
Cox et al. BMC Genomics          (2021) 22:870  
https://doi.org/10.1186/s12864-021-08166-0

RESEARCH

Integrated omics analysis reveals sirtuin 
signaling is central to hepatic response to a high 
fructose diet
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Abstract 

Background:  Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and 
diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential 
to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabo‑
lism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and 
obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed 
untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the 
molecular impact of a HFr diet on coordinated pathways and networks that differed by diet.

Results:  We show that integration of omics data sets improved statistical significance for some pathways and net‑
works, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in rel‑
evant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator 
activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration 
of metabolomics and miRNAs data further strengthened our findings.

Conclusions:  Our integrated analysis of three types of omics data with pathway and regulatory network analysis 
demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In 
addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link 
sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from 
consumption of a HFr diet.

Keywords:  High fructose diet, Integrated omics, Transcriptomics, Proteomics, Metabolomics, miRNA, Liver 
metabolism, Diet, Vervet, Pathway analysis
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Background
Fructose intake in countries where people consume 
a Western diet has significantly increased over the 
past three decades, particularly through increased 

consumption of sweetened beverages and foods con-
taining high-fructose corn syrup. Fructose consumption 
comprises a significant proportion of energy intake in 
the American diet, and increased consumption coincides 
with increased prevalence of obesity over the past three 
decades [1]. Animal studies have shown that diets high 
in fructose consistently induce metabolic perturbations 
associated with metabolic syndrome and diabetes [1, 2]. 
Altered metabolism in the liver has been implicated in 
multiple chronic metabolic diseases [3]. Several studies 

Open Access

*Correspondence:  laurcox@wakehealth.edu
1 Center for Precision Medicine, Department of Internal Medicine, Section 
on Molecular Medicine, Wake Forest School of Medicine, Medical Center 
Boulevard, NRC, G‑floor, NC 27157 Winston‑Salem, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-08166-0&domain=pdf


Page 2 of 16Cox et al. BMC Genomics          (2021) 22:870 

have investigated HFr diet challenges in humans [4, 5] 
and nonhuman primates (NHP) [6–9]. In cynomolgus 
monkeys (Macaca fascicularis), long-term exposure to 
high fructose (HFr) diets increased liver steatosis, with 
extent related to duration of fructose exposure [10], but 
questions remain about the initial molecular changes 
induced by high levels of fructose that result in long-term 
health complications.

  The vervet monkey (Chlorocebus aethiops sabaeus) is 
a model for multiple human complex diseases including 
neurodegenerative disease [11], Alzheimer’s disease [12–
15], diabetes, obesity and metabolism [16–18] and cardi-
ovascular disease [19, 20] among others. Due to the high 
degree of genomic [21–23], physiologic and metabolic 
conservation between vervets and humans, results in 
vervets are translatable to understanding human health 
and disease. The ability to control environmental factors 
including diet and feasibility of collecting tissue biopsy 
samples from healthy animals, provide opportunities to 
investigate molecular mechanisms that are dysregulated 
prior to evidence of clinical disease. Studies in vervets 
related to metabolism have included diet interventions 
with variation in sources of protein, fat, and carbohydrate 
[18, 24, 25]; However, none of these studies in humans 
or NHP have used global untargeted omics approaches 
to identify potential molecular mechanisms underlying 
diet-induced changes in liver metabolism. In addition, 
no studies to date have generated an integrated compre-
hensive multi-omics dataset to better understand these 
molecular changes [26].

The goal of this study included examination of the 
impact of a short-term exposure to a HFr diet in the liver, 
a key organ mediating carbohydrate and lipid metabo-
lism, by integrating high-throughput omics data and 
investigating the benefits of data integration across multi-
ple omics domains. The short-term HFr diet exposure has 
no discernible impact on body weight, insulin sensitivity, 
blood pressure, or triglycerides. Total plasma cholesterol 
and measures of liver injury were greater in animals fed 
the HFr diet than controls. We examined whether early 
molecular alterations in liver can be detected prior to 
development of obesity and diabetes. We compared tran-
scriptome, proteome, and metabolome data from livers 
of vervets challenged with a HFr diet for six weeks with 
those fed a chow diet. We demonstrate that the molecular 
information obtained from integrated analysis of multi-
omics datasets is more informative than analyses of any 
of the individual omics datasets. In addition, using this 
integrated omics approach, we identified sirtuin signaling 
and a peroxisome proliferator activated receptor alpha 
(PPARA) regulatory network as central to the hepatic 
short-term response to a HFr diet. Metabolites aspartic 
acid and DHA provide direct evidence on alterations in 

liver metabolism, and connect sirtuin signaling pathway 
and PPARA regulatory network, suggesting perturba-
tions in these molecular mechanisms underlie altered 
hepatic gluconeogenesis in response to a short-term HFr 
diet.

Results
Clinical and morphometric Data analysis
  Female age-matched vervet monkeys were fed a chow 
diet (controls, n=5) or a HFr diet (n=5) for six weeks. 
Morphometric measures at the end of challenge were 
not different between groups. Total plasma cholesterol 
was increased, and measures of liver injury, alanine ami-
notransferase, alkaline phosphatase, and gamma-gluta-
myl transpeptidase were increased in animals fed the HFr 
diet compared to controls (Table 1).

Transcriptomics data analysis
Comprehensive analysis of RNA expression has com-
monly been used to study the influence of genetic fac-
tors on phenotypic variation and is often used as a 
surrogate measure for functional alterations (potentially 
mediated by proteins or by alterations in metabolite 
levels). As a first step of our multi-omics characteriza-
tion of liver biopsies from animals in this study, we per-
formed RNA-Seq analyses on all samples. We identified 
10,688 transcripts that passed quality filters. Of these, 
467 were differentially expressed between liver samples 
from animals fed HFr and chow diets (unadjusted p < 
0.05) (Additional file  1). Pathway enrichment analysis 
revealed that 51 pathways were different between HFr 
and chow including sirtuin signaling, remodeling of epi-
thelial adherens junctions signaling, and necroptosis 
signaling (p-value < 0.05, Fig.  1, Additional files 2 and 
3). Regulatory network analysis resulted in 5 networks 
with predicted activation states. Four networks regulated 
by XBP1, PPARA, MITF, and KLF15 were predicted to 
activate downstream targets, and one network regulated 
by HDAC1 was predicted to inhibit downstream targets 
(p-value < 0.05) (Fig.  2, Additional files 4 and 5). Regu-
lators XBP1, PPARA, MITF, KLF15, and HDAC1 were 
expressed but not different between liver samples from 
HFr and chow-fed animals.

