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Abstract
Regenerative endodontics (RE) therapy means physiologically replacing damaged 
pulp tissue and regaining functional dentin–pulp complex. Current clinical RE 
procedures recruit endogenous stem cells from the apical papilla, periodontal 
tissue, bone marrow and peripheral blood, with or without application of 
scaffolds and growth factors in the root canal space, resulting in cementum-like 
and bone-like tissue formation. Without the involvement of dental pulp stem cells 
(DPSCs), it is unlikely that functional pulp regeneration can be achieved, even 
though acceptable repair can be acquired. DPSCs, due to their specific 
odontogenic potential, high proliferation, neurovascular property, and easy 
accessibility, are considered as the most eligible cell source for dentin–pulp 
regeneration. The regenerative potential of DPSCs has been demonstrated by 
recent clinical progress. DPSC transplantation following pulpectomy has 
successfully reconstructed neurovascularized pulp that simulates the 
physiological structure of natural pulp. The self-renewal, proliferation, and 
odontogenic differentiation of DPSCs are under the control of a cascade of 
transcription factors. Over recent decades, epigenetic modulations implicating 
histone modifications, DNA methylation, and noncoding (nc)RNAs have 
manifested as a new layer of gene regulation. These modulations exhibit a 
profound effect on the cellular activities of DPSCs. In this review, we offer an 
overview about epigenetic regulation of the fate of DPSCs; in particular, on the 
proliferation, odontogenic differentiation, angiogenesis, and neurogenesis. We 
emphasize recent discoveries of epigenetic molecules that can alter DPSC status 
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and promote pulp regeneration through manipulation over epigenetic profiles.
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Core Tip: We review the role of epigenetic modifications during fate determination of 
dental pulp stem cells, highlighting cellular processes implicating proliferation, odonto-
genesis, angiogenesis, and neurogenesis that are tightly correlated with regenerative 
endodontics (RE). We emphasize the potential of epigenetic manipulation through 
enzyme inhibitors in RE and provide insights for future development in regaining 
dental pulp function.
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INTRODUCTION
Regenerative endodontics (RE) has been defined as “biologically-based procedures 
designed to physiologically replace damaged tooth structures, including dentin and 
root structures, as well as cells of the pulp–dentin complex”[1]. The goal of RE is the 
restoration of the natural function of the dental pulp, including sensing exogenous 
stimuli, activating defense reactions, and forming reparative dentin, which contributes 
to the long-term preservation of natural teeth and dentition. Up till now, clinical RE 
procedures without cell transplantation, such as revascularization and cell homing, are 
capable of eliminating apical periodontitis. Yet most studies have indicated that they 
are unlikely to achieve pulp–dentin regeneration. Hence, there is an urgent desire to 
achieve pulp regeneration to develop a novel RE procedure that will not only solve 
apical periodontitis but also restore organized pulp–dentin complex structure and 
function. To this end, three essential elements of tissue engineering are recommended 
for further study: scaffold, growth factors, and stem cells. It has been demonstrated 
that pulp–dentin regeneration in vivo is achieved through RE with dental pulp stem 
cells (DPSCs). DPSCs were first isolated from dental pulp tissue of permanent third 
molars, namely permanent DPSCs (pDPSCs)[2]. Later, DPSCs were collected from 
human exfoliated deciduous teeth, which are named stem cells from human exfoliated 
deciduous teeth (SHED)[3]. Considering the remarkable potential of odontogenesis, 
vasculogenesis and neurogenesis in vivo and in vitro, DPSCs have been prized in 
pulp–dentin complex regeneration[4-6]. The latest clinical trial has detected 
pulp–dentin regeneration with blood vessels, sensory nerves, and lining odontoblast 
layer by implanting autologous SHED into necrotic immature permanent incisors. The 
regenerated dental pulp tissue promotes root elongation and apical foramen closure
[7]. DPSCs have shown potential in pulp–dentin complex regeneration and have 
important directive significance for RE clinically.

It has been documented that odontogenesis is controlled by an intricate regulatory 
network composed of exogenous signaling stimuli, endogenous signaling molecules, 
and epigenetic regulators[8,9]. The epigenetic regulation, without DNA sequence 
changing, is made up of post-translational modifications of histones, DNA 
methylation, and nuclear regulatory ncRNAs[10]. Epigenetic regulation plays a crucial 
role in odontogenesis, eventually yielding the entire variety of dental tissues 
comprising complex teeth. Global epigenomes are indispensable to our understanding 
of gene regulation, cell fate determination, tooth development, and regeneration[11,
12]. The levels of acetylated histone H3 Lysine 9 (H3K9ac) and H3K27ac increase 
during odontoblast differentiation of mouse dental papilla cells. These changes are 
coordinated by the upregulation of histone acetyltransferase (HAT) p300 and 
downregulation of histone deacetylase (HDAC) 3[13]. The limited odontoblast differ-
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entiation of DPSCs is enhanced by overexpression of p300[14] or knockdown of 
HDACs[15]. The application of HDAC inhibitor (HDACi) in promoting odontogenesis, 
such as odontoblast differentiation, has been highlighted in several studies. Entinostat 
(MS-275), a selective HDACi targeting HDAC1 and HDAC3, could induce DPSC 
odontoblast differentiation even without mineralization medium[16]. The significant 
mineralized tissue regenerative potential of HDACis has been confirmed in several 
animal models[17,18], and their application in RE is anticipated.

Therefore, a thorough understanding of this epigenetic regulation is important for 
researchers and endodontists to maximize the odontogenesis potential of DPSCs and 
fully realize pulp–dentin regeneration and RE. In this review, we discuss epigenetic 
mechanisms, including ncRNAs, histone modifications, and DNA methylation, and 
research progress in modulating cell fate determination of DPSCs. It has become clear 
that the regulation of epigenetic layer plays an essential role in the pulp–dentin 
regeneration based on DPSCs, and has potential in RE, which is also discussed.

PDPSCS, SHED AND THEIR CHARACTERISTICS
Dental tissue involves postnatal mesenchymal stem cells (MSCs) with easy access-
ibility and regenerative potential. Currently identified dental-derived stem cells 
include pDPSCs, SHED, periodontal ligament stem cells (PDLSCs), dental follicle 
progenitor stem cells (DFSCs), and stem cells from apical papilla[19]. They all possess 
osteogenic, adipogenic, and chondrogenic differentiation potential, along with a 
peculiar ability to form mineralized tissue. The translational clinical application of 
dental-derived stem cells in regenerative medicine has been broadly exploited. One 
direction is through bioscaffolds/biomaterials loaded with growth factors[20]. 
Another approach is to investigate the bio-induction effects of natural compounds 
such as polydatin, beer polyphenols on dental-derived stem cells[21,22].

