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Abstract
Different subpopulations of monocytes and dendritic cells (DCs) may have a key 
impact on the modulation of the immune response in malignancy. In this review, 
we summarize the monocyte and DCs heterogeneity and their function in the 
context of modulating the immune response in cancer. Subgroups of monocytes 
may play opposing roles in cancer, depending on the tumour growth and 
progression as well as the type of cancer. Monocytes can have pro-tumour and 
anti-tumour functions and can also differentiate into monocyte-derived DCs 
(moDCs). MoDCs have a similar antigen presentation ability as classical DCs, 
including cross-priming, a process by which DCs activate CD8 T-cells by cross-
presenting exogenous antigens. DCs play a critical role in generating anti-tumour 
CD8 T-cell immunity. DCs have plastic characteristics and show distinct 
phenotypes depending on their mature state and depending on the influence of 
the tumour microenvironment. MoDCs and other DC subsets have been attracting 
increased interest owing to their possible beneficial effects in cancer immuno-
therapy. This review also highlights key strategies deploying specific DC subpop-
ulations in combination with other therapies to enhance the anti-tumour response 
and summarizes the latest ongoing and completed clinical trials using DCs in 
lung cancer.
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Core Tip: Monocytes and dendritic cells (DCs) as heterogeneous subpopulations may 
play a key role in the modulation of the immune response in malignant tumours. 
Monocytes may have a pro- and anti-tumour function and may differentiate into 
monocyte-derived DC. DCs have the properties of antigen presenting cells. These cells 
show a different phenotype depending on their maturity and on the influence of the 
tumour microenvironment. The DCs are of growing interest for their possible 
beneficial effects in lung cancer immunotherapy. This review highlights specific DC 
subpopulations in the anti-tumour response and summarizes the latest ongoing DC 
clinical trials in lung cancer.
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INTRODUCTION
Lung cancer is responsible for approximately 1.8 million deaths annually worldwide 
and is now one of the most common cancers and the leading cause of cancer mortality
[1,2]. The prognosis for lung cancer remains poor despite advances in treatment 
strategies including immunotherapy with immune check inhibitors (ICIs)[3,4]. Further 
investigation of tumour immunology and the different cells subpopulations 
influencing the anti-tumour immune response could enable the development of novel 
immunomodulatory strategies such as targeted monoclonal antibodies against specific 
cell receptors.

The results of research on lung cancer show that cells of the same type can have 
both pro-cancer and anti-cancer properties. Tumour heterogeneity drives a diverse 
and plastic spectrum of various subpopulations of non-cancer cells. In this review, we 
focus on assessing different subpopulations of monocytes and dendritic cells (DCs) 
that may have a key impact on the modulation of immune response in lung cancer.

The role of macrophages, mainly of tumour associated macrophages (TAM) is well 
recognized. However, the place of monocytes in the anticancer immune response is 
not fully understoood. We previously presented the results of investigation of 
macrophages in the direct lung cancer milieu[5] and preliminary studies on monocytes 
maturation in lung cancer[6]. Monocytes have both pro-inflammatory and anti-inflam-
matory properties. A phenotype of monocytes can be divided into classical (pro-
inflammatory) and non-classical (anti-inflammatory). Both monocyte subpopulations 
have been detected among the peripheral blood (PB) mononuclear cells and may 
differentiate into macrophages. Studies demonstrate that monocytes are capable of 
both inhibition and stimulation of tumour growth[7]. Previous research on monocytes 
shows that their function in different cancer microenvironments may vary[8,9].

DCs form another heterogeneous population with the most efficient function of 
antigen presenting cells (APCs)[10]. They take up antigens and pathogens, generate 
major histocompatibility complex (MHC) peptide complexes, migrate from antigen 
acquisition sites to secondary lymphoid organs and finally interact with T 
lymphocytes. DCs infiltrate a tumour, next they process it and then they present 
tumour-derived antigens to naïve T-cells. DCs play a critical role in priming anti-
tumour T-cell immunity and thereby represent a possible therapeutic target for cancer 
immunotherapy[11].