Proteomics data analysis
We analyzed liver-extracted proteins using standard 
mass spectrometry approaches as reported previ-
ously [27]. Overall, we were able to identify 2858 pro-
teins across the 10 samples. Of these, 1594 proteins 
were identified in at least 3 of 5 samples from either 
the chow- or the HFr-fed animals, and 1172 proteins 
were identified in samples from at least 3 animals in 
each group. We included further analyses the 1172 
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proteins plus 70 proteins that passed quality filters for 
all samples in one group, but were not found in any of 
the samples of the other group. Of the combined 1242 
proteins that passed these filters, 126 proteins were 
quantitatively different between liver samples from 
HFr- and chow-fed animals (p-value < 0.05) (Additional 
file  6). Pathway enrichment analysis revealed 58 path-
ways altered by HFr and included pathways that were 
also observed from the transcriptomic data, including 
sirtuin signaling, and remodeling of epithelial adher-
ens junctions signaling (p-value < 0.05, Fig.  1, Addi-
tional file 7). No regulatory networks were found with 
a predicted activation state (Fig.  2, Additional file  8). 
Network regulators XBP1, PPARA, MITF, KLF15, and 
HDAC1 were not detected in the proteomic analysis.

Commonalities between gene and protein expression
Comparison of gene and protein expression showed 320 
molecules with greater expression and 263 with reduced 
expression that were common to both the transcriptom-
ics and proteomics analyses in liver samples from animals 
fed a HFr diet compared to chow-fed animals. Com-
parison of statistically significant differentially expressed 
genes and proteins revealed only 2 shared molecules, 
SLCO1B1 and HTATIP2, with decreased abundance in 
livers from HFr-fed animals compared to chow-fed ani-
mals (Fig. 3, Additional file 9).

Metabolomics data analysis
To examine whether we could expand on the molecu-
lar changes induced in the liver by HFr exposure that 
we uncovered by gene-centric analyses (transcriptom-
ics, proteomics), we performed untargeted analysis of 
small molecule metabolites to analyze the metabolomic 
changes. Overall, we quantified 471 metabolites that 
passed quality filters. Of these, 18 showed significantly 
different abundances between liver samples from HFr- 
and chow-fed animals (p-value < 0.05, Additional file 10). 
Pathway enrichment showed 25 pathways including 
aspartate biosynthesis. Sirtuin signaling was observed 
but not significant (p-value = 0.089, Fig.  1 and Addi-
tional file 11). All pathways identified in the enrichment 
analysis only contained one single metabolite per path-
way, highlighting the limited annotation of metabolites 
in pathways and networks. No regulatory networks were 

Fig. 1  Pathways for each omic data type and integrated omics data. P-values for each Ingenuity canonical pathway are plotted with the color 
indicating the type(s) of molecules included in the analysis and the dot size reflecting the number of molecules

Fig. 2  Regulatory networks for each omic data type and integrated 
omics data. P-values for each network are plotted with the color 
indicating the type(s) of molecules included in the analysis and the 
dot size reflecting the number of molecules
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found with a predicted activation state and p-value < 0.05 
(Fig. 2, Additional file 12).

Integrated omics analysis
Using the datasets described above, we further assessed 
whether combinations of omics datasets improved sta-
tistical confidence and significance in the network and 
pathway enrichment findings. First, we examined the 
combination of the gene expression and proteomics 
results. Integrated analysis of transcriptomic and prot-
eomic data revealed 51 significantly enriched pathways 
(p-value < 0.05). Statistical significance of sirtuin signal-
ing, remodeling of epithelial adherens junctions, necrop-
tosis signaling, and regulatory cell mechanics by calpain 
protease increased, and the number of molecules identi-
fied in each network increased with dataset integration. 
Interestingly, for sirtuin signaling, the number of genes 
and proteins was greater than the sum of genes and pro-
teins from individual omic pathway analysis; this is due 
to our requirement for direct connections with addition 
of protein data to gene data connecting additional genes 
in the pathway. Significance of some pathways decreased, 
such as stearate biosynthesis, cell cycle control of chro-
mosomal replication, and cholesterol biosynthesis (Fig. 2, 
Additional files 2 and 13). Integrated analysis showed 4 
activated networks with predicted regulators PPARA, 
XBP1, MITF, and KLF15, and one inhibited network 
with predicted regulator HDAC1. Statistical significance 
increased and the number of molecules in the networks 
increased for the PPARA and XBP1 networks when com-
pared to the analysis of the transcriptomic data alone 
(Fig. 3, Additional files 4 and 14).

Integration of the transcriptomics and proteomics data 
with metabolomics findings further enhanced the path-
way enrichment and network analyses, and resulted in 
the identification of 43 significantly enriched pathways. 
The significance of several pathways, and the number 

of molecules identified in each pathway, increased even 
more compared to the gene-protein integrated pathways, 
including again sirtuin signaling, remodeling of epithelial 
adherens junctions, necroptosis signaling, and regula-
tory cell mechanics by calpain protease. Sirtuin signaling 
had the greatest significance and the greatest number of 
identified molecules with genes, proteins and metabo-
lites. In addition, significance of other pathways such as 
cell cycle control of chromosomal replication, and cho-
lesterol biosynthesis further decreased again when com-
pared to the gene-protein integrated networks (Fig.  2, 
Additional files 2 and 15). Integrated network analysis 
was similar to pathway analysis with increased signifi-
cance and molecule number compared to the gene-pro-
tein integrated networks, with the PPARA regulatory 
network (that included gene transcripts, proteins and 
metabolites) being the most significant (Fig. 3, Additional 
files 4 and 16). Of note, the protein FASN directly links 
regulatory networks PPARA, XBP1 and KLF15. In addi-
tion, overlapping molecules in networks link regulators 
PPARA and KLF15 with sirtuin signaling, including the 
protein ATG3, gene transcripts ATG7, and HMGCS2, 
and metabolites DHA and L-aspartic acid (Fig. 4).