The existence of stem cells in dental pulp was confirmed by pulp healing potential 
after injury and maintenance of tissue homeostasis. pDPSCs were initially identified in 
2000[2]. Primary cultures of pDPSCs express endothelial (vascular cell adhesion 
molecule 1 and CD146), osteogenic [alkaline phosphatase (ALP), type I collagen, 
osteonectin, osteopontin (OPN), and osteocalcin (OCN)], and fibroblastic [type III 
collagen, and fibroblast growth factor (FGF)-2] markers. The bone matrix protein bone 
sialoprotein (BSP) and odontoblast-specific marker like dentin sialophosphoprotein 
(DSPP) are absent in pDPSC cultures, which confirms its undifferentiation status[2].

pDPSCs can be induced to form mineralized nodules when subjected to osteogenic 
medium[5]. Under adipogenic induction in vitro, pDPSCs form oil-red-O-positive lipid 
clusters and express high levels of nestin and glial fibrillary acid protein, suggesting 
that pDPSCs possess both adipogenic and neurogenic potential[23]. Ex vivo cultured 
pDPSCs acquire a neuronal morphology, and express neuron-specific markers under 
neuronal media conditions. When adding basic FGF (bFGF) and epidermal growth 
factor (EGF) to culture medium, pDPSCs transform to neural precursor cells that 
express the specific marker nestin[6]. When xenotransplanted into the chicken embryo 
and exposed to the endogenous neuronal microenvironment, pDPSCs show a 
neuronal morphology and migrate into facial structures and the central nervous 
system within the developing avian embryo[24]. When transplanted with 
hydroxyapatite/tricalcium phosphate (HA/TCP) powder into immunocompromised 
mice, the pDPSC transplants generate a dentin-like structure with highly organized 
collagenous matrix deposited around the odontoblast-like layer but do not indicate 
any hematopoiesis or initiate adipocyte formation. However, well-established 
vascularity is seen when transplanting tooth fragments containing pDPSC coated with 
synthetic scaffolds subcutaneously into nude mice[25,26]. When applying thermore-
sponsive hydrogels instead of polymer scaffolds, blood components are also produced 
in pulp-like tissues[27]. Another way to improve neovascularization for pulp 
regeneration is through fractionating CD31-/CD146- cells from dental pulp; it turns out 
that CD31-/CD146- canine DPSCs have greater angiogenesis potential when applied to 
the sectioned pulp of dogs[28]. A clinical experiment conducted on patients with 
irreversible pulpitis showed that pDPSCs transplantation in pulpectomized teeth 
induced positive response of electric pulp test and functional dentin formation as 
tested by cone beam computed tomography[29]. This study confirmed the safety and 
efficacy of DPSC-based RE.

Songtao Shi firstly documented the discovery and identification of SHED in 2003[3]. 
Histologically, SHED appear at the 6th week of embryonic development, and consist of 
MSCs with multi-differentiating potential of adipocytes, chondrocytes, and 
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osteoblasts. SHED show even more extensive clonogenic, osteogenic potential than 
pDPSCs. Cotransplantation of SHED and HA/TCP material subcutaneously into 
immunocompromised mice produces similar dentin pulp-like tissues in accordance 
with pDPSCs. Other teams utilized human root canals to accommodate SHED that 
were coated with peptide hydrogel or collagen scaffold. They implanted this prepared 
root canal into immunocompromised mice, and new dentin was formed throughout 
the root canal and vascularization of pulp-like tissues was also identified[30]. SHED 
responded in a similar manner to pDPSCs during both in vitro neuronal induction and 
xenotransplantation into chicken embryos[6,24]. The breakthrough of DPSC-based 
pulp regeneration is associated with a clinical study in patients with pulp necrosis due 
to traumatic dental injuries. SHED implantation into injured incisor teeth regenerated 
dental pulp that recovered the formation of sensory nerves and blood vessels and 
ensured root elongation and closure of the apical foramen[7].

Besides the above multilineage differentiation potential, the expression of surface 
antigens provides another identification of DPSCs. DPSCs express MSC-specific 
markers such as STRO-1, CD90, CD44, CD73, CD90, CD105 and CD271[31]. These 
markers fail to distinguish DPSCs from other MSCs. Hematopoietic lineage markers 
such as CD34 and CD117, neurovascular markers such as glia 2 are also expressed in 
DPSCs[32]. Although these markers still lack specificity in distinguishing DPSCs, they 
provide further evidence for the regenerative potential of DPSCs.

DPSCs were collected from neonatal baby teeth (nDPSCs)[33] and dental bud 
(DBSCs)[5], and they exhibited more attractive stemness properties and higher 
proliferate rate, as indicated by more intensified expression of pluripotent markers 
such as v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) and SRY-box 
transcription factor 2 (SOX2) compared to pDPSCs. When DBSCs underwent 
osteogenic induction, they expressed higher levels of c-Myc, SOX2, octamer-binding 
transcription factor 4, and homeobox transcription factor Nanog than pDPSCs 
expressed, suggesting that naive DPSCs hold functional advantages over pDPSCs[34].

Taken together, pDPSCs and SHED are the most widely studied DPSCs and have 
easier availability. They have neurovascular properties and unique odontoblastic and 
dentinogenic potential, which render them the most eligible stem cell source for pulp 
regeneration.

EPIGENETIC REGULATION OF DPSCS
The fate of DPSCs is strictly regulated on two levels: genetic control that involves 
signaling pathways and transcriptional factors; and epigenetic modulation that 
includes DNA methylation, histone modifications, and ncRNAs (Table 1 offers a 
summary of epigenetic enzymes in the fate determination of DPSCs). A thorough 
understanding of epigenetic modulation on DPSCs offers insights to manipulate DPSC 
fate towards pulp–dentin regeneration.

DNA methylation
DNA methylation refers to the covalent addition of a methyl group at the 5′ carbon of 
the cytosine by DNA methyltransferases (DNMTs, including DNMT1, DNMT3A, 
DNMT3B and DNMT3L). DNA methylation of promoters and enhancers leads to gene 
silencing by interfering with the binding of transcriptional factors or by chromatin 
structure remodeling[35]. The ten–eleven translocation (TET) family proteins 
(including TET1, TET2 and TET3) are responsible for the removal of the methyl group
[36]. Gene expression is stringently controlled by the balance of methylation and 
demethylation.