Moreover, various cell types and factors within the tumour microenvironment 
(TME) can act on monocytes and DCs, control their differentiation, and affect their 
biology, function and longevity. The local TME can also influence the activation and 
the direction of maturation of monocytes and DCs. Specific local microenvironmental 
factors may influence the formation of monocytes and DCs with tolerogenic or 
immunosuppressive activity and conversely, specific subpopulations of these cells can 
stimulate and inhibit the anti-tumour response.

In this review, we summarize the ongoing investigations on monocyte and DCs 
heterogeneity and function in the context of modulation of the immune response in 
lung cancer and highlight key strategies using specific monocyte subpopulations and 
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DCs to improve cancer therapies.
We discuss the heterogeneity of monocytes, their relationship with DCs and the 

potential of monocyte-derived DCs (moDCs) in the design of vaccines against lung 
cancer.

HETEROGENEITY OF MONOCYTES 
Monocytes are mononuclear immune cells that circulate in PB and direct to tissues at a 
steady state and at an increased rate during inflammation. Apart from their key role in 
supporting tissue homeostasis and promoting the immune response to pathogens 
monocytes take part as regulators of cancer development and progression[12]. As a 
heterogeneous population, monocytes play opposing roles in inhibiting and 
stimulating tumour growth and metastases. Monocytes are also precursors of TAM 
and DCs which are involved in shaping the TME[13]. Monocyte subpopulations 
perform functions that are involved in both pro- and anti-tumour immunity, including 
promoting angiogenesis, tumour mediators secretion, phagocytosis, remodelling of the 
extracellular matrix, influencing lymphocytes, and differentiating into TAM and DCs
[14]. Human monocytes express the MHC-II receptor Human Leukocyte Antigen–DR 
isotype (HLA-DR), integrin αM (CD11b) and CD86. Recent studies demonstrate that 
monocytes can be divided into three subsets based on the specific surface markers[15,
16]. They develop from the lineage-associated bone marrow (BM) precursor, a 
common monocyte progenitor (cMoP)[17]. cMoPs are monocyte progenitors that 
express stem cell marker CD117, C-type lectin CLEC12A, CD64 and CD135, a cytokine 
receptor and an early hematopoietic marker. cMoP may differentiate into classical 
monocytes and then convert to non-classical monocytes in the blood, with 
intermediate monocytes at a transition state[18,19].

These cells perform specific functions: Classical (approximately 85%), intermediate 
(approximately 5%) and non-classical (approximately 10% of the monocyte 
population), which are characterized by the degree of CD14 and the expression of 
CD16[20,21]. There are three types of monocytes in PB: Classical monocytes with high 
the expression of CD14 cell surface receptor and no CD16 expression (CD14++ CD16-), 
non-classical monocytes with the low/negative level of CD14 expression and the co-
expression of CD16 receptor (CD14- CD16++) and intermediate monocytes with the 
expression of CD14 and the expression of CD16 (CD14+ CD16+)[22,23]. The majority 
of non-classical monocytes appears to be derived from classical monocytes. However, 
the current studies show that there may be a limited progenitor lineage capable of 
differentiating into non-classical monocytes without classical monocyte origin[19,24,
25]. After differentiation, classical monocytes exit the BM using C-C chemokine 
receptor type 2 (CCR2) and next migrate into tissues and lymph nodes by l-selectin 
(CD62L)[26,27]. Monocyte maturation and a scheme of monocyte subpopulations are 
presented in Figure 1. Classical monocytes and nonclassical monocytes have a 
different half-life in the circulation: For classical monocytes it is less than 1 d and for 
nonclassical monocytes it is 7 d[28]. The mechanisms involved in the recruitment of 
tissue-specific monocytes remain unclear, possibly they depend on the environmental 
and tissue availability during both homeostasis and inflammation. However, it is 
known that classical monocytes are more quickly targeted at the site of inflammation 
and are able to attract other immune cells by secreting cytokines[26,29]. Non-classical 
monocytes remain in a state of homeostasis mainly in the vascular system and are 
likely to be able to exit vessels at a slower rate than classical monocytes during inflam-
mation. They are likely to shift into alternative TAMs and exhibit anti-inflammatory 
properties[28,30].

