex mixture of a prior regression and several 

subject specific regressions. Importantly, the mixture weights are covariate-dependent, 

allowing us to capture non-linear and non-additive effects of X on the outcome. We refer to 

the specified distributions in (12) as “local” distributions as they are local to a particular 

mixture component. Even though the local model is parametric, we can approximate 
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arbitrarily complicated distributions using a mixture of locally simple models. This is similar 

conceptually to approximating a complicated non-linear regression function using piecewise 

linear splines.

Local Model Choice and Hyperparameters—Specification of the model requires 

specifying the local distributions. In general, model fit will not be too sensitive to these 

choices as the resulting regression takes a complex non-linear mixtures of these local models 

to fit the regression. However, desired support can be a guiding concern in making this 

choice. For instance, it may be desirable to choose p(Xi | θi) such that it respects the 

support of the elements of Xi. Consider a vector X = (X1, X2, X3) that consists of a binary, 

continuous/real-valued, and count confounders respectively. Assuming prior independence, 

we can set p(Xi | θi) to be the product of the Bernoulli, Gaussian, and Poisson distributions, 

with θi being the vector of parameters governing all three distributions. Similarly, if the 

outcome must be non-negative (e.g. blood pressure, cost, etc) then we could use a log­

normal conditional outcome distribution instead of a Gaussian.

Just as with the local models, G0 should also be set to place non-zero prior measure on the 

support of ωi. In model (12) with a single count covariate Li, we could set

G ωi = N2 βi; β*, Σ* IG ϕi; a*, b* Ber pi; p* IG λi; λ*

Where, θi = (λi, pi) are the parameters governing the local covariate distribution p(Xi | θi) = 

Pois(Li ; λi)Ber(Ai ; pi).

In the causal literature, the parameters of G0 (superscripted with asterisks above) are often 

set using empirical Bayes principles while a relatively flat Gamma(1, 1) hyperprior is 

set on α. Specifically, β* might be set to the ordinary least squares estimates, and Σ* 

may be set using the MLE covariance estimate. Empirical Bayes is a practical method of 

setting priors here as cross-validation would be too computationally intensive. Moreover, 

we typically have no substantive knowledge that could guide these choices. Centering the 

priors around empirical estimates also helps constrain the parameter draws to a reasonable 

range of the observed data. Simulation studies in a variety of scenarios show that this 

tends to yield adequate frequentist properties (i.e. credible intervals and point estimates with 

close to nominal coverage and bias, respectively, in repeated samples)28,29,30. This approach 

is similar to Zellner’s g-prior - an empirical Bayes prior popular in the Bayesian model 

selection literature31.

Relationship to Kernel Regression—In this section, we discuss how the DP regression 

can be viewed as a Bayesian compromise between a fully empirical kernel regression and a 

parametric regression.

A kernel regression estimate for a point with covariate vector X is simply a weighted 

average of all the observed outcome values, each weighted by how “close” the vector X 
is to each observed covariate. Specifically, denote the centered Gaussian kernel as Kh(u) 

(i.e. this is the density of a Gaussian with zero mean and variance h). The Gaussian kernel 

regression32 is defined as
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E[Y ∣ X] = ∑
i = 1

n
wik(X)∫ Y ⋅ Kℎ Y − Y i dY . (16)

Note that ∫ Y ⋅ Kℎ Y − Y i dY = Y i is just the Gaussian mean. The weights wik(X) are given by

wik(X) = Kg X − Xi
∑iKg X − Xi

. (17)

Now taking α → 0 (corresponding to an improper, flat prior) in the DP regression (13) 

yields

E Y ∣ X, ω1:n
(m), D = ∑

i = 1

n
wi

(m)μi
(m)(X), (18)

with limiting weights

wi
(m) =

p X ∣ θi
(m)

∑i p X ∣ θi
(m) . (19)

Comparing these equations, it is clear that the improper extreme of the DP regression 

becomes a type of kernel regression. In particular, if we set p(X | θi) to be Gaussian 

with mean Xi and variance g and set μi
(m)(X) = Y i, then the DP regression reduces to a 

kernel regression estimate. Both models are covariate-weighted mixtures of subject level 

conditional mean models, though the DP model is more satisfying from a statistical point of 

view. It outputs full posterior distribution over the regression. The kernel regression typically 

produces a point estimate, with uncertainty estimation being more complicated. Moreover, 

with the DP we can specify a covariate model, p(X | θi), that respects the support of the 

various covariates. This is in contrast to the kernel regression, which uses a single kernel for 

the whole vector.

On the other extreme, take α >> n. Then, the DP regression becomes 

E Y ∣ X, ω1:n
(m), D ≈ w0

(m)μ0
(m)(X). Recall here that μ0 is the regression with parameters drawn 

from the prior β0 ~ G0. The weights w0 are also based on covariate parameters drawn from 

the prior θ0 ~ G0. In other words, this extreme results in a completely parametric model 

with parameters drawn from the prior base disstribution. So we can view the DP regression 

as a type of posterior compromise between the kernel regression on one extreme and a 

parametric regression on the other. It would also be fair to say that the DP regression is a 

regularized version of the kernel regression. This perspective offers more insight into the 

role the hyperparameters of the local outcome and covariate distributions. Specifically, if 

p(X | θi) and p(Yi | Xi, βi, ϕi) are Guassian, then the variance parameters of these distribution 

play the same role as h in the Kernel regression. Here, h controls the bias-variance tradeoff. 

Large values of h lead to a less flexible (more penalized) fit, while small values of h lead to 

more flexible (less penalized) fit. Similarly, prior distributions on the variance parameters of 

these distributions that favor small values will yield a more flexible fit with less shrinkage.
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Computing Causal Effects—The MCMC scheme involves obtaining posterior draws of 

ω1:n
(m)

1:M, which we can use to construct the mean regression μi
(m)(A, L) at each iteration. 