DNA methylation states of pDPSCs, PDLSCs and DFSCs significantly differ, 
especially for surface antigens like CD109, and other factors implicating osteogenic 
pathways. PDLSCs express higher levels of osteogenic-related factors, a higher 
osteogenic potential in vitro and an enhanced mineralization capacity in vivo. Thus, the 
methylation profile is thought to be tightly correlated with differentiation potential
[37]. When DNA methylation status is suppressed via pretreatment with 5-Aza-2’-
deoxycytidine (5-Aza-CdR; a DNMT suppressor), pDPSCs exhibit receded prolif-
eration and intensified mineralization and ALP activity under odontogenic induction
[38]. Kruppel-like factor (KLF) 4 is an important regulator of cytodifferentiation and 
proliferation that promotes the odontoblastic differentiation and inhibits proliferation 
of pDPSCs[39]. The promoter region of KLF4 is demethylated during odontoblastic 
differentiation, so as to facilitate the effective binding and transcriptional regulation of 
SP1[40]. The mRNA and protein expression level of TET1 increases during 
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Table 1 Enzymes related to epigenetic modifications of dental pulp stem cells activities

Proteins and their 
function Epigenetic Targets

Gene manipulation of 
each epigenetic 
marker

Downstream targets Biological process 
implicated Reference 

DNA methylation

TET1, demethylation Gene activation FAM20C (↑) proliferation, (↑) 
odontoblast 
differentiation

[41-43]

Histone methylation

EHMT1, methylation H3K9me2 Gene repression Runx2 (↓) odontoblast 
differentiation

[51]

KMT2A, methylation H3K4me3 Gene activation WNT5A, RUNX2, 
MSX2, DLX5

(↑) odontoblast 
differentiation

[12,52] 

EZH2, demethylation H3K27me2/me3 Gene repression Wnt/β-Catenin 
pathway, IL-6, IL-8, 
CCL2

(↑) Inflammation, (↓) 
odontoblast 
differentiation

[54-56] 

KDM6B/JMJD3, 
demethylation

H3K27me3 Gene repression WNT5A, BMP2 (↑) odontoblast 
differentiation

[52,58] 

KDM5A, demethylation H3K4me3/me2 Gene activation DMP1, DSPP, OSX, 
OCN

(↓) odontoblast 
differentiation

[60]

Histone acetylation

p300, acetylation H3K9ac OCN, NANOG, SOX2, 
DSPP, Dmp1, Osx

(↑) pluripotency, (↑) 
proliferation, (↑) 
odontoblast 
differentiation

[14,64]

HDAC3, deacetylation H3K27ac Dmp1, Osx (↓) odontoblast 
differentiation

[13,66] 

HDAC6, deacetylation (↓) odontoblast 
differentiation

[15]

TET1: Ten-eleven translocation 1; EHMT1: Euchromatic histone lysine methyltransferase 1; KMT2A: Lysine methyltransferase 2A; KDM6B: Lysine 
demethylase 6B; KDM5A: Lysine demethylase 5A; p300: E1A binding protein p300; HDAC3: Histone deacetylase 3; HDAC6: Histone deacetylase 6; 
H3K9me2: Dimethylated histone H3 lysine 9; H3K4me3/me2: Tri-/di-methylated histone H3 lysine 4; H3K27me2/me3: Di-/tri-methylated histone H3 
lysine 27; H3K9ac: Acetylated histone H3 lysine 9; H3K27ac: Acetylated histone H3 lysine 27; FAM20C: FAM20C golgi associated secretory pathway 
kinase; Runx2: RUNX family transcription factor 2; WNT5A: Wnt family member 5A; MSX2: Msh homeobox 2; DLX5: Distal-less homeobox 5; CCL2: C-C 
motif chemokine ligand 2; IL-6/-8: Interleukin 6/8; BMP2: Bone morphogenetic protein 2; DMP1: Dentin matrix acidic phosphoprotein 1; DSPP: Dentin 
sialophosphoprotein; OSX: Osterix; OCN: Osteocalcin; NANOG: Nanog homeobox; SOX2: SRY-box transcription factor 2.

odontogenic differentiation[41]. Knockdown of TET1 inhibits pDPSC proliferation and 
impairs ALP activity, mineralized nodule formation, and decreases expression levels 
of DSPP and dentin matrix protein (DMP) 1 during odontogenic differentiation[42,43]. 
DNA methylation is also in charge of gene expression related to myogenic differen-
tiation. Increased expression of myogenin, Myod1, and Pax7 is detected, along with 
myotube formation and myosin heavy chain expression after treating pDPSCs with 5-
Aza-CdR. 5-Aza-CdR-mediated DNA demethylation induces skeletal myogenic differ-
entiation of murine DPSCs in vitro[44]. Local injection of 5-Aza-CdR-pretreated 
pDPSCs into mice with cardiotoxin-induced muscle injury shows enhanced muscle 
regeneration[45].

Reparative dentin formation results from the delicate balance of inflammation and 
odontogenic differentiation. DNA methylation is involved in the inflammatory 
reaction of the human dental pulp as well. Administration of 5-Aza-CdR increases 
expression of inflammatory indicators interleukin (IL)-6 and IL-8 in lipopolysaccharide 
(LPS)-induced pDPSC inflammation. miRNA expression profile is altered by 5-Aza-
CdR application. Among those differentially expressed miRNAs, miR-146a-5p is 
affected by DNA methylation[46]. In LPS-induced pDPSC inflammation, application of 
5-Aza-CdR upregulates nuclear factor (NF)-κB and mitogen-activated protein kinase 
(MAPK) signaling activity and stimulates inflammatory cytokine expression via 
demethylation of the promoter of an intracellular signal transducer, TNF-receptor-
associated factor (TRAF) 6[47]. In lipoteichoic acid-treated pDPSCs, similar results are 
achieved with knockdown of DNMT1 expression. Signal transducer MyD88 and 
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TRAF6 are both upregulated, but only the promoter of MyD88 is demethylated[48].

Histone modification
The tightly coiled DNA and histone cores (mainly H2A, H2B, H3 and H4) constitute a 
nucleosome, which functions as the fundamental subunit of chromatin. Different 
chemical modifications imparted on the histones result in alterations of chromatin 
architecture. To be specific, N termini of histone tails modified by methylation, 
acetylation, ubiquitination, phosphorylation, and other modifications of lysine and 
arginine residues can change the interaction among histones themselves or between 
histones and DNA[49].

