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One consequence of the ever-increasing role of the 
Internet, cell phones, and laptops is the rising use of 
written language both in our personal and workplace 
communications. We are constantly consuming and pro-
ducing written language as we read and tap out mes-
sages. As a result, many people spend more time 
reading and writing in digital formats than they do 
using pen and paper. Relatedly, in schools, although 
reading has traditionally been taught in tandem with 
handwriting, time spent teaching handwriting has been 
vastly reduced (Deardorff, 2011; Konnikova, 2014). 
These changes have naturally led parents and educators 
to ask how much time and how many resources should 
be spent on teaching children to write by hand. Presum-
ably, to justify the teaching of handwriting, any benefits 
should extend beyond the acquisition of fine penman-
ship to strengthening core aspects of literacy. Clearly, 
a better understanding of the effects on literacy of writ-
ing experience, compared with typing or nonmotor 
experiences, has significant educational implications.

Although letters appear to be very simple objects—
just a few lines on a piece of paper or screen—they 
are, in fact, surprisingly complex and rich. Their com-
plexity stems from the wealth of information we have 
about them. For example, we know that a single letter, 
A, can look like “A” or like “a”; “A” is likely to be written 
beginning with an upward stroke slanted to the right; 
in English, its name is /eɪ/, but it can represent the 
sounds /æ/ or /ɑ/; it is the first letter of the alphabet; 
on the keyboard it is situated to the left of “S” in the 
center row; and, as an English word, it indicates the 
indefinite article. We use letters in many tasks, such as 
reading, writing, and spelling, in ways that involve 
numerous cognitive processes. Further, it has been well 
established that better letter knowledge among young 
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Abstract
Previous research indicates that writing practice may be more beneficial than nonmotor practice for letter learning. 
Here, we report a training study comparing typing, visual, and writing learning conditions in adults (N = 42). We 
investigated the behavioral consequences of learning modality on literacy learning and evaluated the nature of the 
learned letter representations. Specifically, the study addressed three questions. First, are the benefits of handwriting 
practice due to motor learning per se or to other incidental factors? Second, do the benefits generalize to untrained 
tasks? And third, does handwriting practice lead to learning and strengthening only of motor representations or of 
other types of representations as well? Our results clearly show that handwriting compared with nonmotor practice 
produces faster learning and greater generalization to untrained tasks than previously reported. Furthermore, only 
handwriting practice leads to learning of both motor and amodal symbolic letter representations.
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children (pre-K and kindergarten) is predictive of read-
ing and writing skills even into the middle-school years 
(Bara & Bonneton-Botté, 2018; Berninger et al., 2006; 
Treiman & Kessler, 2004; Treiman et al., 1998; Zemlock 
et al., 2018).

Several studies have reported that handwriting expe-
rience is more beneficial for letter learning than are 
other, nonmotor learning experiences. Of course, it is 
not surprising that handwriting practice would improve 
handwriting itself—what is critical is that it has been 
argued that the benefits of handwriting extend to other 
skills, such as letter recognition, categorization, and 
retention (Bhide, 2018; Li & James, 2016; Longcamp 
et  al., 2005, 2006, 2008; Naka, 1998; Zemlock et  al., 
2018). These researchers have hypothesized that the 
behavioral benefits of handwriting may arise not only 
from incidental factors (e.g., greater attention or more 
time on task for handwriting vs. nonmotor conditions) 
but also more fundamental ones—in particular, benefits 
arising from feedback from the visual output of the 
motor acts (see Cao et  al., 2013; Li & James, 2016; 
Nakamura et al., 2012) and/or strengthened motor rep-
resentations (see blue lines and boxes in Fig. 1). 
Accordingly, there are a number of outstanding issues 
concerning each of the components of the learning 
process depicted in Figure 1. In this investigation, we 
focused on the following questions: (a) Are the benefits 
of handwriting practice due to motor learning per se 
or to other incidental factors involved in handwriting 
practice? (b) Do the benefits generalize to tasks that 
were not practiced during the handwriting training? and 
(c) Does handwriting practice lead to learning and 
strengthening only of motor representations or of other 
types of representations as well?

The third question is especially important for under-
standing the cognitive bases of generalization to 
untrained tasks. However, it has been the least investi-
gated. Specifically, we have little understanding of 
which of the multiple types of letter representations 
(e.g., visual, motor, phonological) are affected by the 
nature of the learning experience. Of particular interest 

is the possible role of amodal, symbolic letter repre-
sentations, referred to as abstract letter identities 
( Caramazza & Hillis, 1990) or symbolic letter identities 
(Rothlein & Rapp, 2014). These are posited to be amo-
dal representations of letter identities that unify the 
multiple domain and format-specific representations of 
letters. For example, the letter name (“ay”), visual for-
mats (“A”/“a”), and the motor program for “A” all share 
a representation that is symbolic and lacks domain-
specific content. The claim that symbolic letter identi-
ties play a key role in reading and spelling is supported 
by behavioral (Chen & Proctor, 2012; Lupyan et al., 2010; 
Rothlein & Rapp, 2017; Schubert, Gawthrop, & Kinoshita, 
2018; Wiley et  al., 2016), neuroimaging (Rothlein & 
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Fig. 1. Potential routes by which handwriting practice strengthens written language processing: 
through strengthening motor representations (blue arrows) learned through handwriting practice or 
through strengthening nonmotor representations (orange arrows), including visual feedback produced 
by writing.

Statement of Relevance 

With the ever-growing use of the Internet, cell 
phones, and laptops, many people spend more 
time reading and writing in digital formats than 
with pen and paper. This has led to questions 
about the time and resources that should be spent 
on teaching handwriting. To inform this debate, 
we conducted a training study with adults that 
compared the benefits of learning new letters by 
typing, visual, or handwriting practice. The clear 
winner was handwriting practice, which resulted 
in the best performance on a set of reading and 
spelling tasks that were not specifically trained. 
This implies that participants with handwriting 
practice used their knowledge of how to write the 
letters to strengthen their performance across mul-
tiple tasks. Further research is needed to deter-
mine the best implementation of handwriting 
practice with children in the classroom. For now, 
we know that the benefits of writing practice 
extend beyond penmanship to letter and word 
reading and spelling, thus indicating that hand-
writing can be a productive use of learning time.
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Rapp, 2014), and neuropsychological ( Caramazza & 
Hillis, 1990; Schubert & McCloskey, 2013) evidence. 
Symbolic letter identities have often been investigated 
in the Roman alphabet via analysis of tasks contrasting 
upper- and lowercase allographs on the basis of the logic 
that, under the symbolic-letter-identity hypothesis, upper- 
and lowercase letters share a common representation, 
despite visual dissimilarities (for examples in Hebrew, 
see Friedmann & Gvion, 2005; for examples in Arabic, 
see Carreiras et al., 2012; Wiley & Rapp, 2019; Wiley et al., 
2016; and for examples in Japanese, see Kinoshita et al., 
2019). Arabic, the script used in the present investigation, 
affords the opportunity to investigate the learning of sym-
bolic letter identities, because most Arabic letters have 
multiple visual forms—allographs—that are used depend-
ing on the position of a letter within a word (see Fig. 2).

