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Abstract

On-line data collection is being used more and more, especially in the face of the COVID crisis. 

To examine the quality of such data, we chose to replicate lexical decision and item recognition 

paradigms from Ratcliff, Thapar, and McKoon (2010) and numerosity discrimination paradigms 

from Ratcliff and McKoon (2018) with subjects recruited from Amazon Mechanical Turk (AMT). 

Along with these tasks, we collected data from either an IQ test or a math computation test. 

Subjects in the lexical decision and item recognition tasks were relatively well- behaved with only 

a few giving a significant number of responses with response times (RTs) under 300 ms at chance 

accuracy, i.e., fast guesses, and a few with unstable RTs across a session. But in the numerosity 

discrimination tasks, almost half of the subjects gave a significant number of fast guesses with 

unstable RTs across the session. Diffusion model parameters were largely consistent with the 

earlier studies as were correlations across tasks and correlations with IQ and age. One surprising 

result was that eliminating fast outliers from subjects with highly variable RTs (those eliminated 

from the main analyses) produced diffusion model analyses that showed patterns of correlations 

similar to the subjects with stable performance. Methods for displaying data to examine stability, 

eliminating subjects, and implementing RT data collection on AMT including checks on timing 

are also discussed.
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The use of Amazon Mechanical Turk (AMT, www.mturk.com) in cognitive psychology 

research goes back nearly 10 years (Mason & Suri, 2012), with detailed reviews of 
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replication attempts (Crump, et al., 2013; Semmelmann & Weigelt, 2017) as well as 

strengths, weaknesses, ethical concerns, and issues with using the AMT recruitment 

platform (e.g. Woods et al., 2015; Stewart, et al., 2017). The consensus that has been 

emerging from this discussion is that on-line reaction time (RT) data appears to be reliable 

across a range of tasks, including lexical decision (Simcox & Fiez, 2014; Hilbig, 2016), 

spoken word identification (Slote & Strand, 2015), the flanker task (Crump, et al., 2013; 

Simcox & Fiez, 2014; Semmelmann & Weigelt, 2017; Anwyl- Irvine, et al., 2020), visual 

search (de Leeuw & Motz, 2016; Semmelmann & Weigelt, 2017), as well as the Stroop task, 

attentional blink, and masked priming (Crump, et al., 2013; Semmelmann & Weigelt, 2017).

We began this study before the COVID crisis occurred, but the results here are especially 

relevant for anyone who now wants to collect and use response time data from on-line 

platforms. Even before COVID, there has been a move to test subjects with on-line 

platforms, especially Amazon’s Mechanical Turk. This has the advantages that, for example, 

many subjects can be tested quickly and a range of abilities and age groups can be tested. 

But there is still the issue of quality of the data.

The differences in RTs that do occur between web-based and laboratory-based measurement 

tools are more pronounced in measures of central tendency (median RT) and less so in 

the variability of RTs (de Leeuw & Motz, 2016; Semmelmann & Weigelt, 2017), although 

a recent study suggests increased variability may be a problem (Bridges, et al., 2020). 

Nearly all such analyses have focused on statistical analyses of RT measures leaving 

accuracy and choice as the targets for model-based analyses of on-line experiments (e.g 

Hendrickson, et al., 2019; Bramley, et al, 2018; though see Dekel & Sagi, 2020, who 

modeled a perceptual bias task with the diffusion model, Ratcliff, 1978). The number of 

measurements per subject that are required for modeling is an issue in some applications. 

It is not a problem when examining individual differences or group differences between 

subjects or subject-groups because half an hour of data collection is sufficient to obtain 

parameter values that are accurate enough for such analyses (Ratcliff & Childers, 2015). 

However, for use in examining the accuracy of model fit, deviations between theory and 

data, or model comparison, the larger numbers of observation needed to accurately estimate 

the parameters of these models is likely one factor that might discourage use of AMT 

on-line data for such analyses.

In the current study we present a moderately large-scale model-based analysis of response 

time (RT) and accuracy data collected from AMT subjects. Our aims for the experiments 

reported here were to provide a comprehensive analysis of the quality of the data collected 

on-line from AMT subjects, to compare the AMT data to data collected in person from 

previously published experiments, and to perform model-based analyses of the AMT data 

using Ratcliff’s diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008) to see if the 

model-based analyses replicate the results from those studies. We performed two AMT 

experiments, the first with lexical decision and item recognition, replicating the designs of 

two experiments in Ratcliff, Thapar, and McKoon (2010), and the second replicating the 

designs of two numerosity discrimination experiments from Ratcliff and McKoon (2018). 

By using two tasks in each experiment, we could examine individual differences in model 

parameters between the two tasks and compare those with prior studies.
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However, there are potential problems in such on-line data. Subjects may adopt strategies 

that might not occur with a dedicated researcher monitoring a test session. This includes 

distractions during the experiment that might produce a small number of slow trials (for 

example, a beeping microwave), a decision to respond quickly and randomly at the onset or 

offset of the presentation of a stimulus, or chance performance due to technical issues or a 

lack of task understanding. Without dedicated monitoring, subjects are more likely to shift 

their behavior across trials and blocks, an issue that is potentially more difficult to detect and 

model appropriately. This could include adjusting speed-accuracy criteria as they explore a 

task, in some blocks responding quite quickly, while in other blocks delaying responses to 

produce more accurate performance, or simply losing interest in the task over time. Though 

we find evidence of these patterns in some, but not all of the experiments reported below, we 

find relatively consistent best fitting model parameters between on-line and laboratory-based 

tasks.

In Experiment 1 there were two tasks, lexical decision and item recognition. In the lexical 

decision task, subjects decided whether strings of letters were or were not words. In the item 

recognition task, subjects decided whether a test word had appeared in a preceding study list 

of words or not. Subjects in Experiment 1 were also given the Cattell culture-fair IQ test 

(Cattell & Cattell, 1960). In Experiment 2 there were also two tasks, one in which subjects 

decided whether there were more blue dots in an array than yellow dots (we call this the 

BY task), and one in which they decided whether the number of dots in an array (all of the 

same color) was or was not larger than 25 (we call this the Y25 task). Some of the subjects 

in Experiment 2 were given the Cattell culture-fair IQ test and others a simple math-fluency 

test.

We chose the four tasks used in the experiments in part because they provide a rich set 

of results as a target for replication and comparison between laboratory-based and on-line­

based data collection. Within each task, standard independent variables were manipulated: 

For lexical decision, word frequency was manipulated, for item recognition, word frequency 

and number of presentations of study words were manipulated, for the BY task, both the 

number of blue and yellow dots and the summed area of the dots were manipulated, and for 

the Y25 task, the number of dots and the summed area were manipulated.