Histone methylation: Histone methylation refers to the methylation of lysine or 
arginine residues of histone tails, which is regulated by histone methylases and 
demethylases[50]. It is the most widely studied histone modifications so far. pDPSCs 
and DFSCs respond differentially under mineralization induction. pDPSCs express 
higher levels of pluripotency-related genes and exhibit a faster rate of mineralization. 
Part of the explanation for this difference relies on different histone methylation 
profiles. Both cell types exhibit H3K4me3 (trimethylated histone H3 Lysine 4) active 
marks on early mineralization genes [runt related transcription factor (RUNX) 2, msh 
homeobox (MSX) 2, distal-less homeobox (DLX) 5], H3K9me3 or H3K27me3 on late 
mineralization markers [osterix (OSX), BSP and OCN], but H3K27me3 on odontogenic 
genes DSPP and DMP1 are only seen in DFSCs[12]. CBFA2T2 (core-binding factor, 
runt domain, a subunit 2, translocated to 2) is upregulated during bone morphogenetic 
protein (BMP) 2-induced osteogenic differentiation of pDPSCs. CBFA2T2 is required 
for mineralization since it can inhibit euchromatic histone methyltransferase 1-
mediated H3K9me2 on RUNX2 promoter[51]. The bivalent histone domains of 
H3K4me3 and H3K27me3 on WNT5A promoter make the activation of WNT5A by the 
removal of H3K27me3 mark and increase of H3K4me3 mark on the promoter[52]. 
Ferutinin, a phytoestrogen extracted from Ferula species, has been used as an antibac-
terial, antioxidant, anti-inflammatory, and apoptosis-inducing agent. Pretreatment of 
ferutinin significantly increases H3K9ac and H3K4me3 in the promoter sites of the 
WNT3A and DVL3 genes in pDPSCs and promotes osteogenic differentiation[53].

Enhancer of zeste homolog (EZH) 2 is specifically in charge of methylation of 
H3K27me3. EZH2 has been proved to participate in pulp tissue inflammation and 
regeneration[54]. Suppression of EZH2 function during TNF-α stimulation results in 
downregulation of proinflammatory factors and intensified osteogenic differentiation 
potential of pDPSCs[55]. EZH2-mediated H3K27me3 attenuates odontogenic differen-
tiation of pDPSCs through modifying the β-catenin promoter and thus impairing the 
Wnt/β-catenin pathway[56]. The Jumonji domain-containing protein (JMJ) D3, also 
known as lysine-specific demethylase (KDM) 6B, removes the methyl marker of 
H3K27me2/3 specifically[57]. Overexpression of JMJD3 promotes odontogenic 
commitment through combining with BMP2 promoter site, removing H3K27me3 
marker, leading to activation of genes associated with odontogenic differentiation[58].
When alcohol is added to mineralization-inducing media, the osteogenic potential of 
pDPSCs is inhibited via suppression of JMJD3[59]. H3K4me3 is another epigenetic 
mark related to odontogenic differentiation. Knockdown of KDM5A, an exclusive 
demethylase for H3K4me3, pDPSCs exhibited more intense ALP activity and more 
mineral deposition formation through the increment of H3K4me3 enrichment on 
odontogenic markers such as DMP1, DSPP, OSX, and OCN[60].

Histone acetylation: Histone acetylation is controlled by HATs and HDACs[61]. 
Eighteen human HDAC isoforms can be classified into three categories: class I 
(HDACs 1–3 and 8); class II (Zn-dependent enzymes, HDACs 4–7 and 9–11), and class 
III (sirtuins 1–7)[62]. Histone acetylation renders chromatin structure more favorable 
for transcriptional activation. Histone H3 acetylation is upregulated during 
odontogenic induction of pDPSCs[63]. The histone acetyltransferase p300 can activate 
NANOG and SOX2 promoters and help maintain pDPSCs stemness. When pDPSCs 
are cultured in a normal medium, upregulation of p300 suppresses the expression of 
DMP1, DSPP, DSP, OPN and OCN. However, when they undergo odontoblastic diff-
erentiation, overexpression of p300 leads to increased odontoblastic marker expression. 
p300 assembles at the promoter of OCN and DSPP and increases H3K9ac mark on 
OCN and DSPP[14]. Knockdown of p300, however, impairs ALP activity and 
mineralized nodule formation of pDPSCs during odontogenic differentiation[64]. 
Immediately after photo-biomodulation therapy on pDPSCs in vitro, H3K9ac is 
upregulated, which explains the improved viability and migration[65]. Another facet 
related to histone acetylation level is HDACs. When HDAC6 is knocked down, the 
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ALP activity and mineralization potential of pDPSCs are increased[15]. When 
subjecting murine dental papilla mesenchymal cells to odontoblast induction, 
increased expression level of p300 and reduced HDAC3 expression are detected, 
leading to upregulated enrichment of H3K9ac and H3K27ac. HATs and HDACs 
modulate the process of dentinogenesis and odontogenic differentiation in a 
coordinated way[13]. Furthermore, p300 and HDAC3 modulate odontogenic differen-
tiation in a time-specific manner through interacting with KLF4. At the differentiation 
initiation stage, HDAC3 acts on KLF4; thus DMP1 and OSX remain at a limited level. 
As the differentiation proceeds, HDAC3 translocates to the cytoplasm and KLF4 is able 
to bind with p300, transactivates Dmp1 and Osx, ultimately enhances odontoblast 
differentiation[66].

ncRNAs
ncRNAs do not code for proteins, which can be categorized into small noncoding (snc) 
RNAs (< 200 nt) and long noncoding (lnc) RNAs (> 200 nt). sncRNAs can be further 
classified into miRNAs, PIWI-interacting (pi) RNAs, and siRNAs. miRNA and 
lncRNAs are two of the most-studied ncRNAs[67].

miRNAs: The processing of primary miRNA transcripts is initially tailored by two 
enzymes in the nucleus, known as Drosha and DGCR8, generating precursor (pre-) 
miRNAs. Subsequently, pre-miRNAs are exported to the cytoplasm and converted to 
mature miRNA duplexes by RNase III, namely Dicer. Mature miRNAs are combined 
into RNA-induced silencing complexes (RISCs). The incorporation of RISCs and the 3′ 
untranslated region (UTR) of specific mRNAs targets leads to gene repression by 
undermining mRNA stability or reducing translation[68,69].

Downregulation of miR-320b during calcium hydroxide stimulation can ease the 
inhibitory effect on the proliferation-related transcription factor Foxq1, leading to 
upregulation of Foxq1 and promoting the proliferation of pDPSCs[70]. miR-584 is 
another ncRNA that represses pDPSC growth, and it exerts this effect by targeting the 
3’ UTR of PDZ-binding motif (TAZ)[71]. Sirtuin (SIRT) 7 is the downstream target of 
miR-152-mediated pDPSC senescence. Inhibition of miR-152 upregulates SIRT7 and 
represses pDPSC senescence[72]. Inhibition of miR-224 induces amplified MAPK8, 
caspase-3, caspase-9, and Fas ligand expression in pDPSCs, which is a sign of 
apoptosis, suggesting that miR-224 is essential for maintaining pDPSC viability[73]. 
Downregulation of miR-224 enhances pDPSC migration and proliferation[74].