In this investigation, a total of 42 adult participants 
with no previous knowledge of Arabic learned 20 let-
ters of that alphabet. Each participant was assigned to 
one of three learning conditions: typing, visual, or writ-
ing. The writing condition was a true motor condition, 
but the status of the typing condition was less clear. 
Although typing does require motor output, the rela-
tionship between the motor typing actions and the let-
ter shapes is arbitrary (e.g., the action of typing a “T” 
as opposed to a “G” is almost the same, whereas writing 

them requires very different motor plans). The visual 
condition required only simple key presses and thus 
was similar in this way to the typing condition. Six 
behavioral assessments were administered at one or 
more time points: before, during, and after training 
(Table 1).

We used Arabic because it provides an existing orga-
nized alphabetic code (although an artificial script 
would also have been appropriate) and because of the 
ease of recruiting individuals with no prior knowledge 
of the language. The first question, regarding whether 
the behavioral benefits of handwriting are attributable 
to motor practice per se, was addressed through a study 
design that specifically addressed issues raised in previ-
ous work. These issues, which have thus far not been 
simultaneously addressed in a single study, were dealt 
with by presenting participants in all conditions with 
(a) dynamic visual information and variable exemplars 
(e.g., Cao et al., 2013; Li & James, 2016) and (b) pho-
nological information about both letter names and 
sounds (Kiefer et al., 2015). The second question, con-
cerning whether the benefits of handwriting training 
generalize to untrained tasks, was addressed by evaluat-
ing a more comprehensive set of processing tasks 
involving both letters and words than had been previ-
ously used in this type of research. Finally, the third 
question, concerning the nature of the learned repre-
sentations, was evaluated via a same/different letter-
judgment task, administered before and after training, 
which required participants to decide whether or not 
pairs of letters were physically identical. By measuring 
how the different learning conditions affect the per-
ceived similarity of letters (Wiley & Rapp, 2019; Wiley 
et al., 2016), this task provides a window into various 
dimensions of representational similarity for the learned 
letters (visual, phonological, motor, and/or symbolic).

Briefly, the results of the investigation show that 
handwriting practice provides greater benefits than 
either typing or visual practice for a wide range of 
tasks. Furthermore, we found that only handwriting 

ج جـ
دجاج

دجاج لذيذ

a

c

b

Fig. 2. Arabic allographs. In Arabic, different allographs of the same 
letter identity are used depending on the position of the letter within 
subwords. Subwords correspond to groupings of letters that are 
defined by nonligating letters (i.e., a letter that does not ligate on the 
left marks the end of a subword). The two allographs of the letter 
“jim” (/ʤi:m/) are shown in (a) in its isolated (blue) and ligating (red) 
forms. The two allographs occurring together in a word (“dajaaj,” or 
“chicken”) are shown in (b) along with nonligating (black) letters 
that create subwords. The relative spacing between words (boxes) 
and subwords (shading) is shown in (c).

Table 1. Tasks Administered at Each Time Point

Time point Task

Before training Same/different judgment
During training Training task (typing, visual, or writing)

Letter recognition
Letter naming

After training Letter recognition
Letter naming
Letter writing
Word spelling
Word reading
Same/different judgment
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practice leads to developing motor and amodal sym-
bolic representations, both of which influence letter 
perception. In the General Discussion, we consider the 
implications of these findings for our understanding of 
previous work and for literacy education, as well as 
their relevance to theories of embodied cognition that 
concern fundamental questions about the relationship 
between action and perception.

Method

Participants

Forty-two participants were recruited from the greater 
Johns Hopkins community, including both staff and 
students. The participant demographics are reported in 
Table 2. Participants had no history of learning disabili-
ties, no previous experience with Arabic, and normal or 
corrected-to-normal vision. Participants received a pay-
ment of $10 per session. Consent was obtained using 
procedures approved by the Johns Hopkins University 
Institutional Review Board. Fourteen individuals were 
assigned to each of the three learning conditions, and 36 
participants completed the study through the posttraining 
time point (12 per condition). These sample sizes reflect 
the maximum number of participants that could be 
enrolled and trained given the time and resources allotted 
to the study, and they improved on sample sizes in previ-
ous similar studies (e.g., Longcamp et al., 2006).

Stimuli

During training, both single letters and short words 
were presented. Each training session included four 
blocks of learning trials: three letter blocks and one 
word block. In all blocks, the stimuli were presented 
as though written on the screen in a dynamic display 
at a rate of 1 s per letter (using Adobe After Effects), 
respecting the standard order and direction of strokes, 
and participants performed tasks according to their 
learning condition. The only difference between letter 
blocks and word blocks was whether one letter 
appeared (with audio of both its name and phoneme—
as in “K” = “kay,” “/k/”) or two to three letters appeared 
as a word (along with the pronunciation of the word).

The letter blocks were used to teach the letters’ 
names and sounds. The Arabic alphabet consists of 28 
unique letter identities, each of which has between one 
and four distinct shapes (allographs). Twenty letter 
identities—17 consonants and 3 vowels—were selected 
for training (see Section S1 in the Supplemental Material 
available online). Fourteen of the letters have two allo-
graphs and six have only one,1 for a total of 34 letter 
shapes. Four different fonts (Adobe Arabic, Nadeem, 
Myriad, and Farisi; Fig. 3) were used for the training 
stimuli. The font Adobe Arabic was used in all other 
tasks. The rationale for including multiple fonts was (a) 
to expose participants in all three conditions to variable 
visual input, which has been found to be an important 
factor in learning to recognize letters (Li & James, 2016), 
and (b) to allow for matching the number of exemplars 
presented for each letter identity.

Word blocks were used to examine the effects of learn-
ing conditions beyond single-letter processing. Further-
more, training with words allowed participants to 
experience how allographs, despite their shape differ-
ences, corresponded to the same sounds within words 
(Fig. 2). Fifty-one words (one or two consonants with 
one vowel) were created; no definitions were given for 
the words, which included a mix of real words and pseu-
dowords (see Section S1 in the Supplemental Material).