Different subgroups of monocytes may play various roles in cancer, depending on 
the tumour growth and progression, differences in the type of cancer, and depending 
on the influence of TME[14]. Both classical and non-classical monocytes can have pro-
tumour and anti-tumour functions. The protumoural phenotype properties consist of: 
Differentiation into pro-tumoural TAMs, metastatic cell seeding, the suppression of T-
cell function, the recruitment of T regulatory cells (Tregs), the promotion of 
angiogenesis and contribution to extracellular matrix remodelling (ECM)[31,32]. 
Classical monocytes exit the vasculature to the primary tumour sites using CC-
chemokine ligand 2 (CCL2). They produce carcinogenic mediators and are 
reprogrammed in the TME to limit their cytotoxicity[32]. Then, they differentiate into 
TAMs or moDCs in the tumour. TAMs are involved in promoting immunosuppression 
by inhibiting the activity of CD8 T-cells and in stimulating the formation of Tregs[33]. 
Moreover, they participate in remodelling of ECM and promote angiogenesis[34]. 
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Figure 1 Monocyte maturation and subpopulations scheme. An example of identification of these cells by flow cytometry.

They have a similar protumoural effect at the metastatic sitesand are capable of 
promoting the spread of metastases. The number of protumoural signals at the tumour 
site and metastatic sites leads to the predominance of the anti-tumour response from 
the host's immune system. On the other hand, monocytes have a number of antitu-
moural functions such as: Antigen presentation, tumour cytotoxicity, the recruitment 
of natural killer cells, the inhibition of Tregs, the prevention of metastasis[35].

Long-lived non-classical monocytes are well adapted to the removal of cancer cells 
and debris. Non-classical monocytes migrate towards the sites of cancer spread where 
they engulf tumour material and produce cytokines that regulate the anti-tumour 
immunity[36,37]. This population of monocytes could control metastatic process[37]. 
The third population is a subset of intermediate monocytes, the function of which is 
under investigation. However, it is known that the relationship between non-classical 
and intermediate subsets is close[38,39]. The exact maturation and functional 
relationship between the individual blood monocyte subpopulations and their tissue 
distribution profiles have yet to be discovered[40,41]. The results of current research 
confirm that each subpopulation may play a different role depending on the 
homeostatic and pathological conditions[16]. Infections, inflammation as well as 
malignant disease can lead to sudden monopoiesis and the formation of a new subset 
of monocytes with altered functions[35,42].

Monocytes can differentiate into moDCs. MoDCs have a similar antigen presenting 
ability as classical DCs, including cross-presentation. Blood monocytes can be a 
reservoir of DC in response to inflammation[43].

HETEROGENEITY OF DCs 
Understanding DCs heterogeneity and their role in modulating the immune response 
in cancer is critical to the better recognition of cancer's ability to bypass the immune 
system and, consequently, to the ultimate design of novel therapies aiming at boosting 
anti-cancer immunity.

The studies conducted in order to gain understanding of the biology of DCs have 
resulted in the identification of a large number of their populations. The main criterion 
of division is the origin, which distinguishes DCs on plasmacytoid origin cells (pDCs): 
CD123+ CD11c- and myeloid origin cells: CD123+ CD11c+, also called conventional 
(cDCs)[44,45]. Identification of antigens called blood DC antigens: BDCA-2, BDCA-3 
and BDCA-4 and BDCA-1 (CD1c) allowed further discrimination of human blood DCs 
into two major subsets: cDC1 and cDC2: cDC1 expresses CD1c, while cDC2 (cCD141+) 
is characterized by the expression of BDCA-3 (CD141) and Clec9A. BDCA-2 (CD303) 
and BDCA-4 (CD304), together with CD123, characterize pDC. Additionally, cDCs can 
be divided into resident and migrating cells[46,47]. DCs derive from the CD34+ 
hematopoietic stem cell that produces BM myeloid precursors (MPs) and lymphoid 
precursors (LPs). MPs develop into monocytes, macrophages, and DC precursor 
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(MDP) from which they differentiate to monocytes and DC precursors (CDP). CDP are 
precursors of both cDCs and pDCs[48]. Also, cDCs can differentiate directly from 
monocytes under the influence of various cytokines[49]. Maturation and DC subpopu-
lations scheme is presented in Figure 2.