Under IA.1 – IA.4, we can estimate causal contrasts such as Ψ = E[Y1 − Y0] by integrating 

this regression over the confounder distribution, just as in the parameter setting. Here, 

integration is done over a BB draw as in Section 3.3,

1. Sample from the DP posterior to get

μi
(m)(A, L)

2. Draw BB weights

p1:n
(m) ∣ W Dir 11:n

3. Integrate to get posterior draw of Causal Effect:

Ψ(m) ≈ ∑
i = 1

n
pi
(m) μi

(m) 1, Li − μi
(m) 0, Li

The computationally demanding portion of the above is Step 1 and can be done using 

off-the-shelf R packages such as ChiRP30. This package runs the DP model in (12) 

and, by default, specifies local Gaussian distributions for non-binary and local Bernoulli 

distributions for binary covariates. Figure 4 visualizes predictions trained using ChiRP, 

where the conditional outcome distribution is simulated from a mixture of two damped 

harmonic oscillators. It also plots the ATE posterior from the DP model, computed as 

described above. The ATEs are computed using a synthetic data set with a binary treatment 

and single Gaussian confounder. In this example, the true treatment effect is a quadratic 

function of L. The figure also displays ATEs from a frequentist linear additive model, E[Y 
| A, L] = β0+β1A+β2L, estimated using OLS. These results are biased in this scenario. 

Detailed descriptions of the synthetic example used for ATE computations in Appendix E. 

This appendix also contains implementation of the ATE computation using ChiRP.

Survey of Recent DP Applications—The DP and related priors over random 

probability distributions such as the enriched DP33,34, dependent DP35,36, and centered 

DP37 have also been applied to causal inference. For instance, Kim et al. (2017) employ a 

Dirichlet Process mixture to estimate direct and indirect effects in a mediation analysis22. 

They specify a joint Gaussian model for the outcome, mediator, and confounders, and 

place a DP prior on the mean vector and covariance matrix. Later work applied DPs to 

latent mediators38. Roy et al. (2018) use an enriched DP to model the joint distribution 

of the outcome and confounders, and estimate ATEs via posterior standardization over 

the estimated distribution of the confounders29. They also describe posterior imputation 

of missing-at-random covariates within their model. Roy et al. (2018) use a dependent 

DP to estimate a marginal structural model and apply it to causal estimation with a 

survival outcome29. Xu et al. (2016) applied a similar dependent DP model to estimate 
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causal effects of dynamic treatment regimes39. Xu et al. (2018) propose an approach for 

estimating quantile causal effects (e.g. difference in median outcome under one intervention 

versus another)40. A Bayesian Additive Regression Tree (BART) probit model is used 

to to model the propensity score as a function of covariates, while a Gaussian outcome 

model is specified conditional on the propensity score. The parameters of the joint outcome­

propensity score model are given a DP mixture prior. We will describe BART models 

in the next section. Oganisian et al. (2018) specify a generative model for the joint 

outcome, propensity score, and confounder distribution, where the conditional outcome 

model is a two-part zero-inflated model41. The parameters of this joint are given a DP 

mixture prior. Posterior standardization was conducted and a method for posterior predictive 

checks of positivity (IA.4) are proposed. Others42 have applied DP models to adjust for 

post-treatment variables via principal stratification43. Centered DPs have also been used to 

estimate heterogeneous treatment effects44. Here, the centered DP was used as a prior for an 

unspecified error term distribution of an accelerated failure time model.

6.2 | Bayesian Additive Regression Trees

The original BART approach of Chipman et al.45 models the conditional outcome 

distribution as a Gaussian with mean function

μ(X) = ∑
j = 1

J
g X; Tj, Mj (20)

Above, the conditional mean is modeled as a sum of predictions from J regression trees, 

Tj. In this sense BART can be viewed as an ensemble learner. Specifically, Tj consists of 

a set of nodes and splitting rules with an associated vector of terminal node parameters 

Mj. The function g maps covariates Xi to one of the terminal node parameters in Mj. The 

mean is then the sum of the terminal node predictions from each of the trees. The BART 

prior, consisting of priors on the splitting rules and terminal node parameters, is formulated 

to induce shrinkage towards shallow trees. This helps prevent over-fitting. This serves as a 

probabilistically principled alternative to pruning heuristics often used with random forests. 

Predictions for a toy examples are given in Figure 4. Notice that BART produces a step 

function as a result of the the assumed tree structure of μ(X). This holds even as BART 

interpolates across the covariate space with no training data (the red points in the plot 

indicate held out test data).

The MCMC inference engine behind BART relies on the “backfitting”46 approach, which 

takes posterior draws of each tree structure and their terminal node parameters sequentially. 

Each tree is fit using the residual from the previously fit trees as the outcome. At every 

iteration m, one such cycle through the J trees yields Tj
(m) and Mj

(m), which we can then use 

to construct a regression

μ(m)(A, L) = ∑
j = 1

J
g A, L; Tj

(m), Mj
(m)
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We can use existing software in R such as BayesTree to obtain the posterior draws for 

μ(m)(A, L) under both interventions. We first stack two test data sets Dtest
a = A = a, Li 1:n

for a ∈ {0, 1} into a single test set {Dtest
1 , Dtest

0 }. The training data simply consists of the 

observed data set Dtrain = (Yi, Ai, Li)1:n. The package will then output BART estimates of 

μ(X) under both interventions in the stacked test set {μ(m)(1, Li), μ(m)(0, Li)}1:n for m = 1, … 

M. To compute the integral in (1), we can post-process the draws in R as follows. For each 

iteration, take a BB draw p1:n
(m) and compute

Ψ(m) = ∑
i = 1

n
pi
(m) μ(m) 1, Li − μ(m) 0, Li

In this way we obtain draws from the posterior of the ATE. Our review of BART was 

cursory, with a focus on causal estimation. We refer the reader to Tan et al. (2019) for a 

thorough tutorial on BART and its various extensions47.