In previous studies (Ratcliff, Thapar, and McKoon, 2010; Ratcliff and McKoon, 2018) these 

tasks were modeled using the standard diffusion model. The model gives an account of 

the effects of independent variables on the cognitive processes involved in making simple 

two-choice decisions in the experiments described here by mapping accuracy and RT data 

onto underlying components of processing. The main components are evidence from the 

stimulus (drift rate) that drives the decision process, the amount of evidence needed to 

make a decision (boundary separation), and the duration of processes other than the decision 

process (nondecision time). For the lexical decision and item recognition tasks, there is 

different drift rate for each condition of the experiment. But for the numerosity tasks, there 

is a model of drift rate (expressions for both the mean and the SD across trials) with many 

fewer parameters than the number of conditions. The settings of the boundaries are assumed 

to be under a subject’s control so that when the boundaries are set close to the starting point, 

responses will be faster and accuracy will be lower. When the criteria are set farther apart, 
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responses will be slower and accuracy will be higher. With the settings of the boundaries and 

nondecision times abstracted out of RTs and accuracy though application of the model, drift 

rate gives a direct measure of the quality of the information driving the decision process.

In the current study, we compare the previous laboratory-based results to an analysis of the 

data collected on-line from AMT subjects. There are four sets of benchmarks on which the 

experiments and model-based analyses are evaluated. These include: 1. The empirical effects 

within each task, 2. the ability of the diffusion model to fit the data from each task, 3. the 

relationships (correlations) between pairs of model parameters across individuals, and 4. The 

relationships (correlations) between IQ and the math test and model parameters. We now 

discuss each of these benchmarks in depth.

First, all four tasks have clear, established empirical patterns that should occur. In the lexical 

decision task, accuracy should be highest and RT lowest for high frequency words, followed 

by low frequency words, then very low frequency words. In the item recognition task, results 

should show a standard mirror effect in which accuracy is higher and RT shorter for low 

frequency words than high frequency words for both studied and new words. Also, for 

words studied twice, accuracy should be higher and RT lower than for words studied once. 

For the BY numerosity discrimination task, accuracy should decrease as the difference in 

numerosity between blue and yellow dots decreases and also as the total numerosity of 

the two colors increases. RT should decrease as the numerosity difference increases, but 

counterintuitively, for a fixed small difference, as total numerosity increases RT should 

decrease (instead of increasing). For the Y25 task, as the numerosity increases from lower 

counts to the maximum of 25, accuracy should decrease and RT increase.

Second, previous laboratory-based studies have identified stable patterns of best-fitting 

parameter values across conditions in these tasks. In lexical decision and item recognition 

tasks, changes in drift rates (but no other parameters) account for differences in accuracy and 

correct and error RTs across stimulus conditions. In the BY and Y25 tasks, both drift rates 

and the across-trial SD in drift rate change across stimulus conditions. The diffusion model 

fit the data from all four tasks in the original studies well and the model parameters provided 

coherent accounts of the data.

Third, individual difference analyses showed correlations between parameter values.

Specifically, in the recognition memory and lexical decision tasks, drift rates correlated 

between tasks, boundary separations correlated, and nondecision times correlated. Similarly, 

for the two numerosity discrimination tasks (BY and Y25), drift rates correlated between 

tasks, boundary separations correlated, and nondecision times correlated.

Fourth, in the recognition memory and lexical decision tasks drift rates correlated with IQ 

but did not change with age, and boundary separation and nondecision time both changed 

with age but were not correlated with IQ. However, IQ and math computation tasks were not 

studied in the earlier studies of the numerosity tasks.

One important result is that for the numerosity tasks, nearly half the subjects produced 

over 5% fast guesses. Many of these subjects also had considerable variability with runs 
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of trials that were fast and runs that were slow. This instability is easy to see in plots of 

each RT from each trial for each subject in time-series plots presented later. In contrast to 

the numerosity tasks, most AMT subjects for lexical decision and item recognition showed 

stable performance.

Recruiting Subjects

A total of 308 AMT workers (AMT’s word for subjects) were recruited in batches of 

between 10 to 50 in parallel, with the intention of recruiting at least 150 subjects in each of 

the two experiments. To participate in the tasks, subjects were required to have completed 

at least 50 previous HITs (Amazon’s acronym for an experiment: human intelligence task) 

and an approval rate of at least 90% on previous HITs. Subjects were also required to be 

18 years old or older, with English as their native language, normal or corrected-to-normal 

vision, and normal color perception (all self-reported). Throughout a session, there was a 

“STOP TASK” button at the top right-hand corner of the screen so subjects could stop the 

session at any time. They were paid $10 for the session or if they hit the STOP TASK button 

before the end of the session, they were paid proportionally according to the amount of the 

session they had completed. Subjects who did not complete at least 80% of the trials and 

follow instructions were eliminated from data analyses.

For Experiment 1, 154 subjects began the experiment, 4 subjects finished less than 20% of 

the item recognition task and one 65% of that task. These subjects were eliminated. One 

subject did not make many Cattell task responses, and 6 subjects mainly hit one response 

key or made more than 5% fast guesses in one of the tasks. This left 142 subjects in 

Experiment 1 that were used for data analysis and modeling.

For Experiment 2, 199 total subjects were recruited, with 136 assigned to the math task and 

62 to the Cattell task. Of the subjects who received the math test, 12 subjects completed less 

than 24% of the second numerosity task, and 3 less than 63%. Of the 121 subjects left, three 

responded mainly with one response key and 4 had performance at chance leaving 114 used 

in the analyses. For the Cattell test, 7 subjects completed less than 10% of the last task, one 

completed 62%, 1 responded with mainly one response key and 1 was at chance, leaving 52 

used in the analyses.

General Procedures

At the beginning of each experiment, subjects read a brief description of the tasks for the 

experiment on the AMT website. If they chose to participate, a consent form, approved by 

Ohio State University’s Institutional Review Board, was displayed and subjects gave their 

consent by clicking on a box. After that, a form was displayed on which subjects provided 

basic demographic data by typing numbers or selecting choices for year of birth, gender, 

ethnicity, and race. Finally, subjects were asked to close all applications on their computer, 

to close all other tabs on their browser window, to maximize the size of that window, and 

to keep the AMT window open until the end of the session. These behaviors were requested 

but not required in order to run the experiment and they were not checked. After completing 
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the setup, subjects clicked a button and a new browser window opened which contained the 

experiment tasks. This tab closed at the end of the session.