PDCs
PDCs usually complete their differentiation in BM during the development process 
and as completely differentiated cells circulate into PB. They are mainly located in the 
vicinity of the endothelium from where they can easily circulate to the lymph nodes to 
reside in the T-cell zone[50]. They express the CD123 antigen and the low levels of 
major MHC-II, the wide range of costimulatory molecules without the expression of 
CD11c. Additionally, the presence of pattern recognition receptors such as Toll-like 
receptors (TLRs) allows them to recognize pathogen-associated molecular patterns 
(PAMP) derived from various microbes and secrete a large amount of type I interferon 
(INF), tumor necrosis factor (TNF)-α and interleukin (IL)-6[45,51]. What is more, TLR-
mediated pDC activation promotes efficient antigen presentation and stimulation of T 
lymphocytes to the immunological response, but in a less effective manner compared 
to cDCs[51-53]. Nevertheless, pDCs have also been shown to stimulate Tregs for the 
production of IL-10, suggesting that this subgroup may also play an immunosup-
pressive role[54].

CDCs
On the contrary, cDC precursors emerge from the BM transiently transported through 
the blood and accumulate as cDC pool in tissues[55]. CDCs, also defined as myeloid 
DCs, expressing CD11c, refer to all DC subsets other than pDC[56]. cCD1c and cCD141 
cells belong to the migrating subset of DCs, while epidermal Langerhans cells and 
interstitial cells are residual cDCs.

CD1c DC subpopulation is the main population of cDCs detected in blood and 
tissues and lymphatic organs. CD1c cells are identified by major markers CD1c, 
CD11c, MHC-II (HLA-DR), CD141 and also express other antigens as: CD13, CD33, 
CD172 and CD45RO. However, they can show a slightly different phenotype, which 
depends on the place they occur. CD1c+ DCs present in the skin have additional CD1a 
expression, whereas those present in the gut express CD103[53]. DCs heterogeneity 
results not only from phenotypic differences but also from the maturity stage. 
Immature DCs (iDC) are usually found in peripheral tissue, then migrating to the 
lymph nodes carrying their own antigens, maintaining immune tolerance on their own 
tissues. They are characterized by increased endocytosis, a decreased expression of 
MHC and costimulatory molecules and a low ability to produce cytokines[57]. After 
the antigen is absorbed, the cells begin to mature and change phenotypically and 
functionally. A peptide complex is formed and an MHC molecule is transported to the 
cell surface[58]. Maturing DCs migrate to the lymph nodes, increase the expression of 
MHC-peptide complex, up-regulate the costimulatory molecules and the production 
of cytokines essential for the T lymphocyte response[55,59]. DCs are considered to be 
the most important APC, activating T-cells and inducing an immune response. Many 
factors such as an inflammatory process, an immune response in TME, tissue damage 
or viruses may promote DCs maturation[60,61].

Many studies show a positive correlation of the number of DCs in the tumour area 
with a significant extension of patients' survival[62,63]. DCs are able to recognize 
cancer cells and present neoplastic antigens to effector T lymphocytes. This process 
depends on the state of maturity and the number of DCs and a local immune status
[64].