Survey of Recent BART Applications—We now provide a brief (but by no-means 

exhaustive) survey of BART in interesting causal inference applications. Hill (2011) first 

applied BART to ATE estimation48. BART has since enjoyed wide popularity in causal 

estimation. For instance, it has been used to formulate fully Bayesian semi-parametric 

estimation of structural mean models49, fully nonparametric estimation of optimal dynamic 

treatment regimes50, and estimation of causal effects in the presence of positivity 

violations51. The latter augments BART with splines to extrapolate to regions of the data 

with deterministic treatment (i.e. non-overlap regions). Work by Hahn et al. (2017) has 

focused on improving the use of BART for causal inference52. They separate out the the 

treatment and confounder effects in the outcome regression, which aims to improve bias 

due to what the authors term “regularization-induced confounding”. We also note that the 

original BART model presented here has been extended for outcomes with different support. 

For instance, the mean function modeled using BART can be run through a probit link 

when the outcome is binary. Sparapani et al. proposed using BART for survival outcomes53. 

They use a discrete-time failure model where the probability of death at each time point is 

modeled with a BART probit.

6.3 | Gaussian Process (GP) Models

Here we review another BNP approach using Gaussian process (GP) priors for regression 

modeling54,55. Although less widely used in the causal literature relative to DP and BART 

models, GPs are popular in the BNP literature. They can be implemented in Stan and 

so may be a practical choice for applied researchers. We consider the same problem of 

modeling, μ(X), the mean function of a Gaussian outcome, Y | X ~ N(μ(X), ϕ). The GP 

can be motivated as a prior over the space of regression functions, μ(X). We say that μ(X) 

follows a GP with prior mean function θ0(X) and covariance C(X ; η, ρ). Together with the 

full model, this is denoted as
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Y ∣ μ(X) N(μ(X), ϕ)
μ(X) GP θ0, C . (21)

Above we have suppressed dependence of θ0 and C on X and hyperparameters (η, ρ) for 

compactness. Our prior belief is that the regression function μ(X) is randomly distributed 

around some mean regression function θ0, with linearity and smoothness of μ(X) relative to 

θ0 being controlled by the hyperparameters. For example, a common prior mean function 

choice is θ0(X) = 0 - a hyperplane through the origin. Another, approach is to set θ0(X) = 

X′β. The latter specification centers our prior around a linear/additive prior mean regression 

function, while η and ρ allow for deviations from this prior if the data are inconsistent. The 

covariance can have many specified forms, but we focus on the exponential-quadratic form 

popular in the causal literature,

Cij = ηexp −ρ Xi − Xj
2 + .01δij, (22)

where v = v′v denotes the L2 vector norm. C is the n × n matrix with elements given by 

Cij. Intuitively, this describes the prior belief that the regression function evaluations should 

be similar for two subjects with similar covariate vectors. The evaluations should differ 

more for two subjects who have very different covariates. The parameter ρ controls how 

similar these function evaluations are for subjects with similar covariates. Larger ρ favors 

more similar regression evaluations. The parameter η controls the linearity of the regression 

function - with smaller η penalizing non-linearity and a priori favoring linear regression 

functions.

Stan can be used to sample from the posterior distribution of the regression function 

μ(X). Specifically, it outputs M draws from the posterior of the regression function {μ(m)

(X)}1:m. These posterior draws are visualized in Figure 4 for both training and held-out test 

points. Causal ATE estimation can be done by feeding Stan two held-out test data sets, 

Dtest 
a = a, Li 1:n for a ∈ {0, 1}. This returns posterior draws the regression function under 

both interventions {μ(m)(1, Li), μ(m)(0, Li)}1:n for m = 1, … M. Within Stan, standardization 

can be done using BB as described before. For each iteration, take a BB draw p1:n
(m) and 

compute

Ψ(m) = ∑
i = 1

n
pi
(m) μ(m) 1, Li − μ(m) 0, Li

Posterior inference for the ATE using this GP model is shown in Figure 4. Implementation 

details for this synthetic example are given in Appendix E. Finally, we note that GPs can 

easily accommodate outcomes with non-continuous/real support. For instance, with count 

outcomes we could specify Y | X ~ Pois exp(μ(x)). Here, we model log(E[Y | X]) = μ(X) and 

place a GP prior on μ(X) as in the Gaussian case.

Recent Applications in Causal Inference—Gaussian process priors have seen some 

usage in the causal literature. For instance, the dependent DP, used for posterior inference 
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about marginal structural models29 and dynamic treatment regimes39 is essentially a 

combination of the DP and GP. Specifically, each cluster-specific regression function in 

the DP is assigned a GP prior. Just as the Guassian local model in (12) induced a posterior 

regression that is a mixture of linear regression functions, the dependent DP induces a 

posterior regression that is a mixture of GP regression functions. Other uses of GPs included 

modeling pollution outcomes in the presence of spatial interference (i.e. violations of IA.3 

that exhibit spatial structure)56 and estimation of propensity scores57.

7 | DISCUSSION

In this paper we reviewed causal effect estimation from a Bayesian perspective in 

point-treatment and time-varying treatment settings. For the latter, we outlined how to 

estimate causal effects of both static and dynamic treatment regimes. Both parameteric 

and nonparametric settings were discussed. Along the way, we discussed the utility of 

priors both for providing interpretable shrinkage and also for conducting causal sensitivity 

analyses. Throughout, we emphasize that the ad-hoc procedures we often use correspond to 

strongly informative priors. Throughout, we have highlighted various BNP techniques used 

for causal estimation in the literature. We hope that these surveys will be useful literature 

overviews that can serve as a starting point for those who want to delve further into these 

methods.