Integration of miRNA data
In an effort to explore putative regulatory mechanisms 
underlying the pathway and network enrichment we 
describe above, we integrated analysis data from small 
RNA-Seq (which characterizes miRNAs) with the multi-
omics datasets described above. In our analysis, we iden-
tified 576 known miRNAs that passed quality filters. 
Of these, 22 were differentially expressed between liver 
samples from HFr- and chow-fed animals (p-value < 
0.05, Additional file 17). Detailed miRNA – gene/protein 
pairing provided a list of 793 inverse pairs that included 
17 differentially expressed miRNAs and 758 differen-
tially abundant genes or proteins (Additional file  18). 

Fig. 3  Venn diagram showing (A) common expressed and (B) differentially expressed genes and proteins
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Integration of miRNAs with pathways increased the 
number of molecules in remodeling of epithelial adher-
ens junctions and necroptosis signaling, and the number 
of molecules increased for regulatory networks PPARA, 
XBP1, MITF and HDAC1 (Additional file 4). In addition, 
these regulatory networks were interconnected by miR-
NAs that target genes and proteins in multiple networks: 
miR-148-3p for PPARA, MITF, KLF15, and XBP1 net-
work genes and proteins, miR-181a-5p for MITF, KLF15, 
and XBP2 network genes and proteins, miR 342-5p for 
MITF, XBP1 and PPARA network genes and proteins, 
and miR-574-5p for XBP1 and MITF network genes and 
proteins (Fig. 4). This integration suggests potential regu-
latory roles for these miRNAs in coordinating the molec-
ular changes induced in the liver after exposure to a HFr 
diet, and emphasizes the complexity of miRNA interac-
tions that may affect both transcript and protein levels.

Genes and Proteins in Multi‑Omic Networks 
with Associations to NASH‑ and NAFLD‑Related Traits
  To examine the potential shared pathophysiological 
mechanisms induced by short term HFr diet exposure 
with long-term liver health outcomes associated with 
HFr, we compared GWAS catalog variants and genes 
associated with nonalcoholic steatohepatitis (NASH)- 
and nonalcoholic fatty liver disease (NAFLD)-related 

traits, including BMI, lipoproteins, obesity, diabetes, and 
insulin resistance, with the differentially expressed genes 
and proteins identified in our analysis of liver samples. 
The alignment of the datasets revealed 53 genes and pro-
teins with one or more intergenic single nucleotide pol-
ymorphism (SNP) associated with one or more NASH/
NAFLD related trait(s) (Additional file  19). When we 
restricted the analysis only to genes and proteins in sig-
nificantly enriched multi-omic pathways and networks, 
we identified 13 genes with GWAS SNPs, including 
FABP1 (associated with NAFLD) in PPARA and HDAC1 
networks; GOT2 (associated with triglycerides and 
aspartate aminotransferase) in the sirtuin signaling path-
way; and ATG7 (associated with fat body mass) in the sir-
tuin signaling pathway and KLF15 network (Table 2).

Discussion
The liver is central to metabolic regulation, and dysregu-
lation of liver metabolism directly impacts gluconeogen-
esis and lipogenesis. Exposure to a HFr diet is known to 
increase the risk of dyslipidemia, insulin resistance, lipo-
genesis [28], levels of hepatic oxidative stress markers, 
and induce NASH and NAFLD [6]. Unlike glucose, fruc-
tose is absorbed in the intestine independently of energy 
or sodium exchange. When consumed in high amounts, 
fructose is transported to the liver via hepatic portal 

Fig. 4  Regulatory network up-regulated in HFr livers compared with chow. Red fill indicates increased abundance, green fill decreased abundance, 
light orange fill indicates predicted activation, green outline genes, blue outline proteins, gray outline miRNAs, purple outline metabolites, green 
lines indicate inhibition and red lines activation
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circulation and is preferentially converted to lipids. Fruc-
tose forms the building blocks of triglycerides [29], and 
triglycerides produced in the liver mostly are packaged 
into atherogenic very low-density lipoprotein particles 
[30]. Fructose in the liver can also serve as substrate for 
the gluconeogenesis pathway and increase circulating 
glucose levels [31], which, together with the increased 
triglyceride levels, decreases overall glycemic control. 
The specific contribution of hepatic steatosis to whole 
body insulin sensitivity and dyslipidemia [32–35] is par-
ticularly significant for individuals diagnosed with the 
metabolic syndrome. However, the underlying molecular 
networks that are dysregulated by a HFr diet and precede 
insulin resistance, NASH and NAFLD have not yet been 
identified, and the initial molecular abnormalities initi-
ated by the exposure to fructose remain to be identified 
[6].

NHPs have been shown to be valuable models of diet-
induced metabolic dysregulation due to extensive similar-
ities with human metabolism [7]. The ability to carefully 
control diet exposure, and the physiological similarity to 
humans make NHP an ideal model to examine molecu-
lar tissue and organ changes in response to short- and 
long-term dietary challenges. We used a cohort of vervet 

monkeys (Clorocebus aethiops sabeus) fed an acute HFr 
diet (n=5) or chow diet (n=5) for 6 weeks. Previous anal-
yses showed changes in liver enzymes, total plasma cho-
lesterol, and liver histology indicative of liver injury with 
periportal and inflammatory lesions in the HFr group 
[6], but no other clinically discernable abnormalities in 
body mass, or circulating glucose levels. In this study, 
we used global untargeted transcriptomics, proteomics, 
and metabolomics of liver biopsy samples to identify the 
acute early hepatic molecular and cellular response to a 
HFr diet, prior to onset of fat accumulation or systemic 
pathophysiological changes, to identify dysregulated 
molecular networks that potentially drive fat accumula-
tion, and may be the initiating steps for subsequent long-
term liver dysregulation. Pathway and network analyses 
were performed on individual datasets and integrated 
multi-omics datasets to determine whether there was a 
gain in our understanding of the molecular impact of a 
HFr diet with a combined approach compared to use of 
single or double omics datasets. Our analytical approach 
included prioritization of molecules by using pathway 
and network enrichment statistics, with the stringent 
requirement of direct connections among molecules, to 