In fact, amount of data confirm that the accumulation of DCs in the tumour area is 
influenced by the TME, which modulates their maturation and activation. DCs 
undergo incomplete differentiation and the number of mature cells decreases with the 
growth of immature cells[65]. Tumour cells secrete suppressor factors such as 
transforming growth factor β (TGF-β), IL-10 that reduce the expression of cancer 
antigens and costimulatory molecules on DCs and that convert them into regulatory 
DCs (DCreg). DCregs occur among the main cells of the immune system responsible 
for inhibiting of the immune response, which is conducive to the further development 
and tumour growth[66,67]. DCs in TME can show an increased expression of 
programmed death ligand (PD-L1), which interacts with PD-1 molecules on the 
lymphocytes T surface, inducing their apoptosis, causing the immune response to be 
muted. DCregs also begin to secrete IL-10, thereby stimulating the proliferation of 
Tregs and their own polarity to DCregs[68]. Therefore, it seems important to 
investigate the ways to direct DCs for activating the immune system and inducing an 
anti-tumour response in an attempt to reverse their suppressive effects. It was 
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Figure 2 Dendritic cell maturation and subpopulations scheme. DCs: Dendritic cells.

supported by our studies on the identification of DCs in the aspirates from lymph 
nodes in lung cancer patients. We found an elevated proportion of DCs in metastatic 
lymph nodes with a high expression of check- point molecules and the phenotype of 
DCregs.

To sum up, the aforementioned findings confirm the significant participation of DCs 
in TME. Considering the high heterogeneity of DCs and their plasticity in anti-tumour 
activity, it seems reasonable to look for a specific subpopulation of these cells.

GENERATION OF moDCs AND APPLICATION IN IMMUNOTHERAPY
Due to the extensive subject matter, we find it valuable to focus on the moDCs 
population in this review and to discuss DC subpopulation’s role in cancer therapy 
and a possible therapeutic value associated with these populations in lung cancer.

MoDCs arise from monocytes recruited into tissues and become the most abundant 
DC population during inflammation[69]. In vivo, the maturation of DCs into moDCs is 
induced by pathogens, tissue damage and cancer antigens. In vitro human moDCs 
arise from CD14+ monocytes cultured in the presence of granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and IL-4. This process is triggered in vitro by 
incubation with pathogen recognition receptor agonists or a pro-inflammatory 
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cytokines cocktail such as: TNF-α, IL-1β, IL-6, IFN-α and prostaglandin E2 (PGE2) or 
medium conditioned with monocytes with TNF-α and PGE2[70-72]. TLRs or electro-
poration with coding proteins have recently been used to induce moDCs maturation
[73-75].

Human moDCs always express: HLA-DR, CD11c and frequently express CD16, 
CD14 due to their monocytic origin upon differentiation[76,77]. Maturation scheme of 
moDCs is presented in Figure 3.

As an APCs, DCs are crucial in the innate and adaptive response of the immune 
system and play a crucial role in inducing anti-tumour immunity[78]. Mature DCs 
present exogenous antigens to naive CD4+ T-cells by MHC-II and endogenous 
peptides to CD8+ T-cells by MHC-I. What is more, they have the ability to cross-
present exogenous MHC-I antigens to CD8+ T-cells, which induces a cytotoxic T-cell 
response against neoplastic cells[79,80]. MoDC cross-presentation plays a key role in 
the rapid activation of CD8+ memory T-cells residing in the tissues after infection. This 
process has been found to be active in immunostimulatory anticancer therapies or 
chemotherapy[81-84].

In order to stimulate T lymphocytes in lymphoid tissues, it requires three signals 
between DCs and T lymphocytes. Firstly, the antigen is presented by the MHC peptide 
complex, secondly stimulation by costimulatory molecules from DC to the T-cell 
occurs. The third one is the secretion of immunostimulating cytokines in the microen-
vironment[85-87].