We note that our treatment of Bayesian causal estimation differs from that of Rubin58 

- which is fundamentally a finite-sample approach. In this approach, each subject’s 

counterfactual is treated as a missing data point and the target is the posterior distribution 

over these missing variables, p Y i
1 − Ai

1:n
, ∣ D . Here, D = Y i

Ai, Ai, Li 1:n
 consists of the 

observed potential outcomes, treatment assignment, and confounder vector. Denote the 

parameters governing the observed data distribution as ω. By Bayes’ rule we can express the 

desired posterior as

p Yi
1 − Ai

1:n
, ∣ D = ∫ p Yi

1 − Ai
1:n

, ∣ ω p(ω ∣ D)dω

∝ ∫ p Yi
1 − Ai

1:n
, ∣ ω p(D ∣ ω)p(ω)dω

Suppose that n1 of the n subjects are treated. Then the likelihood is

p(D ∣ ω) = p Yi1, …, Yn1
1 , Yn1 + 1

0 , …Yn0 ∣ L1:n, ω

Thus this approach requires a model for the joint distribution of p(Y1, Y0 | L, ω), which is 

not identifiable in the data: we never observe both potential outcomes for any subject. By 

non-identifiable, we mean that the posterior (even if it is proper) over this joint distribution 

will be completely driven by the prior. This issue is not unique to Bayesian inference. 

For instance, the variance of the sample average treatment effect is not identifiable from 

a frequentist perspective either59. It is a function of the covariance of the two potential 

outcomes, which we cannot learn. Ding et al. (2018) provide an excellent review of 
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Bayesian causal inference from this missing data perspective60. This missing data approach 

is the central idea behind the more recent PENCOMP method61, which uses a penalized 

splines to impute the missing counterfactuals. The approach described in our paper is 

what Ding et al. (2018) term the “super-population” approach, rather than the finite-sample 

approach. This super-population approach focuses on estimands that are a function of the 

parameters governing the data generation process. Once we have a good model of the 

process, these estimands are simply transformations of these parameters.
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APPENDIX

A CAUSAL DOSE EFFECT EXAMPLE

A.1 Data generation and implementation in Stan

This appendix provides a more detailed walkthrough of the synthetic example and model 

discussed in Section 3.1. We refer the reader to the Stan manual online for details about the 

language, syntax, and best practices. The toy example was simulated as follows. For K = 10 

doese levels k ∈ {0, …, 9}, and n = 100 subjects, indexed by i we simulate:

1. single continuous confounder:

Li N(0, 1)

2. treatment assignment:

Ai ∣ Li P Ai = k ∝ expit 1 − (2/9) ⋅ k + Li − .5kLi

3. outcome:

Yi ∣ Ai, Li N 5 ⋅ Φ Ai − 5 − 5 ⋅ Li, 2

Above, Φ(·) is the standard normal CDF. Notice that the baseline probability of treatment 

decreases with dose level. Reflecting a realistic scenario where fewer patients are likely to 

be assigned to higher doses. The confounder Li impacts both treatment and the outcome. 

Higher values of Li make higher dose assignments more likely (note the −.5kLi term). At the 

same time, higher Li lead to lower outcomes. This simulation takes place in the first several 

lines of dose_response.R in the GitHub repository.

The logic behind using Φ is purely to have an interesting/realistic toy example. A = 5 is 

about the middle dose level. Using Φ we are ensuring that doses much higher than the 

middle have diminishing returns on the outcome. Each dose increase affects the outcome 

less and less. Thus the true dose effect curve is 5 · Φ(A − 5), which is plotted in red in Figure 
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1a. We need to adjust for Li because patients with higher L are more likely to be treated at 

all levels and less likely to have higher outcomes.

The full probability model is

Yi ∣ Ai, Li N μ Ai, Li , ϕ

Where, μ(Ai, Li) is the conditional expectation in (3) - a function of θ0:K and β. In the paper 

we discussed the priors on θ1:K. These took the form of a sequence of dependent Gaussian 

priors, as a function of μ and τk. This likelihood is specifying in the ”model” block of the 

Stan code DR_model.stan:

model {

// specify priors 

theta[1] ~ normal( 0, 10); 

theta[2] ~ normal( 2*theta[1], 1);

for(j in 3:num_A_levels){

theta[j] ~ normal( 2*theta[j-1] - theta[j-2], 1);

}

beta ~ normal(0, 10); 

phi ~ cauchy(0,10);

// specify likelihood

Y ~ normal(L*beta + A*theta , phi);

}

Note that in the above, an intercept is included in L. Notice here we have set μ = 0, τ1 = 

10, and τ1:K = 1. We specify a Gaussian prior with standard deviation (SD) 10. This is a 

relatively flat prior since this SD is larger than the sampling model SD= 2. On ϕ we place 

a half-Cauchy prior with scale 10 - again, fairly flat. If we wanted to place priors on, say, μ 
instead of setting it at μ = 0, we could have instead specified

model {

// specify priors 

mu ~ normal(0, 10); 

theta[1] ~ normal( mu, 10); …

}

We would also need to declare μ in the “parameters” block of DR_model.stan. The same 

idea holds for τ0:K. We could also specify hyper-prior distributions for these variables. 

We fix these to constant values for simplicity of the illustrated examples and to maintain 

focus on the AR1 prior construction. Another important portion of DR_model.stan worth 

highlighting is the “generated quantities” block. In this block, we can perform post­
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processing of posterior draws of parameters. For instance, we can post-process draws of 

θ1:K to compute the curve Ψ(k):

generated quantities { 

vector[num_A_levels] Psi;

Psi[1] = theta[1]; 

for(k in 2:num_A_levels){

Psi[k] = theta[k] - theta[k-1];

}

}

Above, we declare a vector of length num_A_levels (which is K = 10 in this example). And 

compute Ψ(k) = θk − θk−1 as defined in the main text. In dose_response.R we call the Stan 
model using the rstan package - which allows us to call Stan programs from R. Using the R 
function stan_model(), we compile the Bayesian model specified in DR_model.stan. Using 

the R function sampling() we take 500 posterior draws after a 500 draw burn-in period. Only 

one chain is run. In practice, more chains should be used with more posterior draws and 

a longer burnin period. We should check that the chains for Ψ in the generated quantities 

block has converged. Posterior predictive checks should also be done to evaluate model 

fit. Guidance for convergence and posterior predictive checks is no different in this causal 

setting than in the general Bayesian modeling framework, so we leave details to standard 

Bayesian texts such as Bayesian Data Analysis14.