Stimulus presentation and response collection were performed by a custom-made javascript 

program (based on Ratcliff’s highly updated laboratory real-time system, Ratcliff, 1994; 

Ratcliff, Pino, & Burns, 1986) running locally on the subject’s computer. The timing 

of stimulus presentation and response recording had millisecond accuracy contingent on 

the refresh rate (scan rate) of the client-computer display. All data were collected on the 

subject’s computer and then were uploaded automatically to the host computer when either 

a session finished or a subject hit the “STOP TASK” button. When the session ended or 

when the STOP button was pressed, a subject was given a “HIT code” to be used to redeem 

payment.

The Cattell Culture-Fair IQ

This test (Cattell and Cattell, 1960) is a 12.5 min. multiple-choice test intended to measure 

non-verbal (fluid) intelligence, similar to the Raven’s progressive matrices test. It has three 

different scales and we used Scale 2, which is aimed at adolescents and adults. A sample test 

(different from the one we used) that shows questions that are similar to those in the Cattell 

test that we used can be seen at https://www.psychologytoday.com/us/tests/iq/culture-fair-iq­

test.

There were four subtests. Each began with instructions and then the test items were 

displayed, all on the same page, one line per item. Responses were made by clicking on 

the buttons next to the choice option using a mouse or touchpad. The first section has three 

drawings and five options, the aim was to choose the option that completed the sequence. 

The second section has five drawings and the subject had to choose the one that was 

different from the others. The third had a 2×2 array with one cell empty and the task was 

to choose from five options which one completed the array. The fourth had one drawing 

with a dot in it and five options and the subject was to choose the one that could have a dot 

drawn in it in the same way as the example drawing. The times for the four sections were 

3, 4, 3, and 2.5 min. respectively. The numbers of correct choices for the four subtests were 

combined (there was a total of 50 items) and then IQ was calculated as a function of age. 

Ages and scores on the IQ and math fluency test are shown in Table 1 (and distributions are 

shown in Figures 4 and 11).

The Math Fluency Test

We constructed a math fluency test that was based on the Math Fluency subtest of the 

Woodcock-Johnson III Tests of Achievement. The Woodcock-Johnson test is composed of 

a series of simple addition, subtraction and multiplication problems with integers between 

zero and 10 and correct responses between 0 and 81 and responses are written on the sheet 

of paper that contains the problems. We wrote new problems that were similar to those of 

the subtest. The problems were displayed all at once and remained on the screen during 

the entire timed test. Subjects typed their answer into a box on the screen that was located 

below each problem and were instructed to use the tab key to move from one answer box 
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to the next. The test began with 30 typing practice items and for each, a number between 

0 and 81 was displayed and subjects were asked to type that number into a response box 

on the screen. They used the tab key to move from one response box to the next. After 

the practice, the addition, subtraction, and multiplication problems were displayed, one at a 

time, and subjects typed their answers into the response box. They were instructed to use the 

“tab” key to move to the next item, and to respond as quickly and accurately as possible. 

They were given 3 minutes to complete as many problems as possible out of a total of 

160 in 3 min. The time remaining until the 3 min. was up was displayed in a box on the 

right side of the page. The task was evaluated in post-processing, with the grade-equivalent 

score derived from how many items could be correctly completed in three minutes from 

the Woodcock-Johnson subtest scale (corrected for the difference in writing versus typing 

responses).

Experimental Tasks

The lexical decision and recognition memory experiments were presented as plain text 

in the top left corner of an 80 column by 24 row HTML textarea window positioned in 

the center of the screen and surrounded by an 8-pixel wide black border. The font was 

white, monospace, sans serif with a 50% gray background. The numerosity task experiments 

were presented as HTML canvas elements (colored dots on a gray square pedestal). Each 

experiment began with instructions in plain text. Embedded in each experiment were brief 

reminders and instructions about the correct response keys and the importance of rapid 

responses. Stimuli were presented with millisecond accuracy (contingent on the refresh rate 

of the client computer display), and responses were recorded with millisecond accuracy 

(contingent on the scan rate of the client computer keyboard). In all the tasks, subjects 

initiated each block by pressing the space bar on the keyboard. A “Stop Task” button was 

present at all times at the upper right corner of the experiment web page. Full instructions 

are presented in the supplement.

In both numerosity tasks, the dots were displayed within a 640 by 480 pixel HTML canvas 

element. The dots had different sizes and dot centers were placed randomly within a 360 

by 360 pixel area at the center of the element. The background was a 480 by 480 pixel 

square, colored gray to control luminance (Halberda et al., 2008). The visual angle of the 

background and dots was dependent on the screen resolution of the subjects’ display. For 

a large screen (700 mm wide) with a resolution of 1920 by 1080 pixels (0.365 by 0.365 

mm/pixel), the 480×480 gray background was 18.7 × 18.7 degrees of visual angle when 

viewed from a distance of 53 cm, and the 6, 8, 10, 12, 14, or 16 pixel dot diameters 

subtended angles of 0.236, 0.315, 0.394, 0.473, 0.552, or 0.631 degrees respectively. For 

a small screen (256 mm wide) with a resolution of 1366 by 768 pixels, the 480×480 gray 

background was 9.7 × 9.7 degrees of visual angle when viewed from a distance of 53 cm, 

and the 6, 8, 10, 12, 14, or 16 pixel dot diameters subtended angles of 0.122, 0.162, 0.203, 

0.243, 0.284, or 0.324 degrees respectively. We constrained the positions of the dots so that 

the maximum horizontal/vertical distance dot centers could be separated by was 360 pixels 

and the minimum spacing between dot edges was 5 pixels.
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One technical aspect of displaying these non-text images has to do with how they are drawn 

on a screen. An image is drawn on the screen line by line from the top left to the bottom 

right, usually in 16 ms per frame. If an image took, say, 200 ms, to draw, then the image 

would appear starting at the top of the screen and gradually strips would appear moving 

down the screen. In order to allow the image to appear in one sweep, the dots were drawn 

on a hidden (640 by 480 pixel) HTML canvas element (with colored dots on a gray square 

pedestal). Then when the whole array was drawn, it was copied to a foreground canvas 

element and this made it be displayed all in one frame at the onset of the presentation of the 

image.

For the two numerosity tasks, dot stimuli were presented for 300 ms and then the screen 

returned to the background color. Responses were collected by key presses on the PC 

keyboard. For both tasks, there were four example/practice trials and for these, the screen 

also displayed the correct response so that subjects would be certain to understand the 

instructions (e.g., it would say “an example of more blue dots” when the decision was about 

which color had the more dots).