Table 2  Pathway and Network Genes and Proteins with GWAS SNPs

Gene Symbol Pathway or Network Trait

APOA1 HDAC1 Network
PPARA Network
XBP1 Network

Very low-density lipoprotein cholesterol

ATG7 KLF15 Network
Sirtuin Signaling Pathway

Fat body mass

CLIP1 Remodeling of Epithelial Adherens Junctions Body mass index

FABP1 HDAC1 Network
PPARA Network

Non-alcoholic fatty liver disease
Hepatic fibrosis

GOT2 Sirtuin Signaling Pathway Triglycerides
Aspartate aminotransferase

MET MITF Network
Remodeling of Epithelial Adherens Junctions

Triglycerides

MITF MITF Network Low-density lipoprotein cholesterol
Triglycerides

PNPLA2 PPARA Network Body fat distribution

PPARA​ PPARA Network Type II Diabetes 
Total cholesterol
Low-density lipoprotein cholesterol
Triglycerides

RAC1 Actin Nucleation by ARP-WASP Complex
Integrin Signaling
Leukocyte Extravasation Signaling
Paxillin Signaling

Low-density lipoprotein cholesterol

RAP1GAP Leukocyte Extravasation Signaling Alkaline phosphatase

SORT1 MITF Network Type II Diabetes 
Coronary artery disease
LDL cholesterol change

TNFRSF11B Necroptosis Signaling Pathway Alkaline phosphatase
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improve statistical rigor for this study with small sample 
sizes (a common limitation of NHP studies).

We chose to use IPA to assess integrated omics effec-
tiveness since it has tools for canonical pathway enrich-
ment, and the underlying knowledgebase provides a 
means for regulatory network analysis at high resolu-
tion using transcripts, proteins, and metabolites, which 
is not yet feasible with other publicly available tools such 
as DAVID Bioinformatic Resources [36]. Our findings 
confirm previous papers indicating the need for better 
tools to perform integrated omic analyses [26]. In addi-
tion, it will be important to test strengths and limitations 
of multi-omics data integration with other tools when 
available.

In analyzing individual omics datasets, we identified 
a large number of statistically significant pathways for 
each data type, which is often the case for these types 
of data, making it a challenge to prioritize networks and 
distinguish likely true associations from spurious results. 
Integration of hepatic transcriptomic and proteomic 
data increased the significance of a number of pathways 
and networks, while decreasing the significance of other 
pathways, suggesting that truly associated pathways can 
be distinguished better with this approach. Interestingly, 
comparison of differentially expressed genes and pro-
teins showed very little overlap: potentially due to the 
low correlation usually observed in expressed protein and 
transcript abundances. Most studies investigating pro-
teome and transcriptome in the same model have noted 
this (e.g. [37]). However, integration of these datasets 
provided additional molecules with direct connections 
within a pathway or network, increasing the overall num-
ber of molecules, increasing the confidence in pathway or 
network prediction, and providing additional informa-
tion about molecular functions. For some pathways and 
networks, additional differentially abundant molecules 
were added from the second omics dataset, creating new 
connections not evident in either of the individual omics 
datasets. Of note, proteins are often identified as mole-
cules connecting separate regulatory networks and steps 
within signaling pathways, e.g. ATG3 in sirtuin signaling 
and FASN for the XBP1, PPARA and KLF15 networks.

Integration of transcriptomic and proteomic data 
increased the significance of the sirtuin signaling path-
way, and revealed direct connections between sirtuin 
signaling and the four activated networks with pre-
dicted regulators PPARA, XBP1, MITF and KLF15. It is 
important to note that all of these genes were detected 
but not differentially expressed, but the encoded pro-
teins were not detected. These results do not con-
tradict the role of these proteins as central regulators 
since activity of all four depend on post-translational 
modifications, and the impact of these regulators may 

therefore not be mediated by changes in transcript or 
protein abundance [38–43].

Integration of metabolomic data with transcriptomic 
and proteomic datasets further improved significance of 
some pathways, with sirtuin signaling increasing in rank 
and statistics from being 7th for transcriptomics and 
39th for proteomics, to becoming 2nd for transcriptom-
ics and proteomics, and 2nd overall with integration of 
all 3 datatypes. This pathway included the most mole-
cules, including 4 metabolites. Other pathways decreased 
in significance and rank compared with the analysis of 
individual omics datasets. Addition of metabolites also 
provided more direct connections among regulatory net-
works, and connected the sirtuin signaling pathway with 
the PPARA network. Metabolites aspartic acid and DHA 
also indicated end-of-pathway directionality for the sir-
tuin signaling pathway and the PPARA network.

Finally, integration of miRNA data showed 19 of 22 dif-
ferentially expressed miRNAs targeted genes and/or pro-
teins in the four activated networks and sirtuin signaling 
pathway with inverse expression profiles. Our miRNA 
findings suggest that the initial hepatic response to short-
term exposure to a HFr diet is at least in part epigeneti-
cally regulated. Taken together, these results demonstrate 
that integration of transcriptomic, small transcriptomic, 
proteomic, and metabolomic data reveals pathways and 
networks central the HFr diet response in the liver, not 
seen by analysis of only one or two of these omic datasets.

Our results from these unique NHP biopsy samples 
reveal interesting novel molecular mechanisms regulat-
ing the initial hepatic response to HFr diet exposure in 
these animals. The sirtuin signaling pathway and net-
works regulated by PPARA, XBP1, MITF and KLF15 
appear to be central to the HFr diet response. Both sirtuin 
signaling [44, 45] and PPARA [46] play important roles 
in the pathophysiology of NAFLD. For the sirtuin gene 
family, the majority of studies have focused on the role of 
SIRT1 in regulating both lipid and carbohydrate metabo-
lism [47–49]. Interestingly, in our study, SIRT2 rather 
than SIRT1 was central to the initial hepatic response to a 
HFr diet. A recent study in male mice showed that SIRT2 
functions as a negative regulator of NAFLD development 
and progression, with increased expression being pro-
tective when animals were fed a high-fat diet [50]. Our 
study in female NHPs showed higher SIRT2 expression 
in the HFr group compared with chow-fed animals, and 
lower expression of GOT2 and decreased abundance of 
aspartic acid [51], which is regulated by GOT2 [52, 53]. 
In mice, quantification of GOT2 protein expression by 
immunohistochemistry shows decreased abundance with 
NAFLD [54], supporting our preliminary findings. GOT2 
and aspartic acid are at the end of the sirtuin pathway 
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and indicative of altered gluconeogenesis and pathologies 
associated with NAFLD.