A.2 Implementation in SAS

The file dose_analysis.sas in our companion GitHub repository repeats the analysis above 

using PROC MCMC in SAS. Within PROC MCMC, we use the “parms” statement to 

declare the parameters of our model. In this case, we declare the dispersion parameter 

“phi”, the nine conditional dose effects (t1, t2, …, t9), the confounder effect (“bL”), and the 

intercept (“b0”):

parms phi t1-t9 bL b0;

The AR1 prior can be specified using the “prior” statement:

prior t1 ~ normal(0, sd=10); 

prior t2 ~ normal(2*t1, sd=1); 

prior t3 ~ normal(2*t2 - t1, sd=1); 

prior t4 ~ normal(2*t3 - t2, sd=1); 

prior t5 ~ normal(2*t4 - t3, sd=1); 

prior t6 ~ normal(2*t5 - t4, sd=1); 

prior t7 ~ normal(2*t6 - t5, sd=1); 
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prior t8 ~ normal(2*t7 - t6, sd=1); 

prior t9 ~ normal(2*t8 - t7, sd=1);

The Gaussian likelihood is specified using the “model” statement:

muA = t1*A1 + t2*A2 + t3*A3 + t4*A4 + t5*A5 + t6*A6 + t7*A7 + t8*A8 + t9*A9; 

model Y ~ normal( b0 + muA + bL*L , sd=phi);

Finally, for computational efficiency, we can compute the causal effects of interest directly 

within PROC MCMC as simple transformations of t1, t2, …t9 after specifying the 

likelihood. Note this is completely analogous to the generated quantities block in Stan.

Psi[1] = t1 ;

Psi[2] = t2 - t1;

Psi[3] = t3 - t2;

Psi[4] = t4 - t3;

Psi[5] = t5 - t4;

Psi[6] = t6 - t5;

Psi[7] = t7 - t6;

Psi[8] = t8 - t7;

Psi[9] = t9 - t8;

Overall, the results from SAS are quite similar to results in Stan.

B CONDITIONAL CAUSAL EFFECTS

B.1 Data generation and implementation in Stan

This appendix walks through simulation and analysis of the synthetic example discussed in 

Section 3.2, including implementation of the Bayesian bootstrap in Stan. The synthetic data 

was simulated for n = 500 subjects (indexed here by i) as follows:

1. Confounder Wi ~ N(0, 1).

2. Stratum membership, Vi, with probability P(Vi = v) = pv for v ∈ {1, 2, …, 5}. 

Where we set

p1:v = 3
10, 3

10 , 2
10 , 1

10 , 1
10

3. Treatment assignment as Bernoulli with probability

P Ai ∣ W i, V i = v = expit 1 ⋅ W i + γv

Where γ1:5 = (0, −.5, .5, .5, −.5)

4. Scalar Bernoulli outcome with probability
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P Yi ∣ Ai, W i, V i = expit −1 + W i + 1 + ∑
v = 2

5
ηvI V i = v Ai

Where η2:5 = (−.5, 0, .5, .6) (V = 1 is the reference).

Again note that Wi and Vi both impact treatment probability and the outcome probability. 

The strata membership simulation mirrors practical examples where some strata are more 

populated (i.e. with probability 3∕10) than other strata (i.e. with probability 1∕10). In the 

outcome model, notice that the conditional treatment effect varies with stratum membership. 

Motivating the need for causal effect estimates conditional on each stratum. This simulation 

is done in the top portion of partial_pool.R.

The full probability model we specify for the outcome is that

Yi ∣ Ai, W i, V i Ber μ Ai, Li

where μ(Ai, Li) is the conditional expectation in (6), reproduced here with notation specific 

to this example

E Yi ∣ Ai, Li = σ γ + βwW i + ∑
v = 2

5
βvI V i = v + θ1 + ∑

v = 2

5
θvI V i = v Ai

Recall here that σ{·} is the inverse logit link. Note here that θ1 is the conditional (on W) 

treatment effect in stratum 1 - which, in this parameterization, is the reference stratum. 

Similarly, θ1 + θv is the treatment effect in stratum v for v ∈ 2, …, 5.

The Bayesian model is specified in partial_pool.stan. Below, is the “model” block where we 

specify the prior in (7) and likelihood. In the code, “W” is an n × 1 matrix containing each 

subject’s confounder value and “V” is an n × 5 matrix with ith row (1, I(Vi = 2), I(Vi = 3), 

I(Vi = 4), I(Vi = 5)). Thus, I(Vi = 1) is the reference. The variable “theta” is a 5 × 1 vector, 

θ1:5. The variable βv is a 5 × 1 vector of V -specific main effects, β2:5 including a constant 

(γ in the model above).

The prior for “theta” is specified to induce partial pooling as discussed. We set the standard 

deviation of the Gaussian priors on θ1:5 to be τ = .5. A Gaussian hyper-prior is placed on μ. 

Note that on a logit scale this is quite flat. A Gaussian prior is also used on the coefficient of 

the confounder and intercept

model {

// specify priors 

beta_w ~ normal(0, 1); 

beta_v ~ normal(0, 1); 

mu ~ normal(0, 1);
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theta[1] ~ normal( mu, .5); 

theta[2:Pv] ~ normal( mu - theta[1], .5);

// specify likelihood 

for(i in 1:N){

Y[i] ~ bernoulli_logit( W[i]*beta_w + V[i]*beta_v + ( V[i]*theta)*A[i]) ;

}

}

As before in Appendix A, we can use the generated quantities block for post-processing. 