We should also note two issues about timing. As described above, displays are drawn in 

frames at 16 ms units (though this can be lower with some displays). If the display is not 

synchronized to the screen refresh, then the image may begin drawing halfway down the 

screen. If the display is presented in multiples of the refresh rate, then half the last image 

will be displayed halfway down the screen and the whole image will have been presented for 

the presentation duration. The visual system integrates these successive screens so the partial 

displays are averaged over. With 300 ms presentation duration, there is not a problem with 

the screen refresh. There is another potential issue and that is with the keyboard response 

detection. Some older keyboards are scanned at quite a slow rate, e.g., 60 ms. This is a 

uniform distribution with SD: the range divided by the square root of 12, in this example 

with a 60 ms scan rate, the SD is 17.3 ms. This variability adds variability to the estimate 

of RTs, but this is small. For example, if the SD in RT is 200 ms, then the combined SD 

is the square root of the summed variances which is 200.7 ms, i.e., the added variability is 

minuscule. Thus, screen and keyboard timing issues on the subject’s computer are likely not 

a problem.

A subject’s progress through the blocks was displayed at the end of each block as the 

percent of blocks completed, for example, “You are now 17% through the task.” This 

was done because some pilot subjects were terminating the experiment before the end of 

this task. In all the tasks, subjects initiated each block by pressing the space bar on the 

keyboard. A “Stop Task” button was present at all times at the upper right corner of the 

experiment web page. If subjects chose to stop the experiment prematurely, they clicked on 

this button, which generated a pop-up dialog box asking for a confirmation, whereupon the 

data was uploaded to the host computer and the subject was given their HIT code with a 

suffix attached, indicating an early end to the HIT. Subjects who completed only a portion 

of the experiment were compensated proportionally to how much of the experiment was 

completed.
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The demographics data and the Cattell or math test data were passed back to the host 

computer and were incorporated as the first line of the final data file for each subject. 

This produced a long line with age, ethnicity, race, the cognitive task (lexical decision/item 

recognition or numerosity), and the scores from the IQ or math test. Once the subject 

completed the background task, they were immediately taken to the instruction page for the 

cognitive or numerosity tasks.

The Diffusion Decision Model

A central aim of this research was to determine whether the data collected from AMT 

subjects produced a replication of model-based analyses in past studies.

As described above, the two-choice diffusion model separates the quality of the evidence 

entering a decision (drift rate, v) from the decision criteria and nondecision processes. 

Decisions are made by a noisy process that accumulates evidence over time from a starting 

point z toward one of the two decision criteria, or boundaries, a and 0. When a boundary 

is reached, a response is initiated. Drift rate is determined by the quality of the evidence 

extracted from the stimulus in perceptual tasks and the quality of the match between the 

test item and memory in memory and lexical decision tasks. The mean of the distribution 

of times taken up by nondecision processes (the combination of the time for stimulus 

encoding, the time to extract decision-related information from the stimulus representation, 

the time for response execution, and so on) is labeled Ter. Within- trial variability (noise) 

in the accumulation of information from the starting point toward the boundaries results 

in processes with the same mean drift rate terminating at different times (producing RT 

distributions) and sometimes at the wrong boundary (producing errors).

The values of the components of processing vary from trial to trial, under the assumption 

that subjects cannot accurately set the same parameter values from one trial to another (e.g., 

Laming, 1968; Ratcliff, 1978). Across-trial variability in drift rate is normally distributed 

with SD η, across-trial variability in starting point is uniformly distributed with range sz, and 

across-trial variability in the nondecision component is uniformly distributed with range st. 

The precise form of these distributions is not critical, Ratcliff (2013, also 1978) showed that 

different distributions produced similar behavior of the model.

Also, there are “contaminant” responses-- slow outlier response times as well as responses 

that are spurious in that they do not come from the decision process of interest (e.g., 

distraction, lack of attention). To accommodate these responses, we assume that, on some 

proportion of trials (po), a uniformly distributed random number between the minimum and 

maximum RT for the condition is used for the decision RT (see Ratcliff & Tuerlinckx, 

2002). The assumption of a uniform distribution is not critical; recovery of diffusion model 

parameters is robust to the form of the distribution (Ratcliff, 2008). We fit the model 

with the contaminant assumptions to the item recognition and lexical decision experiments 

and the estimated proportions of contaminants were 0.7% and 0.2% respectively. These 

estimates were obtained from data in which fast and slow outliers had been eliminated. The 

values were too small to perform any further analyses. The two numerosity tasks were fit 
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without this assumption in the original article and so to provide parallel analyses, we left 

them out of our analyses here.

The values of all the parameters, including the variability parameters, are estimated 

simultaneously from data by fitting the model to all the data from all the conditions of 

an experiment. The model can successfully fit data from single subjects with reasonable 

accuracy if there are around 400–1000 total observations per subject, which typically takes 

about 20–45 minutes of data collection time for the kinds of tasks considered in this article. 

Variability in the parameter estimates is much less than differences in the parameters across 

subjects, resulting in meaningful correlations of individual parameters and measures (e.g. 

IQ).

The method we use to fit the model to data uses a SIMPLEX minimization routine that 

adjusts the parameters of the model until it finds the values that give the minimum G-square 

value (see Ratcliff & Tuerlinckx, 2002, for a full description of the method). The data 

entered into the minimization routine for each experimental condition were the .1, .3, .5, 

.7, .9 quantile RTs for correct and error responses and the corresponding accuracy values. 

The quantile RTs and the diffusion model were used to generate the predicted cumulative 

probability of a response by that quantile response time. Subtracting the cumulative 

probabilities for each successive quantile from the next higher quantile gives the proportion 

of responses between adjacent quantiles. For the G- square computation, these are the 

expected values, to be compared to the observed proportions of responses between the 

quantiles (i.e., the proportions between 0, .1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2, .2, 

.2, and .1). The proportions for the observed (O) and expected (E) frequencies and summing 

over 2N[Olog(O/E)] for all conditions gives a single G2 (a log multinomial likelihood) value 

to be minimized (where N is the number of observations for the condition).

The diffusion model is tightly constrained. The most powerful constraint comes from 

the requirement that the model fit the right-skewed shape of RT distributions (Ratcliff, 

1978; Ratcliff & McKoon, 2008; Ratcliff et al., 1999). In addition, changes in response 

probabilities, quantile RTs, and the relative speeds of correct and error responses across 

experimental conditions that vary in difficulty are all captured by changes in only one 

parameter of the model, drift rate. The other parameters cannot vary across levels of 

difficulty. For the decision criteria, subjects could only set them as a function of difficulty 

if they already knew, before the accumulation process started, what the level of difficulty 

would be. For the nondecision component, we usually assume that the duration of stimulus 

encoding, matching against memory, response output, and other such nondecision processes 

do not vary with difficulty.