The expression profiles of miRNAs in differentiated and undifferentiated DPSCs 
illustrate 22 differentially expressed miRNAs[75]. These miRNAs affect DPSC differen-
tiation through various signaling pathways. Most identified miRNAs exert an 
inhibitory effect on odontogenic differentiation. Upregulation of miR-143 or miR-143-
5p can attenuate osteogenic differentiation of pDPSCs, downstream inactivated 
pathways containing the NF-κB signaling pathway[76], osteoprotegerin receptor 
activator of the NF-κB ligand signaling pathway[77], and MAPK signaling pathway
[78]. Disparate miRNAs can result in downregulation of the same signaling pathway, 
although their targets might be different. miR-488 and miRNA let-7c modulate the p38 
MAPK signaling pathway; the former impacts MAPK1[79], and the latter downreg-
ulates insulin-like growth factor 1 receptor expression[80]. miR-215 and miR-219a-1-3p 
are both responsible for the cell-passage-related reduction of heat-shock protein B8 
expression[81]. This reduction leads to weakened osteogenic differentiation capability 
of murine DPSCs[82]. Moreover, there are miRNAs that participate in the fate choice 
of pDPSCs in a multifaceted way. Among these miRNAs, miR-720 impacts the 
stemness of pDPSCs by inhibiting translation and stability of NANOG transcripts and 
repression of DNMT3A and DNMT3B. miR-720 mimics enhance osteogenic differen-
tiation with intensified ALP activity, alizarin red staining, and increased expression of 
ALP and OPN and promotes proliferation of pDPSCs with an increased number of 
ki67-positive cells[83]. The modulation of miRNA in odontogenic differentiation is 
complicated, with multiple miRNAs, diverse signaling mechanisms, and disparate 
cellular processes. It provides both opportunities and challenges for precise miRNA-
based regulation of dentinogenesis.

miRNAs participate in the regulation of angiogenesis and neovascularization under 
both physiological and pathological conditions[84]. When cultured in a medium 
supplemented with bFGF and vascular EGF (VEGF)-165, pDPSCs are induced toward 
endothelial differentiation, during which miR-424 is downregulated gradually, 
resulting in alleviation of the inhibitory effect on VEGF and kinase insert domain 
receptor expression[85]. 5-Aza-CdR can prompt myogenic differentiation of pDPSCs 
with a remarkable decrease of miR-135, and miR-143 expression. pDPSCs cotrans-
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fected with miR-135 and miR-143 inhibitors acquire apparent myocyte properties even 
without administration of 5-Aza-CdR[86].

miRNAs are indispensable for the immunomodulation of dental pulp inflammation. 
The miRNA expression profile differs in healthy and inflamed dental pulp[87]. LPS or 
TNF-α per se can promote the odontoblastic differentiation of pDPSCs[88,89]. In most 
circumstances, the protective effects of miRNAs are realized through attenuating 
inflammatory reactions or promoting odontogenic differentiation. miR-223-3p is one of 
the markedly upregulated miRNAs in inflamed dental pulp as detected in clinically 
derived pulp tissues. Overexpression of miR-223-3p promotes odontoblastic differen-
tiation of pDPSCs in vitro[90]. miR-506 and let-7c-5p confer a protective effect on LPS-
induced inflammation of pDPSCs through decreasing expression of pro-inflammatory 
cytokines[91]. In vivo experiments have confirmed that let-7c-5p agomir decreases LPS-
induced pulpitis in Sprague–Dawley rats[92]. Moreover, let-7c-5p possesses additional 
pro-osteogenesis potential in inflamed pDPSCs[93]. Knockdown of miR-140-5p 
increases odontoblastic differentiation and inhibits proliferation of pDPSCs under LPS 
stimulation. Toll-like receptor-4 is involved in the miR-140-5p-mediated effects on 
pDPSCs[94]. The expression of Fyn, a Src-family kinase associated with various types 
of inflammation, is upregulated in the microenvironment of deep caries. miR-125a-3p 
has been detected as the upstream factor of Fyn and identified as a positive factor 
regulating the odontoblastic differentiation of pDPSCs under TNF-α stimulation[95].

lncRNAs: lncRNAs can hardly be classified due to their diverse distribution in the 
genome and wide range of sizes. lncRNAs regulate gene expression at multiple levels, 
including transcriptional and post-transcriptional.

There are 139 differentially expressed genes between induced and undifferentiated 
human pDPSCs, with downstream pathways implicating cell cycle, extracellular 
matrix receptor interaction, and transforming growth factor (TGF)-β signaling 
pathways[96]. lncRNAs undergo transitional alterations during TNF-α-mediated 
osteogenic differentiation of pDPSCs, since lncRNA expression patterns differ after 7 
and 14 d of treatment with TNF-α. These alterations in lncRNAs expression are 
predicted to be associated with mRNA alterations at day 7 and 14 posts TNF-α 
induction[97]. lncRNA DANCR declines with time during odontoblast-like differen-
tiation of pDPSCs. The inhibitory effect of DANCR on odontogenic differentiation is 
realized through the inactivation of the Wnt/β-catenin signaling pathway. Downregu-
lation of lncRNA DANCR has little impact on pDPSC proliferation but promotes the 
osteogenic, adipogenic and neurogenic differentiation of pDPSCs[98]. lncRNAs play a 
vital role in the angiogenesis of dental pulp and may be modulators of dental pulp 
angiogenesis. pDPSCs with normal culture and vascular induction show differential 
expression profiles of lncRNAs, which have been validated by microarray analysis
[99]. Several proangiogenic factors including angiotensin, placental growth factor, FGF 
and EGF, are enriched in vascular differentiation, and they might serve as potential 
regulatory sites for lncRNAs.

It is worth noting that RNA methylation has emerged as an important post-transla-
tional modification mechanism on the fate determination of pDPSCs. Its discovery has 
brought a novel perspective of gene regulation. N6-methyladenosine (m6A), is the 
most prevalent internal modification of mRNA. The addition and removal of methyl 
groups are mediated by methyltransferases and demethylases, and this structural 
alteration dynamically regulates various aspects of RNA metabolism, including 
changes in RNA folding, marking mRNA for decay, and facilitating the processing, 
maturation and translation of mRNA[100]. Downregulation of m6A via depletion of 
methyltransferase 3 in pDPSCs significantly undermines the proliferation, migration 
and odontogenic differentiation of pDPSCs in vitro[101]. Upregulation of total m6A 
content and methyltransferase 3 expression is observed in pDPSCs treated with LPS. 
When knocking down methyltransferase 3, LPS-induced NF-κB and MAPK signaling 
pathway activation is inhibited, along with decreased expression of proinflammatory 
cytokines[102], suggesting that RNA methylation is a promising target in the 
regulation of differentiation and immunomodulation of DPSCs.