In each session, the first three blocks were letter 
blocks, consisting of 80 trials over 8 min; within these 
blocks, each letter identity was presented four times in 
random order: either two allographs in two fonts or 
one allograph in four fonts. In word blocks, each of the 
51 words was presented once. Across each training 
session, each consonant was presented 16 times and 
each vowel 29 times in total.

Training protocols

Previous research (Bhide, 2018; James, 2010; Li & 
James, 2016; Longcamp et al., 2005, 2006, 2008; Naka, 
1998; Zemlock et al., 2018) has raised the issue that 
learning conditions such as writing and typing involve 
complex processes and that it is therefore critical to 
determine which aspects of the complex learning 
experience are relevant to the questions at hand. This 

Table 2. Participant Demographics

Learning 
condition

Participants enrolled

Mean age (years)
Mean education 

(years)
Participants who completed 

posttraining sessionMen Women

Typing 3 11 21.7 (2.6) 15.8 (1.4) 12
Visual 4 10 21.1 (4.6) 15.2 (1.8) 12
Writing 3 11 21.6 (3.1) 15.8 (2.2) 12

Note: Standard deviations are given in parentheses.
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includes incidental aspects, such as differences in time 
spent on task and the relative difficulty of the training 
tasks (see Bhide, 2018; James, 2010; Li & James, 2016; 
Longcamp et al., 2005), as well as more fundamental 
aspects, such as the visual feedback produced by motor 
output (see Kersey & James, 2013). We introduced five 
innovations to address these issues. First, we maximized 
the overall similarity across learning conditions by 
ensuring that all learning conditions involved exposure 
to the same stimuli for the same duration. Second, we 
specifically controlled for the possibility that dynamic 
displays could be the source of learning benefit for the 

handwriting condition by using the same set of dynamic 
displays of a letter or word on all the training trials (Fig. 
S1 in the Supplemental Material). Third, to specifically 
control for the possibility that simple exposure to vari-
able visual letter forms could be the source of benefit 
for the handwriting condition, we included multiple 
allographs and fonts. The teaching of allographs is par-
ticularly novel and allowed us to evaluate the partici-
pants’ knowledge of allographs, which is critical to 
learning real written languages (i.e., readers must learn 
to map multiple exemplars onto the same letter identity, 
including extremely different visual forms such as 

Fig. 3. All stimuli used for the training sessions. The 20 letter identities are each pre-
sented with their allograph in the four fonts (from left to right: Adobe Arabic, Nadeem, 
Myriad, and Farisi).
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“G”/“g”). Fourth, to reduce the possibility that data 
analysis could be affected by different levels of achieve-
ment on the learning tasks across conditions, we admin-
istered posttraining assessments only after all conditions 
reached a common learning criterion on the letter- 
recognition task. Fifth, we trained all participants not 
only on the letters’ names but also on their sounds 
(phonemes), which has not typically been done in pre-
vious studies (but see Kiefer et al., 2015). This is critical 
for testing generalization to reading and writing words, 
which requires knowledge of phoneme-grapheme map-
pings and not just letter names.

Participants were asked to learn the letters’ shapes, 
names, and sounds, and they were told that they would 
be tested on this knowledge. Prior to beginning train-
ing, participants in all conditions were told the same 
basic facts about Arabic (e.g., that it is cursive and 
written from right to left), and the name, shape, and 
sound of each letter’s allograph was previewed (see 
Sections S2 and S3 in the Supplemental Material). Dur-
ing each training trial, participants performed a task 
according to their assigned learning condition: typing, 
visual, or writing. In both letter and word blocks, across 
all learning conditions, a tone played at the end of each 
trial indicating a 1-s intertrial interval with a blank 
screen; both response time (RT) and accuracy were 
recorded on each trial. The task instructions for each 
learning condition are summarized as follows (see Sec-
tion S2 in the Supplemental Material).

Typing condition. In the typing condition, the task 
was to find the stimulus letter or letters on a keyboard 
and press the corresponding key or keys (in the correct 
sequence for words) as quickly and accurately as possi-
ble within the time limit. Opaque labels with Arabic let-
ters were adhered to a regular U.S. English keyboard. 
The same keyboard layout was used for all participants 
and all sessions and was generated by randomizing the 
34 letter shapes into three rows, with each allograph 
assigned to its own key; we were careful to avoid placing 
highly similar letters (Wiley et al., 2016) adjacent to each 
other. Feedback was provided in the form of tones indi-
cating whether the response was correct or incorrect or 
whether no response was recorded at all.

Visual condition. In the visual condition, participants 
performed a visual detection task. The dynamic display 
of the target letter or word was identical to the displays 
in the typing and writing conditions but persisted for 
only 1 s before disappearing. It was followed by a 500-ms 
blank screen, a 66-ms fixation cross, and a 1,000-ms 
probe. The probe was either a nonalphabetic symbol, a 
symbol string (e.g., ?% #), or the target Arabic stimulus in 
a smaller font size. After the probe, the target returned for 

the remainder of the trial; thus, total trial length was 
equated across conditions. The task was to press a key to 
indicate whether the probe matched the identity of the 
target. Feedback was provided in the form of tones indi-
cating whether the response was correct or incorrect or 
whether no response was recorded at all.

Writing condition. In the writing condition, the proce-
dure was identical to that in the typing condition except 
that participants were instructed to copy the stimuli, writ-
ing the letters or words with a pen on ruled paper placed 
atop an Intuos electronic tablet (Wacom, Kazo, Saitama, 
Japan) connected to E-Prime software (Version 2.0; 
Schneider, Eschman, & Zuccolotto, 2012). The stroke pat-
terns to be used were not explicitly prescribed but could 
be inferred from the presentation of the dynamic visual 
stimulus. No formal feedback was given, but participants 
were able to view their own handwritten exemplars and 
compare them with the stimuli on the screen.

Training sessions took place twice a week, with at 
least one day between sessions. To provide longitudinal 
measures of learning, we administered letter- recognition 
and letter-naming tasks at the end of each training ses-
sion (see Behavioral Assessments).

Stopping criteria. Two criteria had to be fulfilled on 
the letter-recognition task administered at the end of 
each session: greater than 90% accuracy and a 25% reduc-
tion in RT relative to performance on the first session. 
These criteria had to be maintained across two consecu-
tive sessions; otherwise, training continued for a maxi-
mum of six sessions. These criteria served to achieve 
general comparability in performance levels across the 
three learning conditions as well as to promote stability 
of the learned representations.