Experiment 1

This experiment was composed of the Cattell IQ test, a lexical decision experiment, and 

an item recognition experiment, presented in that order. For lexical decision and item 

recognition, the stimuli were words that occurred with high, low, and very low frequency 

in English. There were 800 high-frequency words with frequencies from 78 to 10,600 per 

million (mean=325, SD=645, Kucera & Francis, 1967); 800 low-frequency words with 
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frequencies of 4 and 5 per million (mean = 4.41, SD = 0.19); and 741 very-low-frequency 

words, with frequencies of 1 per million or no occurrence in the Kucera and Francis corpus 

(mean = 0.37; SD = 0.48). All of the very-low- frequency words occurred in the Merriam­

Webster Ninth Collegiate Dictionary (1990) and they were screened by three Northwestern 

undergraduate students. Any words that they did not know were eliminated. No words were 

used in both tasks.

For the Cattell test, subjects were given instructions for each of the sections immediately 

before them and they pressed the space bar to begin each one. The lexical decision and item 

recognition tasks were each preceded by instructions and subjects pressed the space bar to 

begin.

In the lexical decision task, there were 17 blocks, each containing 30 letter strings: 5 high- 

frequency words, 5 low-frequency words, 5 very-low-frequency words, and 15 nonwords. 

Subjects were asked to press the “/” key if the letter string was a word and the “z” key if it 

was not, as quickly and accurately as possible. The first block was for practice and for each 

response the subject made that was incorrect the word “ERROR” was displayed for 750 ms 

followed by a blank screen for 200 ms and then the next test item. For all the other blocks, 

there was no error feedback; test items were followed only by a 150 ms blank screen. The 

words and nonwords were randomly chosen from their pools and they were presented in 

random order.

In the item recognition task, there were 17 blocks of trials. For each, the list of words to be 

remembered consisted of 8 high- and 8 low-frequency words, plus a very-low-frequency 

buffer word at the end of the list. Four of the high- and four of the low-frequency 

words were displayed once and the other four were displayed twice. Each study word was 

presented for 1300 ms with a 200 ms blank screen before the next study word was presented. 

Test words immediately followed the to-be-remembered list, with 17 words from the list 

and 17 words that had not been on the list. The latter were 8 high- and 8 low-frequency 

words, plus the buffer word and a very-low-frequency word that had not appeared in the 

to-be-remembered list.

Words were randomly chosen from their pools and presented in random order. The first two 

words in a test list were fillers, the buffer word and a very-low-frequency word that had not 

appeared in the to-be-remembered list. Subjects were asked to press the “/” key if a word 

had appeared in the to-be-remembered list and the “z” key if it had not, again as quickly 

and accurately as possible. For the item recognition tasks at the end of each block, feedback 

on accuracy for that block was displayed on the screen: “excellent, very good, good, below 

average, or very low” and we defined these as: 31–34, 27–30, 23–26, 20–22, and 0–19 

correct, respectively, out of 34.

Results

This section begins with showing that the results from the experimental paradigms used in 

past research can be replicated with AMT in terms of standard empirical patterns and the 

Ratcliff and Hendrickson Page 11

Behav Res Methods. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects of independent variables. This is the first critical result for the utility of AMT. We 

then go on to results from fitting the diffusion model to the data.

Accuracy and RT

RTs less than 300 ms and greater than 4000 ms were eliminated from the analyses (less 

than 1% of the data, 0.0097). Table 2 shows values of accuracy and mean RTs for correct 

and error responses for the lexical decision and item recognition tasks as a function of 

experimental conditions. The data show the same qualitative pattern of results as seen 

in laboratory-based studies. For lexical decision, accuracy was highest for high-frequency 

words, lower for low- frequency words, and lowest for very-low-frequency words. Mean 

RTs were longer for lower accuracy responses. Error mean RTs were longer than correct 

mean RTs for nonwords but shorter than correct responses for words. For item recognition, 

accuracy was higher and RTs shorter for low-frequency words than high-frequency words, 

the standard mirror effect. Responses for studied words were faster and more accurate 

if the words had been presented twice than once. Even though some of the subjects 

showed moderate numbers of fast guesses and unstable performance across the session 

(examined later in the results section), we used data and model fits for all the subjects in this 

experiment.

Fits of the Diffusion Model to Data

We display fits in two reasonably standard ways. The first shows quantile-probability plots 

in which the 0, .1, .3, .5, .7, and .9 quantile RTs are plotted vertically (Figure 1 for lexical 

decision). This provides information about how accuracy changes across the conditions of 

an experiment that differ in difficulty and how shapes of distributions change. The shapes 

could be seen (approximated) by drawing equal-area rectangles between the quantile RTs, 

as shown in the bottom right panel of Figure 1. The .1 quantile represents the leading edge 

of the distribution and the .9 quantile represents the tail of the distribution. The median (.5 

quantile) is the middle row. The change in mean RTs across conditions is mainly a spread in 

the distributions, for both lexical decision and item recognition.

The diffusion model fit the data from both lexical decision and item recognition well. The 

G-square multinomial likelihood function is distributed as chi-square and so we can compute 

the critical chi-square values. For the lexical decision task, the value was 48.6 and for the 

item recognition task, it was 72.2. The mean values of G-square are close to the critical 

value, which indicates a good fit of the model to data (see Ratcliff et al., 2010). The average 

quantiles from the fits to individual subjects (averaged in the same way as the data) are 

shown in Figure 1 and show little deviation between theory and data.

The second kind of way to display fits of the model to data is that shown in Figures 2 

and 3. Accuracy and the .1, .5, and .9 quantile RTs are shown for every subject and every 

condition, including error RTs for conditions with more than 10 observations. These show 

no systematic deviations between theory and data.

The 2SDs shown in Figures 2 and 3 are not confidence intervals (i.e., not plus or minus 

2 SD). The SD’s for probability were computed from sqrt(p(1-p)/N) with a representative 
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value of p shown in the figure. The SDs in quantiles were computed using a bootstrap 

method in which the RTs for each condition were sampled with replacement 100 times, the 

quantiles were computed, and the SDs in the 100 values of each quantile were computed.

The parameters from the best fit of the model to data are shown in Tables 3 and 4. The mean 

age of the subjects was 35.5 years which is older than the college age subjects in Ratcliff 

et al. (2010) that we will use as our comparison group (the distribution of ages is shown 

later). For both tasks, nondecision time was about 40–50 ms longer for our subjects than the 

young adults in Ratcliff et al. (and about 100 ms shorter than the 60–90 year olds), boundary 

separation was smaller (by about 0.03), and across-trial variability in drift rate and starting 

point were both smaller.