While the overall pathways identified in our analy-
sis are supported by published evidence in other model 
organisms and related pathophysiologies, we also raise 
additional questions about previously under- or unap-
preciated regulatory networks. Our analysis suggests that 
the HFr diet exposure led to activation of the PPARA 
network, and downstream molecules GOT2 and aspar-
tic acid showed decreased abundance. Studies of PPARA 
liver expression in mice with steatosis in response to a 
high-fat diet show sex-differences: PPARA expression 
is increased in male rats, and FASN, which is directly 
downstream of PPARA, is also increased. However, in 
female rats, FASN is increased but PPARA is not [55], 
suggesting that hepatic PPARA activation/inhibition of 
FASN may be sex-specific, and the potentially divergent 
expression patterns in our female NHP in response to the 
HFr diet may be specific to female animals.

As another example, our detailed multi-omics analysis 
also suggested that DHA, an omega-3 polyunsaturated 
fatty acid with anti-inflammatory functions [56], was 
lower in livers from animals fed a HFr diet than in livers 
from chow-fed animals. While no studies have reported 
changes in DHA in response to fructose, human studies 
examining dietary supplementation with DHA have sug-
gested the beneficial effects of the increased level of DHA 
may include decreased incidence of NAFLD [57]. DHA 
is known to bind and activate PPARA [58] which may 
influence sirtuin signaling and the integrated regulatory 
network we discovered in our analysis. The decreased 
abundance of DHA, but with predicted activation of 
PPARA and activation of all but GOT2 downstream of 
PPARA, like aspartic acid, suggests differences between 
rodents and primates or sex-differences in these sign-
aling networks, and may point to other mechanisms 
(apart from DHA) by which PPARA expression may be 
increased by HFr.

GWAS of genes and proteins in sirtuin signaling and 
the four activated networks we identified show a single 
gene, FABP1, that has been reported to be associated 
with alanine aminotransferase levels, a marker of liver 
disease [59]. Twelve additional genes were associated 
with lipoprotein-, insulin-, and BMI-related traits. Iden-
tification of SIRT2 and an integrated network of regula-
tory genes and proteins with altered abundance in livers 
from animals exposed to a HFr diet that are upstream of 
GOT2 and aspartic acid suggest that we have identified 
novel molecules and regulatory mechanisms that influ-
ence and potentially govern the initial hepatic response 
to short-term HFr diet exposure. Additional studies are 
required to validate our findings, and to explore poten-
tial targets by which these networks can be modulated to 

blunt the effects of fructose consumption on overall liver 
metabolism and function, preventing subsequent health 
complications known to occur with high intake levels.

Conclusions
We have demonstrated that integration of multiple omics 
datasets significantly improves prioritization of path-
ways and networks that influence hepatic response to a 
short-term HFr diet. Using this integrated approach, we 
identified sirtuin signaling and a large, integrated regula-
tory network, with molecules overlapping sirtuin signal-
ing as a potential key modulator and regulator of hepatic 
metabolism in response to a HFr diet.

Materials and methods
Animals and experimental design
All experimental procedures involving vervet monkeys 
(Chlorocebus sabaeus) were approved and complied 
with the guidelines of the Institutional Animal Care and 
Use Committee of Wake Forest University Health Sci-
ences, which is an AALAC accredited facility.  The study 
was carried out in compliance with the ARRIVE guide-
lines. Procedures were performed by a veterinarian (KK), 
including liver biopsy as previously described [27]. Ani-
mals were provided non-steroidal anti-inflammatory 
and opioid analgesics during recovery as needed. Liver 
tissue was flash frozen in liquid nitrogen and stored at 
-80oC until analysis. Animal housing, handling, diet 
compositions (chow and HFr) and caloric details are as 
described elsewhere [6]. Prior to the study, all animals 
were maintained on chow diet. For this study, 10 female 
vervet monkeys were fed with either chow (n=5) or HFr 
(n=5) diets for 6 weeks. Previous studies have shown sex-
specific metabolic responses to a HFr diet [7]; for this 
reason, all animals included in the study were female. 
Animals were stratified to diet group balancing age and 
body weight (details are described in [6]. The data anal-
ysis team was blinded to the intervention stage of the 
trial (i.e., feeding and thus nutrient exposure); no data 
reported in the manuscript have a subjective element.

Clinical measures
Serum-based clinical measures, including total protein, 
albumin, globulin, albumin/globulin ratio, AST, ALT, 
ALK phosphatase, GGTP, total bilirubin, urea nitro-
gen, creatinine, BUN/creatinine ratio, phosphorus, glu-
cose, calcium, magnesium, sodium, potassium, Na/K 
ratio, chloride, cholesterol, triglycerides, amylase, lipase, 
CPK, and hematological parameters including WBC, 
RBC, hemoglobin, hematocrit, MCV, MCH, MCHC, 
blood parasites, platelet count, platelet, EST, neutro-
phils, bands, lymphocytes, monocytes, eosinophils and 
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basophil data were obtained from ANTECH Diagnostics 
(800-872-1001, NC, USA).

Transcriptomics: RNA Seq
RNA Extractions and Sequencing
  Total RNA was extracted from vervet monkey livers 
using the Zymo Direct-zol™ kit (Zymo Research) and 
each sample was subsequently quantified by Qubit assay 
(Thermo Fisher). RNA-Seq libraries were prepared from 
500 ng of total RNA according to the Illumina TruSeq 
stranded mRNA protocol (Illumina), which specifically 
retains polyadenylated mRNAs by the oligo dT coated 
magnetic beads. Sequencing library concentrations were 
quantified using the KAPA library quantification kit 
(Kapa Biosystems). Clusters were generated by cBot (Illu-
mina), and 2 × 100 base paired-end sequencing libraries 
were sequenced using the Illumina HiSeq 2500 with v3 
sequencing reagents (Illumina).