Behavioral assessments

We carried out extensive assessments that included 
tasks and/or stimuli that differed from those used dur-
ing training to evaluate the extent to which learning 
experiences were generalized. The pretraining session 
consisted of the same/different judgment task. Training 
began on average 15 days later. At the end of each 
training session, the letter-recognition and letter- naming 
tasks were administered. The letter-recognition task was 
used to determine when stopping criteria were reached 
and to provide a longitudinal measure of the learning 
trajectory. These tasks are the closest match to actual 
classroom assessments that typically require students 
to associate letter shapes and names. Posttraining 
assessments (2–5 days after reaching training criteria) 
consisted of letter recognition, letter naming, letter writ-
ing, word spelling, and word reading. These five tasks 
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were administered to all participants identically across 
all three conditions (see Table 1; for details, see Section 
S4 in the Supplemental Material). Feedback was pro-
vided only for letter recognition and only during train-
ing sessions.

Letter recognition. In the letter-recognition task, letter 
names were presented auditorily, and participants clicked 
on the corresponding letter shape from four choices 
 displayed on the monitor. Both accuracy and RT were 
assessed.

Letter naming. In the letter-naming task, each of the 34 
letter shapes were presented on the monitor, and partici-
pants were instructed to speak the letters’ names into a 
microphone, which recorded the voice-onset time. 
Responses were scored as correct as long as they unam-
biguously referred to the correct letter. Both accuracy 
and RT for trials with correct responses were assessed. 
Specifically, responses were scored as (a) correct, (b) 
incorrect (i.e., the wrong letter name was produced), (c) 
nonletters (i.e., a name not matching any of the Arabic 
letters or otherwise unintelligible), or (d) no response. 
Interrater reliability in scoring of correct and incorrect 
responses was obtained for a set of nine participants 
(three per learning condition), each scored by two 
researchers. Scoring agreement was near perfect (Cohen’s 
κ = 0.98).

Letter writing. In the letter-writing task, each of the 20 
letter names were presented auditorily, and participants 
were asked to write the shapes from memory. Participants 
were reminded that most of the letters had two shapes, 
and they were prompted to produce both if they could 
remember them. There were, therefore, a maximum pos-
sible 34 points (one per letter shape). Participants wrote 
the letters with an ink pen on a sheet of paper placed atop 
an electronic tablet (Wacom Intuos pen tablet). Responses 
were scored as either correct or incorrect, and incorrect 
responses were further categorized into four types of 
errors: (a) mirror reversed but otherwise correct, (b) non-
letters (i.e., deletion or addition of strokes that created a 
nonletter), (c) incorrect (i.e., the shape corresponded to a 
different letter), or (d) no response. Accuracy was evalu-
ated by comparing correct with incorrect responses (i.e., 
collapsing across all four types of errors). Interrater reli-
ability in scoring correct and incorrect responses was 
obtained for a set of nine participants (three per learning 
condition), each scored by two researchers. Scoring agree-
ment was high (Cohen’s κ = 0.82).

Word spelling. In the word-spelling task, 20 three- to 
six-letter words were presented auditorily, and partici-
pants were asked to write them on the electronic tablet. 

The stimuli included seven familiar words (i.e., used dur-
ing training word blocks) and 13 novel words. Letters 
were scored as correct if the intended letter was unam-
biguous (e.g., there was no penalty for mirror-reversed 
letters or wrong allographs).

Word reading. In the reading-words task, 20 two- to 
six-letter words were presented on the monitor, and par-
ticipants were asked to attempt to sound them out. The 
stimuli included seven words familiar from training; all of 
the words were different from those used in the spelling-
to-dictation task. Accuracy was assessed by scoring the 
percentage of letters read correctly (e.g., reading “cat” as 
“at” was scored as 67%).

Same/different judgment. This task was used to pro-
vide behavioral evidence of how letter perception is 
affected by the type of learning experience and to reveal 
the multiple learned representations of letters, both sen-
sorimotor and amodal (Fig. 4). On each trial, partici-
pants pressed a key to indicate whether a pair of letters 
was physically the same or different. The basic assump-
tion underlying the task is that longer RTs to decide that 
two letters are different reflects greater representational 
similarity between the letters. For example, slow “differ-
ent” responses for the two allographs of the letter “kaf” 
 .may be attributable to their shared identity (كـ and ك)
Importantly, the data were analyzed with simultaneous 
multiple regression to test for unique variance explained 
by different types of letter representations (see Analysis 
of Same/Different Judgment Task).

Data analysis

General analysis approach. To address the three 
questions of interest identified above, we analyzed the 
data with linear mixed-effects models (LMEMs; Baayen 
et al., 2008) using the R package lme4 (Version 1.1-25; 
Bates et al., 2015). First, growth-curve analyses were used 
to determine whether the trajectory of letter learning (let-
ter recognition and letter naming) differed across learning 
conditions. Second, analyses of posttraining tasks (e.g., 
word spelling) were used to determine whether training 
generalized to untrained tasks and whether any general-
izations differed among conditions. Third, the analysis of 
the same/different judgment task specifically addressed 
the nature of the representational similarity underlying let-
ter perception and whether the dimensions of similarity 
(e.g., visual, motor) differed among learning conditions.

Analysis of learning trajectories and posttraining 
tasks. RT data were log transformed (Gaussian family), 
and accuracy data were modeled with logistic regression 
(binomial family). In all models, learning condition was 
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included as the primary regressor of interest (simple-
coded with writing as the reference level), with control 
regressors appropriate to the task (e.g., trial order, word 
length; for a full description of regressors and covariates, 
see Sections S5–S7 in the Supplemental Material). Boot-
strapped 95% confidence intervals (CIs) around the esti-
mated β coefficients were provided by the bootMer 
function in the lme4 package. All reported R2 measures 
are pseudo-R2s (specifically appropriate for generalized 
LMEMs), as provided by the R package MuMIn (Version 
0.12; Bartoń, 2009). Random effects both by participant 
and by stimulus were included (for full model specifica-
tions, see Tables S1 and S2 in the Supplemental Material).

Analysis of same/different judgment task. The depen-
dent variable, RT to correct responses on different trials, 
was analyzed via generalized LMEM as a γ distribution 
(identity link; Lo & Andrews, 2015) with predictors index-
ing letter-pair similarity along different dimensions (e.g., 
visual similarity, motoric similarity).The pre- and post-
training Arabic-letter data sets were analyzed separately.2 
The pretraining data were analyzed (a) to determine 
which letter representations influenced performance for 
naive observers and (b) to verify that there were no sig-
nificant differences across the three learning conditions 
prior to training. The posttraining results were analyzed 
in the same manner to determine whether, after reaching 
criteria on letter recognition, there were significant differ-
ences among learning conditions in terms of the types of 
representations that influenced performance on the task.