As discussed in the main manuscript, this involves integrating the estimated model over a 

Bayesian bootstrap (BB) estimate of the conditional distribution of W | V, Pv(W). Below, we 

include an excerpt from partial_pool.stan that loops through each stratum of V and computes 

a causal odds ratio for that stratum. Below, we compute the conditional mean outcome 

under intervention A = 1 and A = 0 for each subject: cond_mean_y1 and cond_mean_y0, 

respectively. Then we take a weighted average of these conditional means, with bootstrap 

weights coded as bb_weights. Here, the Stan function dirichlet_rng takes a draw from 

Dir 1nv , which is the BB posterior estimate of Pv(W). This weighted average is an estimate 

of the marginal mean under each intervention, coded as marg_mean_y1 and marg_mean_y0. 

Computing the odds ratio is done as usual using these marginal means.

generated quantities {

real marg_mean_y1; 

real marg_mean_y0; 

real odds_1; 

real odds_0; 

…

// cycle through strata of interest and compute causal Odds Ratio for each. 

vector[Pv] odds_ratio; 

for( v in 1:Pv){

// n_v = number of subjects in that stratum

// v_start:v_end are the row indices of subjects in stratum V 

int nv = n_v[v]; 

int v_start = ind[v]+1; 

int v_end = ind[v+1];

vector[nv] cond_mean_y1; 

vector[nv] cond_mean_y0; 

vector[nv] bb_weights;

// subset to stratum v

matrix[nv, Pw] Wv = W[ v_start:v_end, ];

matrix[nv, Pv] Vv = V[ v_start:v_end,];

// compute conditional means. 

cond_mean_y1 = inv_logit( Wv*beta_w +Vv*beta_v + Vv*theta); 

cond_mean_y0 = inv_logit( Wv*beta_w + Vv*beta_v);
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// Bayesian bootstrap weights for P_v(W) 

bb_weights = dirichlet_rng( rep_vector(1, nv)) ;

// taking average over bayesian bootstrap weights under both treatments 

marg_mean_y1 = bb_weights’ * cond_mean_y1;

marg_mean_y0 = bb_weights’ * cond_mean_y0;

// compute odds ratio 

odds_1 = (marg_mean_y1/(1 - marg_mean_y1)); 

odds_0 = (marg_mean_y0/(1 - marg_mean_y0)); 

odds_ratio[v] = odds_1/odds_0;

}

…

}

In the sampling statement in partial_pool.R, we run a single sampling chain consisting of 

1000 posterior draws after 1000 burnin draws. The results of this computation is shown in 

Figure 1b, which is potted in partial_pool.R.

B.2 Implementation in SAS

The code partial_pool.sas in our companion GitHub repository repeats the analysis in SAS. 

The main procedures involved are PROC MCMC (as in the dose effect example) and PROC 

IML. Here, PROC IML (Integrated Matrix Language) is used to manipulate the posterior 

draws obtained from PROC MCMC and conduct the Bayesian Bootstrap. Since the PROC 

MCMC step is very similar to the dose effect example, here we focus on the PROC IML 

post-processing step.

The first statements in PROC IML load in two datasets as matrices. First, dataset 

“posterior_draws” is loaded and stored as matrix “pm”. This is a matrix with each column 

corresponding to a parameter and each row corresponding to a posterior draw. This was an 

output from PROC MCMC. Second, dataset “mcmc_data” is loaded and stored as matrix 

“X”. This is the model matrix with n rows (for each of the n subjects) and covariates along 

the columns. Here is the relevant excerpt:

/* Read in matrix of posterior draws from SAS to IML */

use posterior_draws; read all var _ALL_ into pm; close posterior_draws;

/* Read in model matrix from SAS to IML */

use mcmc_data; read all var _ALL_ into X; close mcmc_data;

n = nrow(X); 

n_iter = nrow(pm);

/* shell to store posterior draws of Causal OR for each of the 5 strata */ 

OR_mat = j(n_iter, 5, 0);

Next, we loop through each posterior draw, indexed by “i” in the code. For each draw, we 

loop through the strata of V, take a BB draw of the conditional confounder distribution 

Pv(W), and integrate the logistic model over this BB draw of the conditional confounder 
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distribution to attain the marginal means under each treatment. The odds ratio is computed 

in terms of these means. Here is the relevant excerpt:

do v = 1 to 5;

/*X[,6] is the column containing V_i. */ 

nv = sum(X[,6] = v); /* Find how many subjects in stratum v */ 

idx = loc(X[,6] = v) ; /* find which obs are in stratum v */

/* Draw from Dirichlet(1_{nv}) distribution 

to do bayesian bootstrap estimate of P_v(W) */

alpha= J(nv , 1 , 1); 

bb_w = RandDirichlet(1, alpha); 

bb_w = bb_w || 1-sum(bb_w);

/* for each strata, compute logit of event 

under treatment 1 and 0: lp1, lp0*/

/* compute reference group v=1 separately */

if v=1 then do; 

lp1 = pm[i,2] + pm[i, 3]*X[ idx , 8] + pm[i, 8] ; 

lp0 = pm[i,2] + pm[i, 3]*X[ idx , 8] ; 

end;

if v>1 then do; 

lp1 = pm[i,2] + pm[i, 3]*X[ idx , 8] + pm[i,2+v] + (pm[i, 8] + pm[i,7+v]) ; 

lp0 = pm[i,2] + pm[i, 3]*X[ idx , 8] + pm[i,2+v] ; 

end;

/* inverse logit transform to convert to probability */

p1 = exp(lp1)/(1+exp(lp1)); 

p0 = exp(lp0)/(1+exp(lp0));

/* bayesian bootstrap average of probability*/

/* dot-product: bb_w is 1-X-n vector and p1, p0 are n-X-1 */ 

mu1 = bb_w*p1; 

mu0 = bb_w*p0;