Data Analysis: Raw sequences were de-multiplexed 
using the Illumina pipeline CASAVA v1.8. The FastQC 
and FASTX toolkit were used for QC. Sequence reads 
with Phred scores ≥ Q30 were retained. Reads aligned 
against the vervet reference genome (ChlSab1.1) were 
annotated using the Ensembl release 93 gene model. 
Abundance analysis was performed using our estab-
lished RNA-Seq workflow in Partek Flow, which allowed 
calculation of transcript-level expression of a gene’s iso-
forms for alternative spliced transcripts [60, 61]. Tran-
script abundances were quantified in Flow (Partek) using 
an expectation-maximization algorithm similar to the 
reported [62] which quantifies isoform expression levels 
across the whole genome at the same time and normal-
izes by transcript length to account for the transcript 
fragmentation step in RNA-Seq. Transcripts without read 
counts across all samples were filtered out, and then nor-
malized by the trimmed mean of M values method [Rob-
inson MD and Oshlack A. Genome Biol. 11:R25, 2010] 
Differentially expressed genes were identified by 2-sided 
t-test assuming equal variance (unadjusted p < 0.05). 
Gene expression data were deposited in the National 
Center for Biotechnology Information’s Gene Expression 
Omnibus (GEO; http://​www.​ncbi.​nlm.​nih.​gov/​geo/) - 
GEO Series accession number GSE176576.

Transcriptomics: small RNA Seq
Sequencing
 RNA extracted for RNA Seq was also used for small 
RNA Seq. Small RNA Seq methods are described in [63]. 
Briefly, small RNA sequencing libraries were prepared 
using the Illumina TruSeq Small RNA Sample Prep Kit 
and were pooled after cDNA synthesis. cDNA librar-
ies were clustered using an Illumina Cluster Station 
and sequenced with an Illumina GAIIx sequencer. Raw 

sequence reads were obtained using Illumina’s Pipeline 
v1.5. Extracted sequence reads were normalized, anno-
tated and abundance determined using mirDeep2 [64].

Transcriptomics: Data Analysis
Transcripts without read counts across all samples were 
filtered out, and then normalized by the trimmed mean 
of M values method. Differentially expressed genes were 
identified by 2-sided t-test assuming equal variance 
(unadjusted p < 0.05). Gene expression data were depos-
ited in the National Center for Biotechnology Informa-
tion’s Gene Expression Omnibus (GEO; http://​www.​ncbi.​
nlm.​nih.​gov/​geo/) - GEO accession number GSE178269.

Proteomics
Proteomics data were generated by liquid chromatogra-
phy-coupled tandem mass spectrometry using a Thermo 
Scientific Orbitrap Elite mass spectrometer. Details of 
sample preparation, mass spectral analysis, and data 
analysis using a proteogenomics approach in Morpheus. 
The proteogenomics approach in our Morpheus analysis, 
used the vervet RNA-Seq data as a reference database. 
The match is made with the gene symbol/annotation pro-
vided from the RNA-Seq data, which for most protein 
assignments, eliminates one protein matching multiple 
gene symbols. Details of this approach were described 
previously [27]. Only unique assignments were included 
in the pathway analysis, and peptides matching to gene 
families were not considered for the pathway and net-
work enrichment.

Proteomics: Data Analysis
For each animal, peptide spectrum intensities reported in 
Morpheus were summed across occurrences (i.e., across 
multiple transcript matches) based on Gene IDs. Proteins 
identified and quantified in at least 3 animals per group 
(HFr and chow) retained for downstream analysis. Addi-
tionally, proteins that were quantified in all samples of 
one group but not in any of the samples of other group 
were also retained for subsequent analyses. Intensity 
values were log transformed, and missing data (at most 
2 animals per group) were imputed using the NAgu-
ideR tool with the impseq approach (sequential imputa-
tion) separately for the two experimental groups (HFr or 
chow). Differentially abundant proteins were identified 
by 2-sided t-test assuming equal variance (unadjusted p 
< 0.05).

Comparison of gene and protein abundance
Gene lists (Additional file  1) and protein lists (Addi-
tional file  6) were uploaded into Venny and Venn dia-
grams were generated showing commonly expressed and 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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differentially expressed genes and proteins [65]. Ratios of 
HFr to chow were used to determine directionality.

Metabolomics
GC−TOFMS Analysis
Liver metabolites were analyzed with chemical derivati-
zation following previously published protocols [66, 67]. 
Extracted samples were spiked with two internal stand-
ard solutions (10 µL of L-2-chlorophenylalanine in water, 
0.3  mg/mL; 10 µL of heptadecanoic acid in methanol, 
1 mg/mL), mixed, and extracted with 300 µL of metha-
nol/chloroform (3:1). After centrifugation at 12 000 g for 
10 min, an aliquot of the 300-µL supernatant was trans-
ferred to a glass sampling vial to vacuum-dry at room 
temperature. The residue was derivatized using a two-
step procedure. First, 80 µL of methoxyamine (15 mg/mL 
in pyridine) was added to the vial and kept at 30  °C for 
90 min, followed by 80 µL of BSTFA (1 % TMCS) at 70 °C 
for 60 min.

Each 1-µL aliquot of the derivatized solution was 
injected in splitless mode into an Agilent 6890  N gas 
chromatograph coupled with a Pegasus HT time-of-flight 
mass spectrometer (Leco Corporation, St. Joseph, MI). 
The CRC and control samples were run in the order of 
“control-CRC-control”, alternately, to minimize system-
atic analytical deviations. Separation was achieved on a 
DB-5ms capillary column (30 m × 250 μm i.d., 0.25-µm 
film thickness; (5 %-phenyl)-methylpolysiloxane bonded 
and cross-linked; Agilent J&W Scientific, Folsom, CA), 
with helium as the carrier gas at a constant flow rate of 
1.0 mL/min. The temperature of injection, transfer inter-
face, and ion source was set to 270, 260, and 200  °C, 
respectively. The GC temperature programming was set 
to 2 min isothermal heating at 80 °C, followed by 10 °C/
min oven temperature ramps to 180  °C, 5  °C/min to 
240 °C, and 25 °C/min to 290 °C, and a final 9 min main-
tenance at 290 °C. Electron impact ionization (70 eV) at 
full scan mode (m/z 30−600) was used, with an acquisi-
tion rate of 20 spectra/s in the TOFMS setting.