In addition to the predictor of condition, the primary 
variables of interest (fixed effects) were five predictors 
of representational similarity (Fig. 4): pixel overlap 
(low-level visual similarity), visual-feature overlap (pro-
portion of shared visual features, such as lines and 
curves), motoric similarity (proportion of shared 
strokes, such as downward or clockwise), phonological 
representation (letter-name similarity), and symbolic 
letter identity (amodal representation; i.e., whether or 

not the letter pairs were allographs and shared symbolic 
letter identities)—as well as the interaction terms 
between these five predictors and the condition predic-
tor. Random slopes for these effects by participant, as 
well as random intercepts by participant and by item, 
were also included (for full model specifications, see 
Tables S3–S7 in the Supplemental Material).

Results

The results are organized according to the three key 
questions of the investigation (see the Introduction) 
and summarized below (for detailed results, see Tables 
S1–S7 in the Supplemental Material).

Effects of learning conditions on 
learning trajectories

On average, participants in the writing condition required 
the least training (M = 3.67 sessions, SE = 0.36), followed 
by participants in the typing condition (M = 3.92, SE = 
0.38) and the visual condition (M = 4.25, SE = 0.37).

Letter recognition. For accuracy in the letter-recogni-
tion task (Fig. 5, left), there were significant differences 
between the visual and writing conditions in both the 
linear (p < .001) and quadratic (p < .05) trends, indicating 
a faster rate of improvement in the writing condition. 
There were no significant differences between the typing 
and writing conditions. The total model R2 was 59%. 
There were no significant differences among learning 
conditions in terms of changes in RT.

Letter naming. For accuracy in the letter-naming task 
(Fig. 5, right) there were significant differences between 
the typing and the writing conditions in the linear trend 
(p < .05) and between the visual and writing conditions 
in both the linear (p < .001) and cubic (p < .05) trends. 
These results indicate generally faster improvement for 

Type of Representation

Pixel Overlap

Visual-Feature Overlap

Motoric Similarity

Phonological Similarity

Symbolic Identity

High Similarity Low Similarity

Fig. 4. Examples of high- and low-similarity pairs of Arabic letters, along five different 
representational dimensions.
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the writing condition compared with the other two con-
ditions. The total model R2 was 69%. There were no sig-
nificant differences among conditions in terms of change 
in RT.

Summary of the effects of learning condition on 
learning trajectories. The growth-curve analyses con-
firmed that, overall, participants improved not only in 
their ability to recognize the letters but also in terms of 
their ability to name the letters (despite never receiving 
feedback on that task nor it being a part of the stopping 
criteria for training). There were no significant differ-
ences among conditions with regard to changes in RT. 
For accuracy, however, the writing condition was signifi-
cantly different from the visual condition on letter recog-
nition and from both the visual and typing conditions on 
letter naming. These differences indicate faster learning 
in the writing condition (Fig. 5).

Generalization of learning

Analysis of posttraining performance on letter recogni-
tion confirmed that, on average, the three learning con-
ditions were equivalent after training was completed, 
despite differences in the amount of training required 
to reach the stopping criteria: For the typing, visual, 
and writing conditions, mean RT on trials with correct 
responses was 2,188 ms (SD = 559), 1,945 ms (SD = 
430), and 1,847 ms (SD = 250), respectively, and mean 
accuracy was 96.7% (SD = 3.5%), 94.9% (SD = 5.6%), 
and 97.3% (SD = 1.2%), respectively.3 None of these 
differences were significant (ps > .1).

The results for the four posttraining generalization 
tasks are presented in Figure 6 (for detailed results, see 
Tables S1–S2 in the Supplemental Material). For all of 
these tasks, number of sessions and days between the 
training and posttraining sessions were included as 
covariates to control for the possibility that differences 
in performance were the result of unequal amounts of 
exposure to the stimuli or longer delays before return-
ing to the lab for the posttraining evaluation session. 
Analyses of the letter-naming and letter-writing tasks 
included the additional covariates of recognition RT 
and recognition accuracy (computed from the posttrain-
ing letter-recognition task) to control for item-specific 
differences in the participants’ ability to recognize the 
letters that they were asked to name or write. For each 
model, the total model R2 reported is for the marginal 
plus the conditional effects (i.e., the combination of 
both the fixed and random effects).

Figure 6 presents the performance for each condition 
with violin plots, which show the distribution of indi-
vidual scores within the groups (shaded areas) overlaid 
with box-and-whisker plots showing the medians and 
first and third quartiles. From this figure it can be seen 
that the median performance was best for all general-
ization measures in the writing condition.

Letter naming. Mean RT on letter-naming trials with 
correct responses was 1,545 ms (SD = 337), 1,393 ms 
(SD = 368), and 1,308 ms (SD = 235) for the typing, visual, 
and writing conditions, respectively. There was a signifi-
cant difference between the typing and writing conditions 
(p < .05); RTs in the writing condition were faster. RTs in 
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Fig. 5. Proportion of correct responses in the letter-recognition task (left) and the letter-naming task (right) across the training sessions, 
separately for the typing, visual, and writing learning conditions. Circles represent raw data (error bars reflect standard errors of the 
mean), and lines reflect model fits.
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the visual and writing conditions were not significantly 
different from one another (p > .05). The total model R2 
was 43%.

Mean accuracy was 86.2% (SD = 13.3%), 82.8% (SD = 
12.8%), and 93.4% (SD = 6.2%) for the typing, visual, 
and writing conditions, respectively. There was a sig-
nificant difference between the visual and writing con-
ditions (p < .05); participants were more accurate in 
the writing condition. Accuracy in the typing and writ-
ing conditions was not significantly different (p > .05). 
The total model R2 was 47%.

Letter writing. Mean accuracy in the letter-writing task 
was 78.5% (SD = 15.3%), 64.5% (SD = 23.8%), and 91.0% 
(SD = 7.2%) for the typing, visual, and writing conditions, 
respectively. There was a nonsignificant trend of higher 
accuracy in the writing condition compared with the typ-
ing condition (p < .09) and a significant effect of higher 
accuracy in the writing condition compared with the 
visual condition (p < .001). The total model R2 was 46%.

The differences among learning conditions were 
not driven by a single type of error (mirror reversals, 
ill-formed shapes, or failure to produce any recogniz-
able response), as all three types of errors were most 
common in the visual condition (10.5% of all responses 
were mirror reversals, 9.2% of all responses were ill-
formed, and there was no response on 15.7% of tri-
als), followed by the typing condition (5.5% mirror 
reversals, 6.5% ill-formed, and 9.5% no response). 
The fewest errors of each type were found in the 
writing condition (1.7% mirror reversals, 3.5% ill-
formed, and 3.7% no response). Example errors are 
reported in Figure 7.