Boundary separation was smaller in this experiment likely because these AMT subjects 

prioritized speed and we know that boundary separation is adjustable (Ratcliff, Thapar, & 

McKoon, 2001, 2003, 2004). Drift rates in Ratcliff et al. (2010) did not differ much over age 

group and the drift rates for both experiments in this study were quite similar to the those for 

the three age groups in the Ratcliff et al. study.

In Ratcliff et al. (2010) the boundary separation, nondecision time, and drift rate parameters 

were found to correlate across subjects in the three tasks used in that study. IQ, but not 

age, was correlated with drift rates. Boundary separation and nondecision time differed as a 

function of age but not IQ (ages were distributed over 20–70 in these data, in Ratcliff et al., 

young and older groups were used with none in the 30–60 year old range). In Figure 4 we 

present scatter plots and correlation coefficients for the various combinations (for both tasks) 

of the values of the model parameters, accuracy and mean RT values, as well as age and IQ. 

The diagonal of Figure 4 shows distributions for each of these values. The results replicate 

those of Ratcliff et al. (2010). First, boundary separation, nondecision time, and drift rate 

each correlate between the two tasks as do mean RT and accuracy. The correlations range 

from 0.47 to 0.76, all highly significant with 131−2=129 degrees of freedom. Boundary 

separation and nondecision time correlated with each other but neither correlated with 

drift rates. Age correlated with mean correct RT for the two tasks and more strongly with 

nondecision time but less strongly with boundary separation. IQ correlated with accuracy for 

the two tasks and with drift rates for the two tasks. Drift rates correlate with accuracy and 

mean RT correlated with boundary separation and nondecision time.

These results show a strong replication of the main results from Ratcliff et al. (2010). This 

means that for these tasks, the AMT subjects provide results that are quite similar to those 

from subjects that were tested individually by research assistants monitoring the task in 

Ratcliff et al. This picture changes for the numerosity tasks.

RTs Across the Session

An aspect of data usually not reported in studies in psychology is the stability of RTs across 

a session for a given task. If regimes change over trials, then aggregating data across trials 

or blocks of trials can give an incorrect picture of the data and incorrect values for the 

parameters of any model that is fit to the data. In the lexical decision and item recognition 
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tasks, by and large, RTs were stable, but in the numerosity tasks, as we see later, they were 

not for many of the subjects.

After some exploration, we found that the simplest way to examine stability across a session 

was to plot a time series of the RTs for every trial. This mixes all conditions and correct and 

error responses so there will be a spread of RTs over trials, but for stable performance, the 

spread of RTs should not change systematically over the session.

Figure 5 shows plots of RTs across the session for a sample of 25 subjects that includes the 

least stable subjects and a sample of stable subjects. Plots for all the subjects are shown in 

the supplement.

Subjects 10, 15, 45, …, 124 are bad subjects for the lexical decision and item recognition 

tasks with some large vertical excursions for groups of trials. For brevity (and to be 

evocative), we label subjects as “bad” and “good.” Subjects 57–70 are good subjects, i.e., 

those without many vertical deviations in the RT distribution across the session. The sample 

in Figure 5 was hand selected, but plots for all subjects are shown in the supplement. The 

bad subjects were excluded from the model analyses presented above based on examination 

and identification of fast guessing. The criteria for identifying the 10 bad subjects were: 5 

percent or more of their responses were shorter than 300 ms and their accuracy for these 

responses was at chance for at least one of the two tasks.

One feature that jumps out from the data from some of the bad subjects is an occasional run 

of fast guesses with RTs under 300 ms (and accuracy at chance, shown in other analyses). 

When this occurs, the whole RT distribution shifts down to produce RTs a little higher 

or lower than 300 ms with very little spread. This is damaging for model-based analyses 

because it produces a high proportion of fast guesses which stretches the leading edge of 

the RT distributions thus distorting model fits to the data. Sometimes what appears to be a 

high proportion of errors from a condition for a subject can be fast guesses. In Figure 5, the 

vertical lines represent trial blocks and the thick (double) lines in the middle of a session 

represent the switch from the lexical decision task to the item recognition one. Most of the 

vertical lines align, but those that do not come from subjects who finished all but a few 

blocks of trials.

Subjects 105 and 114 show extreme numbers of fast guesses, especially in the lexical 

decision task. Subject 105 has 10 blocks of lexical decision trials (the 8th through the 16th 

blocks) with most responses fast guesses. The subject also has large changes in RTs within 

individual blocks in the item recognition task. Subject 114 has most RTs in lexical decision 

less than 300 ms and some blocks in item recognition with RTs less than 300 ms. Subjects 

10, 45, 46, 56, 88, 89, 97, and 124 show moderate to large shifts in RTs across trials in item 

recognition with RTs falling to fast guesses in some blocks for most of these subjects.

In the supplement, we show plots for all the subjects in this experiment and the 

corresponding ones in Ratcliff et al. (2010). There are many more trials per task in Ratcliff 

et al’s. experiment, and there are only 2 subjects that show instability of the kind for the 

bad subjects in Figure 5. Subjects 89 and 123 in lexical decision (Ratcliff et al., 2010) show 

instability, but because there were about 2000 observations in the session for the lexical 
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decision task, eliminating half of the trials left enough data to produce good quality model 

fits. These subjects showed stable performance in the item recognition task.

One might wonder why subjects in the Ratcliff et al. (2010) experiment had performance 

that was so stable. There are three possible reasons. First, the subjects had practice for 

at least half a session on a lexical decision task prior to the three other experiments and 

this could have allowed them to calibrate. Second (and perhaps more important) they were 

tested by a research assistant who stayed and observed the individual throughout a session. 

If they began to change performance in a noticeable way (e.g., fast guessing or slowing 

down a lot), the research assistant would give verbal feedback between blocks of trials. 

Third, the subjects were paid well ($18 per session in today’s dollars - which included a 

travel allowance) and they were tested for four sessions in the experiment and so they were 

motivated to perform properly because a failure to perform properly would result in loss of 

pay.

Experiment 2

This experiment also consisted of three tasks, either the Cattell Culture-Fair IQ test or the 

math fluency test and the two numerosity tasks (the BY and Y25 tasks). The order of the 

parts of the experiment was first the Cattell test (52 subjects) or the math test (114 subjects), 

second the BY task, and third the Y25 task. Each of these began with instructions. For the 

BY and Y25 tasks, there were four examples of stimuli that stayed on the screen until a 

button was pressed, with text specifying the correct response above the stimulus. Subjects 

pressed the space bar to see each example and then to begin the blocks of test trials. Each 

test item was displayed for 300 ms.