EPIGENETIC REGULATORY NETWORKS IN THE FATE DETERMINATION 
OF DPSCS
Multiple direct and indirect connections exist between histone modifications, DNA 
methylation and ncRNAs. For instance, silencing of MYT1 gene expression requires 
both EZH2 and DNMTs. EZH2 assists the binding of DNA methyltransferases and 
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facilitates CpG methylation of EZH2-target promoters[103]. Specific protein–RNA 
interactions with lncRNA are responsible for the initiation of deposition of polycomb-
repression-complex-2-mediated H3K27me3[104].

During the fate determination of pDPSCs, complicated epigenetic networks 
regarding lncRNAs, miRNAs and DNA methylation have been revealed in recent 
studies. lncRNA G043225 promotes odontogenic differentiation of pDPSCs via directly 
binding to miR-588 and fibrillin 1[105]. lncRNA H19 can repress the activity of 
DNMT3B, reduce the methylation level of DLX3, and thus lead to the promotion of 
odontogenic differentiation of pDPSCs[106]. Similar mechanisms can be applied to 
miR-675, which is capable of inhibiting DNMT3B-mediated methylation of DLX3 to 
promote odontogenic differentiation of human DPSCs[107]. lncRNA CCAT1 is upre-
gulated in pDPSCs and promotes cell proliferation and differentiation by repressing 
the expression of miR-218, an antiodontogenic factor[108].

THERAPEUTIC APPLICATION OF EPIGENETIC MODIFICATION IN RE
RE is a biological process that aims to regain both structure and function of the dentin– 
pulp complex. There have been extensive searches for novel bio-inductive approaches 
for the regeneration of damaged dental tissues over recent years. The process of RE 
requires a microenvironment conducive to repair, agents with anti-inflammatory 
properties, induction of mineralization, angiogenesis and neurogenesis, and 
recruitment and differentiation of DPSCs. The discovery of novel factors, which 
manipulate epigenetic modulation and contribute to inducing DPSCs toward 
odontogenic differentiation, angiogenesis and neurogenesis would accelerate research 
in RE.

Kuang et al[26] performed RE on first molars of rats by implantation of hypoxia-
primed pDPSCs blended with a synthetic polymer and found pulp-like tissues histolo-
gically, and vascularization were generated in this in situ model. Another team 
performed autogenous transplantation of the BMP2-treated DPSCs culture onto the 
amputated canine pulp of dogs. The BMP2 pretreated group produced odontoblast-
like cells with long processes attached to the osteodentin and formed tubular dentin
[109]. There are subsets of progenitor cells derived from dental pulp that exhibited 
greater angiogenic and neurogenic potential; for instance, CD105+ DPSCs. CD105+ 
DPSCs were fractionated by flow cytometry and further transplanted in canine teeth 
after pulpectomy with the addition of stromal cell-derived factor-1 and collagen 
mixtures. Regenerated pulp including nerves and vasculature was produced, followed 
by new dentin formation along the dentinal wall[110]. The granulocyte-colony 
stimulating factor (G-CSF) is capable of sorting out CD105+ DPSCs. Ectopic tooth root 
transplantation of DPSCs subset mobilized by G-CSF in immunodeficient mice 
exhibited larger fibrous matrix formation and larger neovascularization compared 
with unsorted DPSCs[111]. These results suggest that preconditioned pDPSCs during 
the process of RE might guide differentiation specifically and ensure optimal 
functional pulp regeneration. Despite the inspiring and cheerful outcomes of clinical 
experiments carried out by Xuan et al[7], long-term follow-up of autologous SHED-
based RE is required. Besides, self-derived DPSCs sources are limited. The efficacy and 
safety of allogenic DPSC transplantation need to be explored. Preconditioning of 
DPSCs with epigenetic molecules to optimize pulp regeneration might offer solutions 
to those problems[112].

Histone acetylation and HDACis in RE
HDACis have received intensive focus as potential agents for the treatment of cancer
[113], inflammatory disease[114], and neurodegenerative disorders[115]. HDACs play 
a crucial part in the modulation of dental pulp development and repair. HDACis, as 
small molecules, have been put forward as an agent for pulp–dentin regeneration 
(Table 2). There are basically two types of HDACis: pan-HDACis and isoform-specific 
HDACis. Valproic acid (VPA), suberoylanilide hydroxamic acid (vorinostat, SAHA) 
and trichostatin A (TSA) are pan-HDACis that have been extensively studied to 
promote mineralization and differentiation at low concentrations[116,117]. Exposure 
of pDPSCs to 1 mmol/L VPA or 20 nmol/L TSA promotes cell proliferation, migration 
and adhesion[118]. VPA (0.125–5 mmol/L) and TSA (12.5–400 nmol/L) significantly 
increases mineralization in a dose-dependent manner[116,119]. Low concentration of 
VPA promotes matrix mineralization through selective inhibition of HDAC2 over 
HDAC1. To mimic 3D tissue formation, Paino et al[117] exploited Gingistat collagen 
sponges to grow pDPSCs. The seeded scaffolds were bathed in osteogenic medium 
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Table 2 Epigenetic molecules promoting odontogenic differentiation of dental pulp stem cells

Targets Cell population Medium Upregulated 
odontogenic genes

Downregulated 
odontogenic genes Reference

HDACis

TSA HDAC 1, 2, 3 
(Class I); HDAC 4, 
5, 6 (Class II)

pDPSCs MM DMP1, DSPP, BSP OCN [124]

Murine MDPC23 MM Dmp1 [119]

Rodent primary 
dental pulp cells

MM Bmp4, Dspp, Bmp2, Opn [116] 

Rodent MDPC23 GM Bmp4, Ocn, Dmp1, Runx2 [16]

SAHA classes I and II Murine MDPC23 MM Nfic, Dspp, Alp, Dmp1, 
nestin

[122]

VPA HDAC 1, 2, 3 (class 
I)

pDPSCs GM, MM BSP, OPN OCN [117]

Murine MDPC23 MM Dmp1, Bmp4, Tgfβ1 [119]

rodent MDPC23 GM Bmp2/4, Ocn, Runx2 [16]

Rodent primary 
DPSCs

MM Dmp1, Bmp2, Bmp4, Dspp
, Opn

[116]