Word spelling. For the word-spelling task, mean accu-
racy was 62.3% (SD = 15.4%), 72.0% (SD = 25.2%), and 
76.3% (SD = 14.5%) for the typing, visual, and writing 
conditions, respectively. There was no effect of familiarity 
(previously trained words vs. novel words), p > .1. Accu-
racy in word spelling was significantly higher in the writ-
ing than in the typing condition (p < .05), and there was 
no significant difference in accuracy between the visual 
and writing conditions. The total model R2 was 38%.

Word reading. In the word-reading task, mean accu-
racy was 50.8% (SD = 28.5%), 59.2% (SD = 33.4%), and 
66.6% (SD = 22.0%) for the typing, visual, and writing 
conditions, respectively. There was no effect of familiarity 
(previously trained words vs. novel words), p > .1. Partici-
pants in the writing condition were not significantly more 
accurate than those in either the typing or the visual con-
ditions (p ≈ .18 and .47, respectively). The total model R2 
was 57%.

Interim discussion

The fact that there were no significant differences among 
learning conditions in letter-recognition ability at the 
posttraining session confirms that each group reached 
the criteria, although individuals in the writing condition 
learned more quickly and required fewer training trials 
to do so (see Fig. 5). Across all five generalization mea-
sures, participants in the writing condition were numeri-
cally the highest performing (Table 3). Many of these 
differences were statistically significant even when we 
controlled for item-specific individual differences in let-
ter recognition and differences in the number of training 

Target Correct Mirror Reversed Ill-Formed

Fig. 7. Example of correct responses, mirror-reversed errors, and ill-formed errors from the posttraining letter-
writing task. Examples are shown for three different letters: ق (“qaf”), خ (“kha”), and ك (“kaf”). The examples 
are selected from the responses of 7 participants. The lines under the letters are the actual lines that appeared 
on the paper.
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sessions and calendar days between the last training 
session and the posttraining session.

In recognition of the limitations of null-hypothesis 
significance testing (see Cumming, 2013) and arbitrary 
thresholds for significance, we conducted a Monte Carlo 
analysis to determine the probability that participants 
in one of the three learning conditions would  perform—
by chance—the best on all five measures. The Monte 
Carlo analysis was conducted by randomly permuting 
the condition labels across participants, computing the 
average performance on each of the five measures for 
each relabeled condition, and determining the rankings 
for the relabeled writing condition for each permuta-
tion. Running 10,000 iterations of this analysis indicated 
that the probability that a random group of 12 partici-
pants would be ranked as the best-performing group 
on all measures was only 0.0329 (see Fig. S2 in the 
Supplemental Material).

The results represent compelling evidence that letter 
learning in the writing condition led to the best perfor-
mance on a range of tasks beyond letter recognition or 
writing and that these learning benefits could not be 
explained by differences in the amount of stimulus 
exposure or greater familiarity with the letter shapes.

The nature of the learned 
representations: results of the same/
different judgment task

As discussed earlier, the same/different judgment task 
allowed us to evaluate the nature of underlying and 
learned letter representations by examining the influ-
ence on RTs of five types of similarity between the 
letter-pair stimuli on which same/different judgments 
were made (Fig. 4). The rationale is that RTs for same/
different judgments will be slowed on the basis of the 
strength of the underlying representational types.

Pretraining time point. At the pretraining session, the 
only measure of representational similarity4 that signifi-
cantly predicted performance on deciding whether two 

letters were the same or different was pixel overlap. Par-
ticipants were significantly slower to respond to more 
visually similar letter pairs (p < .001). This effect is 
depicted in Figure 8, which shows the estimated RT dif-
ference between pairs with low similarity (0.2-pixel over-
lap) and pairs with high similarity (0.8-pixel overlap); 
p  values for the difference scores were obtained using 
the R package emmeans (Version 1.1.4; Lenth, 2019). The 
difference between high and low pixel overlap was esti-
mated at 99.8 ms, 73.4 ms, and 99.7 ms for the typing, 
visual, and writing conditions, respectively (all ps < .05), 
and there were no significant interactions with condition. 
This shows that naive viewers of Arabic letters are sensi-
tive to the pixel-based similarity between pairs of letters 
with which they are not familiar.

Posttraining time point. At the posttraining session, as 
with the pretraining session, there was still a significant 
effect of pixel overlap (slower RT on more similar letters, 
p < .05) and no significant interactions with condition. 
The effects plots showing the estimated RT difference 
between pairs with low and high visual-feature similarity 
(0.2 vs. 0.8 feature overlap), low and high motoric simi-
larity (0.2 vs. 0.8 shared motor bistrokes), and symbolic 
letter identity (different vs. same identities) are depicted 
in Figure 9.

The effect of visual-feature similarity was significantly 
stronger for the typing than the writing condition (p < 
.05; see Fig. 9, top)—the estimated difference between 
high and low similarity was 54.3 ms (p < .05), 26.1 ms 
(p > .1), and 10.7 ms (p > .1) for the typing, visual, and 
writing conditions, respectively. The effect of motoric 
similarity was significantly stronger for the writing con-
dition compared with both the typing and visual condi-
tions (p < .05 and p < .01, respectively; see Fig. 9, 
middle)—an estimated difference for high-low similarity 

Table 3. Performance on Each of the Generalization 
Measures, According to Learning Condition

Measure Typing Visual Writing

Letter-naming response time 3* 2 1
Letter-naming accuracy 2 3* 1
Letter-writing accuracy 2 3* 1
Word spelling 3* 2 1
Word reading 3 2 1

Note: The values indicate the ranking of the average performance for 
each learning condition. An asterisk indicates a statistically significant 
difference in the comparison with the writing condition (p < .05).
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Fig. 8. Mean response time (RT) difference on trials with correct 
responses to stimuli with high and low pixel overlap at the pre-
training time point. Results are shown separately for the typing, 
visual, and writing learning conditions. RT differences were cal-
culated by subtracting responses to stimuli with low pixel overlap 
from responses to stimuli with high pixel overlap. Error bars reflect 
standard errors as generated by the R package emmeans.
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of 27.1 ms (p < .05), 22.4 ms (p > .1), and 55.9 ms (p < 
.001) for the typing, visual, and writing conditions, 
respectively. The effect of symbolic letter identity was 
significantly stronger for the writing condition compared 
with both the typing (p < .001) and visual conditions 
(p  < .05; Fig. 9, bottom)—an estimated difference 

between same- and different-identity pairs of 3.5 ms (p > 
.1), 41.9 ms (p < .01), and 60.3 ms (p < .001) for the typ-
ing, visual, and writing conditions, respectively.