Following a response (which could be made during the 300 ms stimulus display), either 

“correct” or “ERROR” was displayed for 250 ms, then the screen returned to the gray 

background, and then 250 ms later the next test item was displayed. The test items were 

displayed for only 300 ms to reduce the possibility that subjects might use slow strategic 

search processes to perform the task (as discussed in Ratcliff & McKoon, 2018).

In the BY task, blue and yellow dots were intermingled in an array (Figure 4A in Ratcliff 

& McKoon, 2018) and subjects decided which color had the larger number of dots, pressing 

the “/” key for yellow and the “z” key for blue. The arrays varied in the numerosities of 

their dots and the differences between their numerosities. There were 10 combinations of 

the numbers of blue and yellow dots; 15/10, 20/15, 25/20, 30/25, and 40/35 for differences 

of 5; 20/10, 30/20, and 40/30 for differences of 10; and 30/10 and 40/20 for differences of 

20. The summed areas of the dots of the two colors were either proportional to numerosity 

or equal to each other; if proportional, they were randomly selected from the 6 dot sizes 

which produced a larger summed area for the larger numerosity color. If equal, the dots 

were selected such that the total areas of blue and yellow were the same and so the areas of 

individual dots were larger for smaller numerosities. Thus, there were 20 conditions in the 

experiment, 10 pairs of numerosities crossed with 2 area conditions. There were 8 blocks 

of 100 trials with each condition represented five times in a block. The first 24 trials were 

eliminated from data analyses, as was the first trial of each block.
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In the Y25 task, yellow dots were displayed in a single array (Figure 4F, random 

arrangement, in Ratcliff & McKoon, 2018). The number of dots in an array was 10, 15, 

20, 30, 35, or 40. As for the BY task, there was an area manipulation. Either the dot sizes 

of an array were selected randomly from the six possibilities so that area was proportional 

to numerosity, or the dots were selected such that the summed area of the dots in an array 

was equal to the average area of 25 dots randomly selected. With the six numerosities and 

the two area conditions, there were 12 conditions in the experiment.

Subjects were instructed to press the “z” key if the number of dots was less than 25 and 

the “/” key if the number was greater than 25. There were 8 blocks of 96 trials with each 

condition presented 8 times per block. As for the BY task, we eliminated the first 24 trials in 

the Y25 task and the first trial in a block as warmup/practice.

Accuracy and RT Results

Before working with the data, we eliminated six subjects who either hit one response key 

most of the time or who responded at chance through the whole session, leaving 166 

subjects. We then eliminated 74 out of the 166 subjects for whom 5 percent or more of their 

responses were shorter than 300 ms and their accuracy for these responses was at chance for 

at least one of the two tasks. This left 32 good subjects out of 52 that performed the Cattell 

test and 60 good subjects out of 114 that performed the math test. We also present analyses 

and model fits for the data from the bad subjects as reported below.

For the BY task, the data for “blue” and “yellow” responses were symmetric so correct 

responses for blue and yellow dots were combined and errors for blue and yellow dots 

were combined. The results replicate those of Ratcliff and McKoon (2018, 2020). Mean 

RTs and accuracy values collapsed over the area variable are shown in Table 5. Accuracy 

decreased as the difficulty of the test items increased, that is, as the numerosity of the 

dots increased and the difference between the numerosities decreased, the standard results 

with these manipulations. Also as expected, equal-area stimuli were more difficult than 

proportional-area stimuli, with accuracy higher and RTs shorter with equal-areas.

Most salient, the results replicated a counter-intuitive finding by Ratcliff and McKoon (2018, 

2020). For a constant difference of five between the numbers of dots (15/10, 20/15, 25/20, 

30/25, and 40/35), as the total number of dots increased, RTs decreased. In other words, 

as difficulty increased, accuracy decreased, as would be expected, but responses sped up, 

counter the usual finding that increased difficulty leads to longer RTs. This result is shown in 

Table 5.

For the Y25 task, the data show the usual (not counter-intuitive) finding that RTs increase 

and accuracy decreases as difficulty increases. But in this task, unlike the BY task, the 

area variable had almost no effect on performance, again replicating Ratcliff and McKoon 

(2018). There was also a bias to call small numerosities “large” with greater probability 

than to call large numerosities “small” (Table 5). This means that responses were not 

quite symmetric around 25 but instead biased toward “large” responses. For example, the 

probability of responding “large” to 30 dots was 0.85 and 0.86 for equal- and proportional­
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area stimuli, respectively, and the probability of responding “small” to 20 dots was 0.64 and 

0.66 for equal- and proportional-area stimuli, respectively.

The area variable had a strong effect on performance in the BY task, but almost no effect in 

the Y25 task: Averaging over all the numerosity conditions, accuracy and mean RT for the 

BY task for proportional area were 0.733 and 657 ms and for equal area they were 0.628 and 

682 ms. For the Y25 task, the values were 0.841 and 578 ms for proportional area and 0.843 

and 578 ms for equal area. These numbers replicate the results from Ratcliff and McKoon 

(2018).

Diffusion Model Fits

In the lexical decision and item recognition tasks, there were different drift rates for each 

condition, four for lexical decision and six for item recognition. But for the numerosity 

tasks, we used a model (Ratcliff & McKoon, 2018) for the cognitive representations of 

numeracy to determine drift rates directly from the numerosities of the arrays (see also Kang 

& Ratcliff, 2020, for a more detailed model-based analysis of interaction between numeric 

and non-numeric variables).

This model is taken from the numerical cognition literature (e.g., Gallistel & Gelman, 1992). 

The model assumes that numeracy is represented on a linear scale with a normal distribution 

around each value. As numerosity increases, the means of the values and their standard 

deviations increase linearly. This makes the model consistent with Weber’s law, which 

states that as intensity increases, the size of the just-noticeable difference between stimuli 

increases so that the ratio of the difference in intensity to intensity (ΔS/S) remains constant.

Ratcliff and McKoon used this model to provide drift rates, and the standard deviations 

(across-trial variabilities) of them, to the diffusion model. In other words, the diffusion 

model served as a meeting point that translated the predictions of the linear model into 

accuracy and RT data.

