Skip to main content
. 2021 Nov 29;7:e736. doi: 10.7717/peerj-cs.736

Algorithm 1. ML-CNN algorithm.

Input: Training Data X = {xi,(yi × zi)}
Output: Network layer parameter W, LIL, LBCD
1 Given: minibatch n, learning rate α, μ and hyperparameter λ and λ1
2 Initialization: {t, W, θ, cj}
3 t = 1
4 while(t != T) {compute the aggregate loss Lagg = LBCE + λLIL
5 update LBCE
6 γt+1=γtμ(LBCEt)/(γt)
7 update LIL
8 cjt + 1α Δcjt
9 update backpropagation error
10 Lt/xit=LBCEt/xit+λ(LILt/xit)
11 Update network layer parameter
12 Wt+1=WtμLt/Wt=Wtμ(Lt/xit)(xit/Wt)
13 t = t + 1}