/* compute Odds Ratio for stratum v */

OR_mat[i,v] = ( mu1/(1-mu1)) / ( mu0/(1-mu0)) ; 

end;

Note that indexing of “pm” and “X” is so that we grab the appropriate columns of the model 

matrix and posterior parameters when forming the log odds ratio as a linear combination 

of these parameters. This is completely analogous to the “generated quantities” block in the 

Stan implementation. The SAS results are quite similar to results in Stan. Since we run 

relatively few MCMC iterations with different seeds across statistical software, some small 

differences are expected.
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C PRIORS ON SENSITIVITY PARAMETERS

C.1 Implementation in Stan

Here, we briefly describe using the generated quantities block in Stan to conduct the 

sensitivity analysis described in Section 5. The synthetic example underlying Figure 3b was 

simulated as follows in the program sensitivity.R. For i = 1, …, n = 100 subjects,

1. Simulate two confounders Li ~ N(0, 1) and Ui ~ N(0, 1).

2. Simulate treatment assignment Ai from a Bernoulli with probability

P Ai = 1 ∣ Li, Ui = expit Li + Ui

3. Simulate outcome Yi from

Yi ∣ Ai, Li, Ui N Ai − Li − 2Ui, 1

Notice here that subjects with higher Ui are more likely to be treated and have lower 

outcome values. Failing to adjust for Ui may lead us to conclude that the treatment effect 

is negative, while in reality is is positive (specifically, treatment has coefficient +1 in the 

conditional outcome model).

We specify the following misspecified Bayesian model where Ui is excluded:

Yi ∣ Li, Ai N θAi + βLi, ϕ

As described in the introduction, the ATE produced by standardization from this linear 

conditional mean model is simply θ. However, Posterior estimates of θ will be biased since 

we did not adjust for some unmeasured confounder Ui (i.e. IA.1 is violated). Here, we 

perform the sensitivity analysis described in Section 5. In the model block of sensitivity.stan, 

we specify the model as shown in the following excerpt

model { 

// set priors

theta ~ normal(0, 3); 

beta ~ normal(0, 3); 

delta1 ~ normal(0,1/sqrt(3));

// specify likelihood

Y ~ normal(A*theta + beta*L, phi);

}

Notice that the sensitivity parameter here is coded as delta1 and given a standard Gaussian 

distribution. Now, in the generated quantities block, we compute the perturbed estimate of 

the ATE, coded as psi3.
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generated quantities { 

…

real psi3;

…

psi3 = theta + delta1; 

}

This produces the posterior estimates for Δ ~ N(0, 3−1∕2) in Figure 3b. Note ellipses here 

denote ommitted code. The full code is available in the companion GitHub repository.

C.2 Derivation of Bias

Here we detail the derivation of the bias, ξ. Define the amount of bias in potential outcome 

Y a as

Δa(L) = E Y a ∣ A = 1, L − E Y a ∣ A = 0, L

Now, take E[Y a]. Iterate expectation over L and then iterate once more over A, conditional 

on L. We get

E Y a = ∫ E Y a ∣ A = 0, L + Δa(L)e(L)dP(L)

Noting that E[Y1 | A = 0, L] = E[Y1 | A = 1, L]−Δ1(L) (by definition of Δ1(L)), we have the 

following expressions for each expected potential outcome

E Y 0 = ∫ E Y 0 ∣ A = 0, L + Δ0(L)e(L)dP(L)

and

E Y 1 = ∫ E Y 1 ∣ A = 1, L − Δ1(L)(1 − e(L))dP(L)

Note that consistency allows us to drop the superscripts a when conditioning on A = a so 

that E[Ya | A = a, L] = μ(a, L). Then subtracting yields,

E Y 1 − Y 0 = ∫ μ(1, L) − μ(0, L)dP(L) − ∫ Δ1(L)(1 − e(L)) + Δ0(L)e(L)dP(L)

Thus, under this ignorability violation, the target is equal to the usual standardization (first 

term on the right of the equal sign) having subtracted off the bias (the second term, which 

we define as ξ in the main text).
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D TIME-VARYING TREATMENTS

In the companion GitHub repository, the programs g_comp.R and gcomp.stan simulate the 

synthetic example and produce the posterior inference behind Figure 3a. Simulating and 

coding the analyses in this multi-time point setting is a little more tedious - involving more 

Stan syntax. We leave the details to the code comments. Briefly, the synthetic example 

contains a single binary treatment, time-varying confounder, and outcome for 10 time points. 

The confounder at each time point is simulated from a Gaussian with a conditional mean 

being a function of all previous confounder values. Treatment at each time point is simulated 

from a Bernoulli with probability being a function of all previous confounder and treatment 

values. Lastly, a single outcome at the end is simulated from a Gaussian with conditional 

mean being a function of all previous treatment and confounder values.

The generated quantities block demonstrates how we can simulate confounders sequentially 

conditional on “always treated” and “never treated” regimes. This is the type of simulation 

requires to compute ATEs of both static and dynamic treatment regimes outlined in the main 

text.

E NONPARAMETRIC MODELS

This Appendix will focus on implementation details behind Section 6 - specifically the 

computation of ATEs in panel d of Figure 4. We will cover implementation of DP mixtures 

and BART in R packages ChiRP and BayesTree, respectively, as well as GP models in 

Stan that are contained in the program npbayes_ATE.R available in the companion GitHub 

repository. The synthetic data behind this example was simulated as follows. For i = 1, 2, …, 

n = 500 subjects,

1. Simulate confounder Li ~ N(0, 1).

2. Simulate treatment assignment, Ai, from Bernoulli with probability

P Ai ∣ Li = expit 1 − 1
2Li

3. Simulate outcome, Yi, as

Yi ∣ Ai, Li N Li + 1
2Li2 Ai,

1
5

Note above that the conditional treatment effect is a parabolic function of Li. This is a 

complex function form. Note that the true causal effect via standardization is:

Ψ = EL[E[Y ∣ A = 1, L] − E[Y ∣ A = 0, L]]
= EL Li + 1

2Li2

= EL Li + 1
2EL Li2

= 1
2
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The last line follows from the fact that L has a standard normal distribution. A parametric 

model will only recover this effect if it correctly specified - a tall order for such a complex 

functional form. Instead, Section 6 illustrates several nonparametric approaches.