Comparing the pre- and posttraining sessions 
directly, we found that the only significant changes 
were for the writing condition and only for motoric 
similarity (p < .01) and symbolic letter identity (p < .05). 
For all other measures and conditions, no changes were 
significant (ps > .1; see Tables S5–S7 in the Supplemen-
tal Material).

Summary regarding learned representations (same/
different judgment task). Not surprisingly, before com-
pleting any training, participants across all learning condi-
tions were naive and showed only significant effects of 
pixel overlap. After participants completed training, how-
ever, all four types of representational similarity were 
found to predict RTs for one or more groups. Visual- 
feature similarity was significant only for the typing group, 
which may indicate a shift from reliance on low-level 
visual features to more abstract ones. Indeed, pixel over-
lap was no longer significant for the typing condition at 
the posttraining session, although the difference from the 
pre- to posttraining sessions was not significant.

The effect of motoric similarity was driven by the 
writing condition and was weakest (in fact, nonsignifi-
cant) in the visual condition (mirroring the results of the 
letter-writing task). More striking is that the effect of 
symbolic letter identity was likewise driven by the writ-
ing condition; discrimination of same-identity pairs was 
an estimated 60 ms slower than discrimination of differ-
ent-identity pairs. The symbolic-letter-identity effect 
was also present in the visual condition but was sig-
nificantly smaller (42 ms), and it was virtually absent 
in the typing condition (4 ms; n.s.). In the General 
Discussion, we return to these results and in particular 
to their implications for understanding the effects of 
handwriting training.

General Discussion

What are the benefits of handwriting 
training for letter learning and 
literacy?

We examined this question in an investigation that 
examined the benefits of handwriting training for learn-
ing novel letters, comparing handwriting with typing 
and visual training. The findings show that the benefits 
of handwriting training not only included a faster 
learning trajectory but also extended beyond the tasks 
on which participants were trained (letter recognition 
and writing) to untrained tasks, such as letter naming 
and word reading. Moreover, a Monte Carlo analysis 
revealed that the finding that the writing condition was 
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Fig. 9. Mean response time (RT) difference on trials with correct 
responses to stimuli with high and low visual-feature similarity (top), 
high and low motoric similarity (middle), and the same and differ-
ent symbolic letter identity (bottom) at the posttraining time point. 
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symbolic letter identity. Error bars reflect standard errors as generated 
by the R package emmeans. Asterisks indicate significant differences 
between learning conditions (*p < .05, **p < .01, ***p < .001).



The Effects of Handwriting Experience on Literacy Learning 1099

numerically superior to other learning conditions on 
all five generalization measures (Table 3) was highly 
unlikely to have occurred by chance (p ≈ .0329). Thus, 
overall, the results revealed that handwriting practice 
fundamentally and positively affects written language 
learning, both for letter and word comprehension and 
production.5

The representational consequences of 
handwriting practice

That handwriting has profound effects on letter pro-
cessing was further supported by the findings from a 
perceptual same/different judgment task. These find-
ings showed that the visual perception of the learned 
letters of individuals who learned by writing was influ-
enced not only by their knowledge of how to write the 
letters but also by their knowledge of the symbolic 
identities of the letters. Critically, these perceptual-
learning effects were strongest in the writing condition. 
The finding that the effect of motor similarity on this 
task was strongest in the writing condition is important 
when one considers that it need not have been the case 
that knowledge of the motor plans for writing would 
play any role in a visual same/different judgment task. 
In fact, although some researchers have found evidence 
of motor similarity affecting visual-perception tasks 
with letters, either behaviorally or in neural-activity 
patterns (e.g., Nashaat et al., 2016; Schubert, Reilhac, 
& McCloskey, 2018; Wiley & Rapp, 2019; Wiley et al., 
2016), others have not (e.g., Bi et al., 2009; Rothlein & 
Rapp, 2017; Zhai & Fischer-Baum, 2019). To the best 
of our knowledge, this is the first study to directly 
associate handwriting experience (or the lack thereof) 
with the effect of motor similarity on letter perception, 
supporting the proposition that motor similarity is in 
fact an aspect of motor knowledge and not merely cor-
related with some other type of representation. With 
regard to the significantly stronger effect of symbolic 
letter identity for the writing condition, a similar con-
clusion applies—Although many researchers have 
argued for this type of abstract representation (e.g., 
Caramazza & Hillis, 1990; Lupyan et al., 2010; Rothlein 
& Rapp, 2014; Wiley et al., 2016), the existence of such 
abstract representations, for letters or other objects, has 
been questioned (e.g., Barsalou, 2008; Chen & Proctor, 
2012). Most significantly, this study is the first to dem-
onstrate an association between symbolic-letter-identity 
learning and writing experience.

The implication of these findings is that handwriting 
practice most strongly supported the learning of the 
multidimensional representations of letters that have 
been documented in expert readers—visual, motor, and 
symbolic representations (e.g., Kinoshita et al., 2019; 

Rothlein & Rapp, 2014, 2017; Wiley & Rapp, 2019; Wiley 
et al., 2016). This interpretation is consistent with that 
of Cao and colleagues (2013), who stated that the 
motor component learned through handwriting experi-
ence is “highly interactive with the other components 
and may become especially helpful for perception 
when other components are impaired or weak” 
(p.  1680). Our findings are also consistent with evi-
dence from neuroimaging studies reporting that pat-
terns of neural activity during letter viewing in children 
are similar to those observed in adults only when the 
children are viewing letters that they had experience 
writing (e.g., James, 2010).

Thus, it appears that participants in the current study 
used their representational knowledge gained from 
writing letters to strengthen their performance across 
multiple tasks.

What is the basis of the observed 
differences in outcomes among the 
learning conditions?

Our results indicate that neither variable visual input 
nor dynamic information, two indirect effects of hand-
writing practice, is sufficient alone to explain the hand-
writing benefits. However, the possibility remains that 
the handwriting benefits arise because of visual feed-
back that is generated by self-production or, at the very 
least, that the benefits of visual feedback are not equiv-
alent when it is externally provided rather than inter-
nally generated. This would be consistent with the 
finding of Kersey and James (2013) that brain activity 
in the sensorimotor network was observed only after 
children were trained to write letters themselves, not 
after they passively viewed an instructor writing letters. 
It is important to recognize that writing and typing are 
both complex processes and that further work is still 
needed to identify which aspects of these tasks are 
responsible for the various effects that are reported in 
this and previous studies.