Ex vivo produced moDCs are commonly used in clinical trials. Mature antigen 
loaded moDCs can be easily obtained from PB derived CD14+ monocytes or a 
hematopoietic stem and progenitor cell CD34+ by treatment with GM-CSF and IL-4
[88,89]. Multiple clinical trials have demonstrated the safety and immunogenicity of 
moDC vaccines. However, clinical responses have been largely disappointing. 
Admittedly, studies show that ex vivo produced moDCs were able to cross-prime T-
cells and produce anti-cancer cytokines such as IL-12[90-92]. MoDCs seemed to be a 
promising population in anti-cancer therapy. Although, in clinical practice, only in a 
few groups of treated patients an active anti-cancer response was achieved. This may 
be due to functional cell deficiencies in conventional vaccines-such as insufficient 
antigen presentation, impaired migration, and impaired cytokine release, which is 
insufficient for gaining a strong immunosuppressive TME[88,93,94]. Some studies 
show that ex vivo stimulation of DCs precursors leads to the production of moDCs that 
are transcriptionally and phenotypically different from their naturally occurring 
(primary) cells[92,95]. Ex vivo derived moDCs have a reduced ability to stimulate T-
cells compared to natural moDCs isolated from PB and may have a limited ability to 
migrate to lymph nodes, contributing to reduced vaccine efficacy[56,96-98]. All the 
aforementioned findings explain the lack of efficace vaccine in lung cancer.

APPLICATION DCs IN COMBINATION WITH OTHER THERAPIES
Although, moDCs can be produced in large quantities with minimal side effects from 
therapy, their effectiveness remains limited in cancer therapy[99,100].

Therefore, other ways of using personalized vaccines with DCs are also being 
considered. Recent studies show their use in combination with other therapies.

Emerging data suggests that combining DCs vaccination with other cancer 
treatments could fully unlock the potential of DCs cancer vaccines and improve 
patient survival. With the advent of combination immunotherapy, personalized DCs 
vaccination could integrate the current standard of care in the treatment of a wide 
variety of cancers, among them in lung cancer[88].

The first method is to combine vaccination with chemotherapy to obtain a 
synergistic effect. In addition to immunosuppressive activity, chemotherapy also 
strengthens immunity by depleting myeloid derived suppressor cells (MDSCs), Tregs 
and increases the permeability of cancer cells to cytolytic factors derived from CD8+ T 
lymphocytes[101,102]. Chemotherapy creates a specific cytokine environment by 
depleting immune cells, and its combination with DC vaccination and adoptive T-cell 
transfer has been tested in many trials[103-105]. So far, numerous studies are ongoing 
in which combination chemotherapy and other methods with DCs vaccines are tested. 
Chemotherapy with DCs vaccination has been tested with the addition of a 
Cytochrome c oxidase subunit II inhibitor in patients with melanoma in a phase III 
trial showing encouraging data. Such a therapy with the addition of autologous T-cells 
showed longer overall survival compared to chemotherapy alone in two randomized 
trials in lung cancer[106-108].
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Figure 3 Maturation scheme of monocyte-derived dendritic cells. IL: Interleukin; GM-CSF: Granulocyte-macrophage colony-stimulating factor; DCs: 
Dendritic cells.

Other treatment method is the combination with immunotherapy. For example, 
preclinical studies showed that this combination decreased MDSCs in the TME, 
downregulated the PD-1 expression on DCs, and decreased the secretion of 
immunosuppressive cytokines[109,110]. One clinical trial in advanced renal cell 
carcinoma patients showed the expansion of CD8+ T-cells and promising survival data
[111].

In general, the combination of DCs vaccines with ICIs seems to be promising. A lot 
of ICIs are currently being tested in clinical trials; many of them, such as: Anti–PD-
L1/PD-1 and anti-cytotoxic T-cell antigen 4 (CTLA-4) blocking antibodies have been 
approved by the Food and Drug Administration[112]. The combination of ICIs with 
the DCs vaccine seems to have the potential to drive T-cell response into a more 
specific action[113,114]. In addition, DCs unique ability to cross-present antigens helps 
to elicit the immune response to more cancer antigens when used in conjunction with 
ICIs[115]. The anti–CTLA-4 treatment after DCs vaccination may indeed enhance DCs 
vaccine–induced T-cell responses and there is some evidence that anti–CTLA-4 
antibodies might be more effective after DCs vaccination[116,117]. Other studies have 
shown that DC-based immunotherapy in combination with anti–CTLA-4 antibodies 
seem to be more effective than the use of these agents alone[118,119]. Anti–PD-1 
antibodies are being investigated in combination with DC vaccination, which also 
opens new avenues of anti-tumour therapy design[120]. The aforementioned studies 
are conducted in various types of cancer, mainly melanoma, pancreatic cancer, 
prostate cancer, renal cell carcinoma, and acute myeloid leukemia. Immunotherapy 
with DCs appears to be capable of eliciting strong tumour-specific responses in 
combination with other therapies, and is workable and safe[121]. In the recent years, 
the use of naturally circulating DCs (nDCs) instead of cultured moDCs may have 
represented the next logical step in anti-cancer therapy and had an impact on long-
term clinical benefits[83,122,123].