Implementation of the model in (12) can be done via the fDPMix() funciton in ChiRP. 

We refer the reader to the companion web site1 and R help documentation for detailed 

information on defaults. The simulated data set is stored in an R object called d_train in 

npbayes_ATE.R. Recall that we want posterior draws of the conditional outcome mean, 

for each subject, under both interventions. To that end, we construct the dataset d_test as 

follows:

d_a1 = data.frame(A=1, L=d_train$L) 

d_a0 = data.frame(A=0, L=d_train$L) 

d_test = rbind(d_a1, d_a0)

Note that d_test is the observed data set stacked twice: once with treatment set to 1 for 

all subjects, another with treatment set to 0 for all subjects. This will allow us to obtain 

predictive draws for each subject under both interventions. We now feed these data sets into 

fDPMix() function and specify that the conditional mean outcome model to be a function of 

L and A. We take 500 posterior draws after a 500 draw burnin. Initial number of clusters is 

set to 10. In practice, several chains with various initializations should be run and checked 

for mixing.

set.seed(2)

res=fDPMix(d_train = d_train, formula = Y ~ L + A,

d_test = d_test, 

iter=1000, burnin=500, init_k = 10)

The object res is a list containing a 2n× iter-burnin matrix where the first n rows are 

posterior predictions for each subject under treatment A = 1 and the next n rows, from n + 

1 to 2n, are posterior predictions under treatment A = 0. The program npbayes_ATE.R has 

a short function called bayes_boot() that performs BB standardization using these draws, as 

described in the test. The result is a length iter-burnin vector of posterior draws for the ATE. 

Additional confounders can be handled accordingly.

The other nonparametric models are implemented very similarly. In the same R program, we 

have implemented BART using the BayesTree package as:

bart_res = bart(x.train = d_train[, c(‘L’,’A’) ],

y.train = d_train$Y, x.test = d_test, 

ndpost = 500, , nskip = 500)

1 https://stablemarkets.github.io/ChiRPsite/index.html 
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Here, we take 500 posterior draws after a 500 period burn-in. Again, we stress that in 

practical examples, longer burnin will likely be required. By default, this implementation 

runs BART using a sum of 200 trees. The function can accomodate other prior settings. We 

refer the reader to the R documentation.

The implementation of the GP regression was taken directly from the Stan manual section 

on Gaussian Processes2 with some minor modifications. We leave implementation details to 

our code and the online manual. It is quite similar to the parametric Stan implementations 

discussed in earlier appendices. Stan uses the following parameterization of the exponential­

quadratic covariance function:

Cij = α2exp − 1
2ϵ2 Xi − Xj 2

The parameter η in the main manuscript corresponds to α2, while the parameter 

ρ in the manuscript corresponds to 1
2ϵ2  above. In Stan, we can conduct 

posterior inference on the hyperparameter by assigning them priors. In the program 

gaussian_process_with_HPs_multi.stan this is done in the model block. Here is the relevant 

excerpt:

model {

…

rho ~ inv_gamma(5, 5); 

alpha ~ std_normal(); 

…

}

Here since α is declared to be be a non-negative parameter, the specified standard normal 

prior defaults to a half-normal prior.
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FIGURE 1. 
Estimates of dose effect curve (Section 3.1) and partially pooled conditional causal odds 

ratios (Section 3.2) using synthetic data.

(a) Posterior estimates from (3) with prior (4) with K = 10, μ1 = 0, τ1 = 10, and τk = 1 for all 

k. The AR1 prior smooths erratic MLEs by inducing correlation between neighboring points 

on the curve.

(b) Posterior estimates of Ψ(v) from (6) with partial pooling prior of Section 3.2 with q = 

5, a single confounder W, an improper uniform prior on μ, and τ = .5. Posterior mean odds 

ratio for each stratum are shrunk towards the overall causal odds ratio (dotted line).
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FIGURE 2. 
A directed acyclic graph (DAG) showing a time-varying treatment, At, time-varying 

confounder Lt, and outcome, Y, for three time points. In the first panel, treatment and 

confounding at each time point affects treatment and confounding in every future time point. 

The second panel depicts the Markov assumption described in Section 4.1 - confounders 

and treatment only impact variables in the next period so that p(L2 | L0:1, A0:1) = p(L2 | L1, 

A1). This is visually depicted by the deletion of the gray arrows in the first panel. Bayesian 

methods can help us strike a balance between these two extremes.
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FIGURE 3. 
Example of g-computation on synthetic data with 10 time points, single time-varying 

treatment and confounder. The ridge prior in (10) was used along with Gaussian outcome 

and conditional confounder models.

(a) Plot of coefficient estimates from (9) with t=9. Each coefficient on the x-axis is the effect 

of Lt on L9 for time points t = 0, …, 8. Note aggressive shrinkage of β0 but ability to detect 

signal in the past at β1.

(b) Sensitivity analysis of Section 5. Posterior Distribution of Ψs = Ψ − Δ under various 

priors for for Δ. Red line indicates true value.

Oganisian and Roy Page 47

Stat Med. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Training and test set predictions from three BNP models, along with ATE estimates from 

each. Red points indicate held-out test data. Gray points are training data. Notice for the 

DP and GP models, the increased uncertainty in the test region. BART, by contrast, has less 

uncertainty in this region. Relative to DP and GP, BART’s interpolation is more rigid due to 

its inherent tree structure.
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