With regard to symbolic letter identities, one possibil-
ity is that they serve as hubs for the cross-modal letter 
processing (Fig. 10) used in reading and spelling, either 
supported by multimodal association areas, as proposed 
by several researchers (e.g., Binder, 2016; Buckner & 
Krienen, 2013), and/or by brain regions supporting 
amodal orthographic processing (Dehaene et al., 2004; 
Rothlein & Rapp, 2014). The writing-training paradigm 
used here, which required learning allographs and asso-
ciating visual, motoric, and phonological representa-
tions, may have especially facilitated learning symbolic 
letter identities. This may be because the writing training 
required participants to learn all pairwise associations 
between different modalities. The near-zero effect of 
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symbolic letter identity on the same/different judgment 
task for the typing condition may have been influenced 
by the fact that the keyboard, unlike standard key-
boards, was arranged with a unique key for each allo-
graph. What is certainly true is that the typing and 
visual training only required visuo-phonological asso-
ciations, not visuomotor or phonological-motor associa-
tions. In this way, handwriting (compared with the 
other learning conditions) naturally promotes addi-
tional experience with transcoding inputs from one 
modality into another. Pattamadilok and colleagues 
(2016) suggested that activation in the dorsal premotor 
cortex, which is associated with sensorimotor process-
ing of letters, “goes beyond a simple coactivation 
between the motor and visual regions [and] suggests 
that the contribution of the [dorsal premotor cortex] to 
reading reflects shared cognitive processes in writing 
and reading rather than an evocation of writing-related 
motor representations during reading” (p. 1541). To the 
extent that this shared cognitive process between writ-
ing and reading includes symbolic letter identities, their 
conclusions would be supported by evidence from the 
current study.

The evidence in support of symbolic-letter-identity 
learning is also relevant to the broader debate between 
embodied-cognition and abstractionist views. A strong 
embodied-cognition position holds that learning 
(including letter learning; Tenpenny, 1995) exclusively 
involves laying down sensory and motor memories that 
are reactivated when needed for task performance (see 
Barsalou, 2008). In contrast, abstractionist views pro-
pose that at least some aspects of human knowledge, 
such as letter knowledge, involve abstract, amodal rep-
resentations that cannot be reduced to sensorimotor 
memories (e.g., Leshinskaya & Caramazza, 2016; Mahon, 

2015; Mahon & Hickok, 2016). Our findings favor the 
abstractionist view and add to various existing lines of 
evidence of symbolic letter identities from cognitive 
psychology (e.g., Schubert, Gawthrop, & Kinoshita, 
2018; Wiley et al., 2016), neuropsychology, and neuro-
imaging (e.g., Petit et al., 2006; Rothlein & Rapp, 2014). 
Additionally, the finding that symbolic-letter-identity 
learning was strongest in the context of writing experi-
ence would seem to be an especially timely reminder 
that evidence of motor learning should not be automati-
cally interpreted as favoring an embodiment position 
(but see Barsalou, 2008, for a review of a range of dif-
ferent positions on this question).

Implications for educational practices 
and directions for future research

The clear evidence presented here that handwriting 
training during letter learning strengthens reading and 
spelling skills has implications for best practices in 
education— although it must be emphasized that these 
results were observed in adults learning a second 
orthography and not in children. Future research should 
also investigate whether the findings reported here gen-
eralize to older adults or to individuals with lower levels 
of education or specific learning disabilities. Nonethe-
less, at a minimum, it is a warning against prematurely 
abandoning or significantly reducing handwriting edu-
cation. The finding that the benefits of writing practice 
extend beyond penmanship to both letter and word 
comprehension and production indicates that handwrit-
ing can be a productive use of learning time. However, 
there are certainly a great number of implementations 
of handwriting practice that could be adopted, and they 
are likely to vary in their effectiveness.

Allograph-Specific Visual
Representations

Symbolic Letter Identity

Allograph-Specific Visual
Representations

Phonological
Representations

/    i:m/

Fig. 10. Cognitive architecture of letter representations. Modality-specific representations 
(visual, motor, and phonological) are associated with one another through their common 
amodal representation: symbolic letter identity.
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This research does not address the pressing issue of 
understanding the optimal characteristics of the writing 
practice needed to maximize literacy learning. Further-
more, if the hypothesis is correct that the benefits of 
handwriting arise at least in part from strengthening 
the amodal symbolic-letter-identity representations 
used for mapping between different letter representa-
tions, then there should be other letter-learning condi-
tions that also serve to develop and strengthen symbolic 
letter identities. In other words, although writing may 
be a natural way of learning to link the multiple modali-
ties of letter representation, there may be other benefi-
cial approaches as well. For example, it is possible that 
more extensive typing training with a standard key-
board arrangement could improve performance for that 
condition. Alternatively, training conditions that require 
participants to learn the dynamic visual information 
(even without self-production through handwriting) or 
that provide more equivalent visual feedback across 
conditions could be used to further identify the critical 
elements of the writing experience that produce the 
reported behavioral benefits. Despite the many remain-
ing questions, the findings of this investigation provide 
a valuable foundation on which to continue to build 
our understanding of the role of handwriting in the 
development of literacy.
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Notes

1. Nonligating letters, those that do not connect with the follow-
ing letters, have only one allograph. There are eight such letters 
in Arabic, six of which were included in this study (see Fig. 3).
2. LMEM analysis testing for significant differences between 
performance in the pretraining and posttraining sessions 
(i.e., three-way interactions among time point, learning con-
dition, and types of representational similarity) had intoler-
ably high multicollinearity. As an alternative, pretraining versus 
posttraining models with two-way interactions (Time Point  × 
Representational Similarity) were evaluated with separate 
LMEMs for each learning condition. For full details, see the 
Supplemental Material.
3. These values refer to the posttraining session, which is dis-
tinct from the training sessions depicted in the growth-curve 
analyses in Figure 6.
4. We determined that simultaneous regression of both symbolic- 
letter-identity and phonological-similarity (letter-name) regres-
sors was not possible because of high multicollinearity (variance 
inflation factors 10.1 and 9.4, respectively—unacceptably high 
by any reasonable criterion). As a solution, separate LMEM anal-
yses were run with either symbolic-letter-identity or phonolog-
ical-similarity regressors. The phonological-similarity regressor 
was not significant either as a main effect or in interaction with 
condition, and model comparisons using the Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) favored 
the model with symbolic letter identity only compared with 
the model with phonological similarity only (AIC and BIC ≈ 2 
points different in favor of the symbolic-letter-identity model). 
Therefore, there is no evidence supporting the hypothesis that 
it was phonological letter-name representations and not amodal 
symbolic-letter-identity representations that contributed to letter 
perception in the same/different judgment task.
5. Whether typing or visual training is superior was not evalu-
ated in the study, but Table 3 indicates that their rankings were 
generally comparable.
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