APPLICATION OF DCs IN LUNG CANCER THERAPY
Lung cancer TME is composed of a large number of phenotypically and functionally 
different types of cells[124]. A major hallmark of immunosuppression in the TME is 
the inactivation of cytotoxic CD8+ T-cells, which is achieved through diverse 
pathways[61,125-130]. Immature DCs produce TGF-β, which expands the population 
of immunosuppressive Tregs, which in turn inhibit CD8+ T-cells. DCs are recruited 
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Table 1 Clinical trials with dendritic cell vaccine in lung cancer patients on the basis of clinical trials registry

Status Major trial Condition Study intervention Official trial 
code

Recruiting MIDRIXNEO NSCLC Dendritic cell immunotherapy NCT04078269
[132]

Recruiting MIDRIX4-LUNG Metastatic NSCLC Dendritic cell immunotherapy NCT04082182
[132]

Completed Vaccine Therapy in Treating 
Patients With Stage I, Stage II, or 
Stage III Non-small Cell Lung 
Cancer

Lung cancer Autologous dendritic cell cancer vaccine NCT00103116
[133,134]

Recruiting Combination Immunotherapy-
Ipilimumab-Nivolumab-
Dendritic Cell p53 Vac-Patients 
With SCLC

SCLC; Lung cancer; Relapsed Combination immunotherapy with 
Ipilimumab and Nivolumab plus a 
Dendritic Cell based p53 Vaccine

NCT03406715

Completed Dendritic Cells in Lung Cancer NSCLC Allogeneic Tumour Lysate NCT00442754

Completed Chemotherapy Followed By 
Vaccine Therapy in Treating 
Patients With Extensive-Stage 
Small Cell Lung Cancer

Lung cancer Autologous dendritic cell-adenovirus p53 
vaccine combined with Carboplatin and 
Etoposide

NCT00049218

Completed Vaccine Therapy in Treating 
Patients With Stage IIIB, Stage IV, 
or Recurrent NSCLC

Lung cancer Autologous dendritic cell-adenovirus 
CCL21 vaccine

NCT00601094

Completed CSET 1437 NSCLC Dendritic cell-derived exosomes NCT01159288

Completed Vaccine Therapy in Treating 
Patients With Stage IIINSCLC

Lung cancer Mutant p53 peptide pulsed dendritic cell 
vaccine combined with adjuvant therapy

NCT00019929

Completed Vaccine Therapy in Treating 
Patients With NSCLC

Lung cancer Autologous tumor cell vaccine therapeutic 
autologous dendritic cells combined with 
conventional surgery

NCT00023985

Recruiting AST-VAC2 Vaccine in Patients 
With NSCLC

NSCLC in the advanced and adjuvant 
settings

AST-VAC2 Vaccine NCT03371485

Recruiting Luscid NSCLC Pembrolizumab with or without 
intratumoral avelumab/ipilimumab plus 
CD1c (BDCA-1)+/CD141 (BDCA-3) + 
myeloid dendritic cells

NCT04571632

Completed To Immunize Patients With 
Extensive Stage SCLC Combined 
With Chemo With or Without 
ATRA

SCLC Paclitaxel Ad.p53-DC vaccines. ATRA NCT00617409

Completed Denileukin Diftitox Followed by 
Vaccine Therapy in Treating 
Patients With Metastatic Cancer