MS-275 HDAC 1, 3 (class I) pDPSCs GM RUNX2, DMP1, ALP, 
DSPP

[126]

rodent MDPC23 GM Bmp2/4, Col1α1, Ocn, 
Dmp1, Dspp, Runx2, Klf5, 
Msx1

[16]

LMK-235 HDAC 4, 5 (class 
II)

pDPSCs GM ALP, DSPP [127]

MM ALP, DSPP, RUNX2 [127]

DNMTis

5-Aza-CdR pDPSCs MM DSPP, DMP1, OSX, 
DLX5, RUNX2

[38]

RG-108 Murine mDPC6T MM Klf4, Dspp, Dmp1 [40]

HDACis: Histone deacetylase inhibitors; TSA: Trichostatin A; SAHA: Suberoylanilide hydroxamic acid; VPA: Valproic acid; MS-275: Entinostat; DNMTis: 
DNA methyltransferases inhibitors; 5-Aza-CdR: 5-Aza-2’-deoxycytidine; HDAC: Histone deacetylase; pDPSCs: Dental pulp stem cells from permanent 
teeth; MDPC23: Murine odontoblast-like cell line; mDPC6T: Murine preodontoblast cell line; MM: Mineralized medium; GM: Growth medium; DMP1: 
Dentin matrix acidic phosphoprotein 1; DSPP: Dentin sialophosphoprotein; BSP: Bone sialoprotein; BMP4: Bone morphogenetic protein 4; BMP2: Bone 
morphogenetic protein 2; OPN: Osteopontin; Runx2: RUNX Family transcription factor 2; Nfic: Nuclear factor I C; ALP: Alkaline phosphatase; Tgfβ1: 
Transforming growth factor beta 1; OCN: Osteocalcin; Col1α1: Collagen type I alpha 1; Klf5: Kruppel like factor 5; MSX1: Msh homeobox 1.

supplemented with VPA for 30 d. More intense calcium deposits were observed in this 
system. pDPSCs preconditioned with HDACi (VPA, TSA or SAHA) and 15-d 
osteogenic induction were transplanted subcutaneously into immunodeficient mice. 
VPA treatment produced a well-organized lamellar bone tissue although a decrease of 
OCN expression was observed[120]. SAHA, an FDA-approved drug for treatment of 
lymphoma, mainly acts on class I and II HDACs[121]. Addition of SAHA to culture 
medium enhances matrix mineralization and expression levels of odontoblast marker 
genes during odontoblast differentiation of MDPC23 cells, which is an odontoblast-
like cell line[122]. Similar results were found during mineralization induction of 
murine DPSCs. Moreover, short-term SAHA treatment promotes mineralization 
without loss of cell viability, while long-term SAHA inhibits differentiation. Low dose 
(1 μmol/L) SAHA even promotes cell migration[123]. TSA enhances pDPSCs prolif-
eration via activation of the JNK/c-Jun pathway and promotes DPSC differentiation 
and increased expression of DSPP, DMP1, BSP and OCN in vitro through affecting 
Smad2/3- and NFI-C-related signaling pathways. TSA can promote odontoblast differ-
entiation and dentin formation in vivo. Neonatal mice with maternal exposure to TSA 
exhibited thicker dentin, larger dentin areas, and higher odontoblast numbers in their 
postnatal molars with stronger DSP expression[124]. Apart from regulation of DPSC 
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gene expression, VPA, SAHA and TSA can promote pulp–dentin repair through 
facilitating the release of dentinal matrix components from dentin. Although they are 
not as effective as EDTA treatment, each of them shows different extraction profiles
[125].

MS-275 is a selective HDACi that targets HDAC1 and HDAC3. Administration of 
MS-275 to pDPSCs under normal culture can induce upregulation of odontogenesis-
associated proteins expression, including RUNX2, DMP1, ALP, and DSPP. 
Cytotoxicity can be avoided at a concentration of 20 nmol/L. The MAPK signaling 
system was barely activated under MS-275 stimulation, suggesting that MS-275 
induces odontogenesis independent of MAPK signaling[126]. The pro-odontogenic 
potential of MS-275 was also tested on a murine odontoblast-like cell line, MDPC-23. 
Without the induction of mineralization medium, MS-275 alone was capable of 
increasing expression of Bmp2, Bmp4, Col1α1, Ocn, Dmp1, Dspp, Runx2, Klf5, and Msx1, 
with elevated ALP activity and intensified calcified nodule formation[16]. Isoform-
specific agents like LMK-235 selectively inhibit HDAC4 and HDAC5. LMK-235 at 100 
nmol/L barely affected the proliferation of pDPSCs, but possessed pro-odontogenic 
potential. Odontoblast markers (ALP, DSPP, and RUNX2) were downregulated when 
the concentration increased. Expression of OCN was not affected by LMK-235 
administration, indicating that LMK-235 might act on early stages of odontogenic 
differentiation. LMK-235 combined with mineralization induction medium enhances 
odontoblastic marker expression of pDPSCs[127]. As topical agents for pulp repair, 
HDACis generally exhibit low toxicity since non-cancer cells are resistant to HDACi-
mediated apoptosis compared to cancerous cells[128]. Adverse effects such as fatigue, 
nausea, and hypocalcemia due to high-dose systemic administration of HDACi can 
also be avoided.

The presence of either 5-Aza-CdR or TSA can increase expression of the endothelial 
marker genes in bone-marrow-derived multipotent adult progenitor cells in basal 
differentiation medium, which indicates the possibility of HDACi-induced 
angiogenesis[129]. VPA treatment can enhance sciatic nerve regeneration and recovery 
of motor function in adult rats[130]. VPA tends to induce neuronal differentiation and 
inhibit glial differentiation of adult hippocampal neural progenitors via acetylation of 
histone H4 associated with proneural genes[131]. HDACis have emerged as potent 
contenders in the treatment of chronic immune and inflammatory disorders, including 
rheumatoid arthritis, psoriasis, inflammatory bowel disease, and multiple sclerosis
[132]. The underlying mechanism is still controversial but possibly relies on reduced 
inflammatory cytokines and nitric oxide production and inhibition of NF-κB transcrip-
tional activity[133]. The angiogenesis, neurogenesis, and immunomodulatory potential 
of HDACis on inflamed dental pulp remain to be explored, but these characteristics 
cater to the requirements of pulp regeneration.

