Algorithm 1. ML-CNN algorithm.
Input: Training Data X = {xi,(yi × zi)} |
Output: Network layer parameter W, LIL, LBCD |
1 Given: minibatch n, learning rate α, μ and hyperparameter λ and λ1 |
2 Initialization: {t, W, θ, cj} |
3 t = 1 |
4 while(t != T) {compute the aggregate loss Lagg = LBCE + λLIL |
5 update LBCE |
6 |
7 update LIL |
8 cjt + 1 − α Δcjt |
9 update backpropagation error |
10 |
11 Update network layer parameter |
12 |
13 t = t + 1} |