GC−TOFMS Data Analysis
The acquired MS files from GC−TOFMS analysis were 
exported in NetCDF format by ChromaTOF software 
(v3.30, Leco Co., CA). CDF files were extracted using 
custom scripts (revised Matlab toolbox hierarchical 
multivariate curve resolution (H-MCR), developed [68, 
69] in the MATLAB 7.0 (The MathWorks, Inc.) for data 
pretreatment procedures such as baseline correction, 
denoising, smoothing, alignment, time-window split-
ting, and multivariate curve resolution (based on mul-
tivariate curve resolution algorithm) [68]. The resulting 
data set includes sample information, peak retention 
time and peak intensities. Compound identification 

was performed by comparing the mass fragments with 
National Institute of Standards and Technology (NIST) 
05 Standard mass spectral databases in NIST MS search 
2.0 (NIST, Gaithersburg, MD) software with a similarity 
of more than 70 % and finally verified by available refer-
ence compounds. Differentially abundant metabolites for 
all MS analyses were identified by 2-sided t-test assuming 
equal variance (unadjusted p < 0.05).

2D GC‑ToF‑MS Analysis
Gas chromatography-mass spectrometry was performed 
as described [70]. Metabolite extracts were dried under 
vacuum in cold, and were then sequentially derivat-
ized with methoxyamine hydrochloride (MeOX) and 
N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) 
[70]. One microliter of the derivatized sample was 
injected in splitless mode using an autosampler (VCTS, 
Gerstel™, Linthicum, MD, USA) into a GC-MS system 
consisting of an Agilent© 7890 B gas chromatograph 
(Agilent Technologies, Palo Alto, CA, USA) with Pegasus 
® 4D ToF-MS instrument (LECO Corp., San Jose, CA, 
USA) equipped with an electron impact (EI) ionization 
source. Injection of the sample was performed at 250 °C 
with helium as a carrier gas and flow set to 2 mL min− 1. 
GC was performed using a primary Rxi®-5Sil MS capil-
lary column (Cat. No. 13623-6850, Restek, Bellefonte, 
PA, USA) (30 m × 0.25 mm × 0.25 μm) and a second-
ary Rtx®-17Sil capillary column (Cat. No. 40201-6850, 
Restek, Bellefonte, PA, USA). The temperature program 
started isothermal at 70 °C for 1 min followed by a 6 °C 
min− 1 ramp to 310 °C and a final 11 min hold at 310 °C. 
The system was then temperature-equilibrated at 70  °C 
for 5  min before the next injection. Mass spectra were 
collected at 20 scans/s with a range of m/z 40-600. The 
transfer line and the ion source temperatures were set to 
280  °C. QC standards were injected at scheduled inter-
vals for tentative identification and monitoring shifts in 
retention indices (RI).

2D GC‑ToF‑MS Data Analysis
The GC-MS data were pre-processed, cleaned, aligned, 
and processed using ChromaToF version 4.50.8.0 (LECO 
Corp., Michigan, USA) following settings from [71]. 
Briefly described settings viz. S/N: 5; peak width: 0.15, 
base line offset: 1; m/z range: 50-800. The aligned data 
were also deconvoluted using Automated Mass Spec-
tral Deconvolution and Identification System (AMDIS, 
NIST, USA) interface to match against the freely avail-
able MSRI spectral libraries of the Golm Metabolome 
Database available from Max-Planck-Institute for Plant 
Physiology, Golm, Germany (http://​csbdb.​mpimp-​golm.​
mpg.​de/​csbdb/​gmd/​gmd.​html) by matching the mass 
spectra and RI [72]. Metabolites were identified by 

http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html


Page 12 of 16Cox et al. BMC Genomics          (2021) 22:870 

comparing fragmentation patterns available in both the 
Golm database as well as NIST Mass Spectral Reference 
Library (NIST11/2011; National Institute of Standards 
and Technology, USA) library. Peak finding and quanti-
fication of selective ion traces were accomplished using 
AMDIS software. Base peak areas of the mass fragments 
(m/z) were normalized using median normalization 
and log2 transformation. Peak areas were normalized by 
dividing each peak area value by the area of the internal 
standard for a specific sample, and were further median 
normalized.

Liquid Chromatography‑Time of Flight Mass Spectrometry 
(LC‑TOFMS)
Plasma samples were processed as reported before [73]. 
A volume of 100 µL supernatant was mixed with 400 µL 
of a mixture of methanol and acetonitrile (5:3). Liver tis-
sue homogenate was added to 500 µL of a chloroform, 
methanol, and water mixture (1:2:1, v/v/v). These sam-
ples were then mixed and centrifuged at 13,000  rpm 
for 10  min at 4  °C. A 150 µL aliquot of supernatant 
was transferred to a sampling vial. The deposit was re-
homogenized with 500 µL methanol followed by a second 
centrifugation. Another 150 µL supernatant was added to 
the same vial for drying and then reconstituted in 500 µL 
of ACN: H2O (6:4, v/v) before separation.

