Algorithm 1. ML-CNN algorithm.
| Input: Training Data X = {xi,(yi × zi)} | 
| Output: Network layer parameter W, LIL, LBCD | 
| 1 Given: minibatch n, learning rate α, μ and hyperparameter λ and λ1 | 
| 2 Initialization: {t, W, θ, cj} | 
| 3 t = 1 | 
| 4 while(t != T) {compute the aggregate loss Lagg = LBCE + λLIL | 
| 5 update LBCE | 
| 6 | 
| 7 update LIL | 
| 8 cjt + 1 − α Δcjt | 
| 9 update backpropagation error | 
| 10 | 
| 11 Update network layer parameter | 
| 12 | 
| 13 t = t + 1} |