Lung cancer; Breast cancer; Colorectal 
cancer; Pancreatic cancer

Denileukin diftitox recombinant fowlpox-
CEA(6D)/TRICOM vaccine therapeutic 
autologous dendritic cells

NCT00128622

Completed Biological Therapy in Treating 
Patients With Metastatic Cancer

Lung cancer; Breast cancer; Colorectal 
cancer; Extrahepatic Bile Duct cancer; 
Gallbladder cancer; Gastric cancer; Head 
and Neck cancer; Liver cancer; Ovarian 
cancer; Pancreatic cancer

CEA RNA-pulsed DC cancer vaccine NCT00004604

Completed Vaccine Therapy and Biological 
Therapy in Treating Patients With 
Advanced Cancer

Lung cancer; Breast cancer; Cervical 
cancer; Colorectal cancer; Ovarian cancer; 
Pancreatic cancer

Combining DCs vaccine therapy with 
interleukin-2

NCT00019084

NSCLC: Non small lung cancer; SCLC: Small cell lung cancer; CCL21: Chemokine C-C motif ligand 21; ATRA: All trans retinoic acid.

into the TME and induced to upregulate PD-1 and PD-L1 in order to directly suppress 
CD8+ T-cells. Interactions of PD-1 with PD-L1 in the TME blocks responsiveness to 
danger signals and prevents T-cell activation. T-cells are preferentially drawn to 
tumour induced DCs as they enter the TME. In addition to the lack of appropriate 
activating signals, T-cell response is blocked by the engagement of PD-1 by PD-L1 on 
the DC surface[61]. Tregs are also recruited by the tumour induced DCs to establish a 
tolerogenic environment[124]. TME's effect on DCs infiltrating the lung cancer tissue is 
presented in Figure 4. A preclinical study conducted by Lee et al[131]. showed that the 
administration of DCs transduced with the chemoattractant CCL21 led to the 
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Figure 4 Tumour microenvironment effect on dendritic cells infiltrating the lung cancer tissue. IL: Interleukin; TGF-β: Transforming growth factor 
β; PD-L1: Programmed death ligand; DCs: Dendritic cells.

increased infiltration of DCs, CD4+ and CD8+ T-cells in the lung TME, resulting in 
reduced tumour burden[131]. Given that the efficacy of DC vaccines as a monotherapy 
is limited by immunosuppressive mechanisms in the TME, these results provide a 
rationale for combining DCs vaccination with immunotherapy. Combinational 
approach to the lung cancer treatment in order to increase the effectiveness of DCs 
therapy is an attractive way to promote and stimulate the anti-cancer immunity. As 
the molecular basis of an effective DCs therapy inducing T-cell response are still 
incompletely understood, it has been difficult to identify factors associated with 
therapeutic success. There is also no consensus how DCs vaccination efficacy should 
be evaluated. However, various clinical trials have been recently conducted to 
evaluate the immune response and clinical efficacy of DCs in lung cancer and other 
tumours (Table 1). Unfortunately, it is unknown whether naturally occurring DCs 
outperform cultured moDCs as a source for DCs therapy in lung cancer patients, 
because clinical trials comparing different DCs subsets as a source for DCs therapy 
have not been performed.

CONCLUSION
The heterogeneity of monocytes and DCs has been extensively studied and individual 
subpopulations of these cells have been well described. As our understanding of 
monocyte and DCs heterogeneity is growing, their key role as anti-tumour response 
modulating cells is going to become more useful and targeting the specific subgroups 
to modulate or stimulate their function is going to become an attractive therapeutic 
approach. The role of DC in TME is of particular interest in immunological research, 
but our knowledge is limited, especially in lung cancer. However, the present review 
emphasizes the role of the DC subpopulation in cancer treatment and a possible 
therapeutic value associated with these populations in lung cancer. Careful definition 
of the different subpopulations of DCs and their role in cancer will allow for more 
accurate targeting of immune cells and a better understanding of their role in 
modulating the immune response.
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