The mineralized tissue regenerative potential of HDACis has been tested on several 
animal models. Huynh et al[134] conducted an experiment on a murine model with 
calvarial defects. They seeded human periodontal ligament cells, which were 
preincubated with TSA in growth medium, onto a scaffold to induce repair. Apparent 
bone formation was detected 4 wk after implantation[134]. Topical application of MS-
275 to calvarial defects of Sprague–Dawley rats stimulated bone formation. Collagen 
sponges loaded with MS-275 were applied to the injury site, in which significant bone 
healing was observed in the MS-275-treated groups in a dose-dependent manner. The 
pro-osteogenic capacity of MS-275 was demonstrated in an osteoporosis mouse model 
induced by soluble receptor activator of NF-κB ligand, as consecutive injection of MS-
275 recovered bone volume, thickness, and separation[17] . Promising outcomes of 
MS-275 in bone regeneration promote the analysis of its potential in RE.

DNA methylation and DNMT inhibitors in RE
Inhibition of DNMTs has been demonstrated to enhance odontoblast differentiation. 
There are two DNMT inhibitors that affect the differentiation potential of pDPSCs, 5-
Aza-CdR and RG108 (Table 2). They were initially identified as antitumor agents and 
were used for the treatment of leukemia and myelodysplastic syndromes[135]. When 
administered in combination with odontogenic medium, 5-Aza-CdR intensifies the 
expression of odontogenic markers and promotes ALP activity and mineral nodule 
formation[38]. The pro-odontogenic effect of RG108 was tested in a murine preodon-
toblast cell line, mDPC6T. RG108 is effective in suppressing DNMT activity and 
promotes odontogenic differentiation[40]. Melatonin, N-acetyl-5-methoxytryptamine, 
an endogenous hormone mainly in charge of circadian rhythms, decreases DNMT 
expression. Melatonin can cause global DNA hypomethylation and promote 
odontogenic differentiation of pDPSCs in vitro[136]. Although DNMT inhibitors show 
angiostatic activity when utilized as antitumor agents[137], they may show an 
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opposite effect on stem cells. 5-Aza-CdR downregulates protein expression of the 
pluripotency gene Oct4 and upregulates protein expression of endothelial cell marker 
genes in differentiated mouse embryonic stem cells (ESCs). With the involvement of 5-
Aza-CdR, differentiated ESCs form capillary-like structures when plated on Matrigel
[138]. When treating human bone-marrow-derived MSCs with 5-Aza-CdR, 
reactivation of endothelial cells specification occurs and arterial marker gene 
expression level is elevated, accompanied by tube-like structure formation[139]. These 
small molecules have been indicated applicable in pulp tissue regeneration, but animal 
studies are necessary to determine whether DNMT inhibitors can be utilized as 
regenerative agents.

ncRNA-based RE
Numerous miRNAs and lncRNAs are actively involved in dentin formation and pulp 
mineralization processes during tooth development and pulp repair, and are crucial 
for inflammation control and immunomodulation. Emerging evidence has shown that 
ncRNAs are critical for angiogenesis and neovascularization, both in health and 
disease contexts[84]. miRNAs have the ability to regulate the migration, proliferation, 
and differentiation of endothelial cells[140,141]. lncRNAs such as MANTIS and 
GATA6-AS can promote angiogenic sprouting[142,143]. Consequently, miRNAs and 
lncRNAs have therapeutic potential in RE. However, their susceptibility to nucleases 
and poor penetration into cell membranes largely restrict their clinical application
[144]. Effective delivery of therapeutic miRNAs has aroused much interest over recent 
decades. With the development of biotechnology and pharmaceutical progress, 
substantial approaches are being invented to deliver miRNAs: virus-based delivery, 
nonviral delivery (lipid nanocarriers, biomaterials, or chemical modifications), and 
exosome-based delivery systems[144,145]. It can be expected that an increasing 
number of ncRNA-targeting therapeutics will progress through clinical development 
in the upcoming years.

When it comes to ncRNA-targeting therapeutics in RE, ncRNA delivery systems 
highlight topical instead of the systemic application. This is a nascent topic. A team 
has developed a serum-endurable magnetic GCC-Fe3O4 nanocarrier and tested it on 
cultured pDPSCs, and found that this carrier has delivered miR-218 mimics/inhibitors 
into cells efficiently with low cytotoxicity[146]. Although further in vivo experiments 
are needed to confirm its efficacy, this could be a promising start. More effort needs to 
be made in ncRNA-targeting RE until it is clinically feasible.

CHALLENGES OF EPIGENETIC APPROACHES IN PULP REGENERATION 
Although epigenetic agents are capable of modulating multiple biological processes 
implicating proliferation, multi-lineage differentiation, migration, and immunoregu-
lation, which is promising in the process of tissue regeneration, several regulatory 
obstacles and translational challenges need to be resolved before clinical application. 
Firstly, the off-target effects cannot be ignored. The majority of HDACis like VPA, 
SAHA and TSA are pan-inhibitors without specific selectivity, which leads to general 
upregulation of histone acetylation. Single miRNAs can silence multiple target genes; 
for instance, during the process of immunomodulation, one miRNA can overexpress 
anti-inflammatory factors and at the same time upregulate proinflammatory cytokines
[147]. Secondly, there are concerns about neoplastic transformation during the process 
of regeneration. The targets of epigenetic-modulating agents need to be screened and 
investigated thoroughly so as to minimize unwanted effects before the clinical 
application of epigenetic therapeutics. Lastly, it requires both financial and technical 
support to bank DPSCs and reserve this “biological insurance”. Standardized and 
optimized manufacturing protocols need to be established to manage the procedures 
of collection, isolation, expansion, and cryopreservation and to ensure the quality of 
cell sources[148].

CONCLUSION
The process of dentin-pulp regeneration relies on stem cells with proliferation and 
pluripotency capacity, signaling molecules that can regulate cellular fate and scaffold 
which offers a favorable microenvironment. Complicated regulatory networks of 
histone modifications, DNA methylation, and ncRNAs are involved in guiding dentin-



Liu Y et al. Epigenetic regulation of DPSCs

WJSC https://www.wjgnet.com 1659 November 26, 2021 Volume 13 Issue 11

pulp regeneration. A thorough understanding of epigenetic regulation in the orches-
tration of DPSC fate will facilitate the self-renewal, migration, and multi-differen-
tiation of DPSCs during pulp tissue regeneration. Cheerful results of HDACis, such as 
TSA and MS-275, on bone repair have been achieved in animal models, and thus in 
vivo pulp-dentin regeneration of HDACis can be anticipated. The regenerative 
potential of DNMTis and ncRNAs is still absent in vivo studies. However, risks 
concerning the delivery system, off-targets, and neoplastic transformation are vigorous 
research fields and need to be tackled before epigenetic strategies applied in 
optimizing dentin-pulp regeneration. The epigenetic manipulation of DPSCs towards 
differentiation and regeneration with small molecules will be a hopeful direction in the 
search for approaches of functional pulp reconstruction.
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