An Agilent HPLC 1200 system equipped with a binary 
solvent delivery manager and a sample manager (Agi-
lent Corporation, Santa Clara, CA, USA) was used with 
chromatographic separations performed on a 4.6 × 150 
mm 5  μm Agilent ZORBAX Eclipse XDB-C18 chro-
matography column. The LC elution conditions are 
optimized as follows: isocratic at 1 % B (0–0.5 min), lin-
ear gradient from 1 to 20 % B (0.5–9.0  min), 20–75 % B 
(9.0–15.0 min), 75–100 % B (15.0–18.0 min), isocratic at 
100 % B (18–19.5 min); linear gradient from 100 to 1 % B 
(19.5–20.0  min) and isocratic at 1 % B (20.0–25.0  min). 
For positive ion mode (ESI+) where A = water with 0.1 % 
formic acid and B = acetonitrile with 0.1 % formic acid, 
while A = water and B = acetonitrile for negative ion 
mode (ESI−). The column was maintained at 30  °C as a 
5 µL aliquot of sample is injected. Mass spectrometry is 
performed using an Agilent model 6220 MSD TOF mass 
spectrometer equipped with a dual sprayer electrospray 
ionization source (Agilent Corporation, Santa Clara, CA, 
USA). The TOF mass spectrometer was operated with the 
following optimized conditions: [1] ES+ mode, capillary 
voltage 3500  V, nebulizer 45 psig, drying gas tempera-
ture 325 °C, drying gas flow 11 L/min, and [2] ES− mode, 
similar conditions as ES+ mode except the capillary volt-
age was adjusted to 3000 V. During metabolite profiling 
experiments, both plot and centroid data are acquired for 
each sample from 50 to 1,000 Da over a 25 min analysis 

time. Data generated from LC-TOFMS were centroided, 
deisotoped, and converted to mzData xml files using the 
MassHunter Qualitative Analysis Program (vB.03.01) 
(Agilent). Following conversion, xml files are analyzed 
using the open source XCMS package (v1.16.3) (http://​
metlin.​scrip​ps.​edu), which runs in the statistical package 
R (v.2.9.2) (http://​www.r-​proje​ct.​org), to pick, align, and 
quantify features (chromatographic events corresponding 
to specific m/z values and elution times). The software 
is used with default settings as described (http://​metlin.​
scrip​ps.​edu) except for xset (bw = 5) and rector (plottype 
= “m”, family = “s”). The created .tsv file is opened using 
Excel software and saved as .xls file. Compound identi-
fication was performed by comparing the accurate mass 
and retention time with reference standards available 
in our laboratory, or comparing the accurate mass with 
online database such as the Human Metabolome Data-
base (HMDB).

Metabolomic LC/GC-TOFMS data was analyzed using 
principle component analysis (PCA) and OPLS analy-
sis between groups. The differential metabolites were 
selected when they meet the requirements of variable 
importance in the projection (VIP) >1 in OPLS model 
and p < 0.05 from student t-test. The corresponding fold 
change shows how these selected differential metabolites 
varied from control. Final data analysis between control 
HFr-diet groups for each metabolite was conducted using 
independent t-test analysis with a p < 0.05 significance 
threshold.

Pathway and Network Analyses
For individual omic datasets, all quality molecules for 
the dataset were uploaded to Ingenuity Pathway Analy-
sis (IPA; QIAGEN). Unique gene symbols were used for 
genes and proteins, which are conserved between human 
and vervet. Pathway and network enrichment analy-
ses used differentially abundant molecules and the IPA 
Knowledge Base, and requiring direct connections based 
on experimental evidence among differentially abun-
dant molecules. Regulatory network prediction required 
previous experimental validation of direct connections 
in liver or liver cells. Right-tailed Fisher’s exact test was 
used to calculate enrichment of differentially expressed 
genes in pathways, p< 0.01[61].

Integrated Omic Analyses
Multi-omic data analysis combined the total gene, pro-
tein, and/or metabolite lists for all molecules that passed 
quality filters as appropriate for the data type. Lists 
included molecule ID, direction of change, fold change, 
and p-value. Pathway and network enrichment used the 
same parameters and statistical tests as for individual 

http://metlin.scripps.edu
http://metlin.scripps.edu
http://www.r-project.org
http://metlin.scripps.edu
http://metlin.scripps.edu
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omic datasets, requiring experimentally validated direct 
connections for differentially abundant molecules.

IPA calculation of p-values for a given pathway, func-
tion, or network takes into account the following: (A) The 
number of associated molecules in the pathway, function, 
or network; (B) The number of eligible analysis-ready 
molecules in the dataset with that pathway, function, or 
network annotation; (C) The total number of molecules 
associated with that annotation and are included in the 
selected reference set; (D) The total number of molecules 
in the reference set; and (E) The total number of analy-
sis-ready molecules that did not match that annotation. 
When molecules from multiple datasets are combined, 
the total number of molecules in the dataset increases, 
i.e., the denominator in the formula. If for example, a 
pathway is significant for transcript data, but no proteins 
or metabolites are directly connected to any of the genes 
in the pathway, then the p-value for that pathway will 
increase for the combined dataset compared to the tran-
scriptome only dataset.

miRNA – Gene/Protein pairing
Current pathway and network enrichment tools in IPA 
do not provide the means to filter direct connections 
based on inverse abundance between a miRNA and its 
target. In order to integrate our miRNA data, we per-
formed miRNA – gene pairing in IPA for our miRNA, 
gene and protein datasets, requiring opposite expression 
for experimentally validated or highly predicted inter-
actions (e.g., HFr miRNA up-regulated and HFr gene 
down-regulated compared with chow). Using the gene 
and protein IDs in this list, we merged it with the list 
of genes and proteins in all significantly enriched path-
ways and networks. This analysis does not provide the 
means to statistically evaluate the significance of miRNA 
addition to a given pathway or network; however, this 
approach provides evidence of an epigenetic component 
of the liver response to HFr diet.

Identification of pathway and network genes previously 
associated with NASH/NAFLD related traits
The following search terms, with all variation of names 
in the GWAS catalog, were used to query the current 
GWAS catalog [74]: alkaline phosphatase, aspartate 
aminotransferase, body mass index, body weight, fast-
ing blood glucose, fasting blood insulin, fat body mass, 
fatty acid, glucose, HbA1c, HDL cholesterol change, 
insulin, insulin resistance, insulin sensitivity, LDL cho-
lesterol change, lipid, liver fat, liver disease biomarker, 
liver fibrosis, low density lipoprotein cholesterol, 
non-alcoholic fatty liver disease, non-alcoholic steato-
hepatitis, obesity, omega-3 polyunsaturated fatty acid, 
omega-6 polyunsaturated fatty acid, total cholesterol, 

triglyceride, type II diabetes mellitus, very low density 
lipoprotein cholesterol. Genes with associations, based 
on the GWAS catalog, to any of these traits were com-
pared to the list of all differentially expressed miRNAs, 
genes and proteins from our transcriptomic and prot-
eomic datasets, and compared with the genes in pro-
teins in multi-omic significant networks and pathways.
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