In more detail, for the BY task, Ratcliff and McKoon (2018) assumed that drift rates are 

a coefficient (v1) multiplied by the difference between the blue and yellow numerosities, 

i.e., v=v1(N1-N2). In order to deal with different levels of accuracy for equal- and 

proportional-area stimuli, difference coefficients are used for the equal-area conditions and 

the proportional-area conditions. Because the SD’s increase linearly, across-trial SD in drift 

rates is the square root of the sum of the squares of the two SD’s multiplied by a coefficient, 

σ1 (and we add a constant, η0). Thus, η=σ1sqrt(N1
2-N2

2)+η0.

This model explains the counterintuitive result that for a constant difference in numerosity 

between the blue and yellow dots (e.g., 5), as the SD increases, accuracy decreases but so do 

RTs. Figure 6 shows two distributions of drift rate with values of accuracy and mean RT as a 

function of single drift rate values (using parameters from the good subjects in the BY task, 

Table 3). For the dashed distribution with a small SD, accuracy is an average over drift rates 

between 0 and 0.2 with accuracy values between 0.5 and 0.86 with RTs between 728 and 

680 ms (also weighted by the height of the drift rate distribution). For the solid distribution 

with a larger SD, accuracy is an average over drift rates between −0.2 and 0.4 with accuracy 
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values between 0.14 and 0.97 with RTs a weighted average over values from 659, to 728, to 

616 ms. However, the longer RTs in the left tail are weighted less than the shorter RTs in 

the right tail because they are weighted by accuracy values of 0.14 and 0.29 while the short 

RTs of 644 ms and 616 ms are weighted by accuracy values of 0.93 and 0.99 (and by the 

height of the normal distribution). This produces lower RTs for the wider distribution than 

the narrow distribution (see also Ratcliff & McKoon, 2018, Figure 8).

The assumptions that drift rate and across trial SD in drift rate are functions of the numbers 

of dots in the displays reduce the number of parameters considerably. Instead of 20 different 

drift rates for the BY task (for the 10 different numerosity conditions crossed with the 2 

area combinations) and 20 different values of across-trial SD in drift rate, there are two 

drift rate coefficients (one for each area condition) and one SD coefficient and one constant 

across-trial SD in drift rate which reduces the number of drift-rate parameters from 40 to 4.

For the Y25 task, one of the numerosities (e.g., N2) is set to 25. For this task, there is also 

one more parameter, the drift-rate criterion (Ratcliff, 1985). When asked to decide whether 

the number of dots in an array is more or less than 25, then drift rates should be such that 

their mean is toward the “large” boundary when there are more than 25 dots and toward the 

“small” boundary when there are fewer than 25. That is, the drift-rate criterion should be set 

at 25. However, subjects may set their criterion at 24 or 26 or some other number; if so, there 

will be a bias in how the numerosity of the dots is interpreted in encoding and transforming 

the representation to drift rate. It is to accommodate this bias that the drift-rate criterion is a 

free parameter for the Y25 task.

To fit the model to data for the BY task, we first used a 300 ms lower cutoff for the RTs. 

This resulted in consistent systematic misfits for many of the good subjects with predicted .1 

quantile RTs shorter than those for the data by 30–40 ms on average. This led us to examine 

the data for each subject and to determine a lower cutoff RT for each individual, below 

which accuracy was at chance. The accuracy values and RT quantiles were recomputed 

based only on the data for RTs above these lower cutoffs. This produced good fits with only 

small deviations between theory and data.

The model misses the leading edge for data with the 300 ms cutoff because there are 

moderately large excursions up and down (e.g., 30–40 ms) in the 0.1 quantile RTs for some 

of the 20 experimental conditions, even for the good subjects. This occurs because there 

are relatively few observations per condition in this experiment (e.g., 40 per condition for 

the BY task). By random chance, if several very short RTs occur, then this would produce 

a very short 0.1 quantile RT. If this happens even only once out of the 20 conditions, 

the fitting method still has to accommodate this short RT quantile and it does this by 

reducing nondecision time and by increasing the range of nondecision time (across trials). 

This produces predictions for the other 19 conditions that have predicted leading edges (0.1 

quantile RTs) lower than those for the data. Then, averaging over subjects, the result is that 

the model predicts lower .1 quantile RTs than the data.
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This is a warning that for fitting RT models, there needs to be enough data per condition or 

else model fit and parameter estimates will be compromised. This is the same problem as for 

maximum likelihood fitting methods discussed in Ratcliff and Tuerlinckx (2002).

Figure 7 shows quantile probability functions for the BY task from the 92/166 subjects (both 

those that completed the Cattell test and those that completed that math test) that we labeled 

as good and the 74/166 subjects that we labeled bad, both using individualized lower bounds 

for each subject (these were chosen by eye by examining the accuracy of fast responses and 

determining at what point accuracy rose above chance - this was done blind to whether the 

model fit missed the data with the fixed bounds across all subjects). Across all subjects, the 

minimum lower bound was 300 ms, the mean was 478 ms, and the maximum was 700 ms 

(this excluded 6.7% of the data). The first important result is that the data replicated the 

counterintuitive pattern of RTs across all the quantiles: for a constant difference of 5, as 

total numerosity increases, accuracy decreases, but RT also decreases counter to what might 

be expected. This occurs for the good subjects and the bad subjects and for the equal-area 

and proportional-area conditions. The good subjects have higher accuracy (by about .1) and 

longer RTs for the .1 quantile RTs and shorter RTs for the .9 quantiles. We think because 

this is because of increased variability for the bad subjects (see the next section). It was 

surprising that other than the accuracy difference, it is hard to see any qualitative difference 

in the patterns of results between theory and data for the two groups of subjects.

Figure 8 shows plots of data and predictions for accuracy and quantile RTs for all conditions 

and subjects for the BY task. The variability is higher than in Figures 2 and 3 because of 

the much lower numbers of observations per condition. The results show little bias between 

theory and data.

Figure 9 shows quantile probability functions for the good and bad subjects for the Y25 

task with quantiles computed from individualized lower RT bounds for each subject. As 

for the BY task, the two groups of subjects are fit by the model reasonably well. There is 

one deviation between theory and data, and that is that the model underpredicts accuracy 

for “large” responses to large stimuli. Figure 10 shows plots of data and predictions for 

accuracy and quantile RTs for all conditions and subjects for the Y25 task. The spread in 

the data/predictions is smaller than for the BY task because the number of observations is 

almost twice as large. Again, there are few systematic deviations between theory and data.

The diffusion model parameters for both the BY and Y25 tasks for both the good and bad 

subjects are shown in Tables 3 and 4. The values are similar to those in Ratcliff and McKoon 

(2018). The only large difference was that nondecision time in Ratcliff and McKoon was 

about 50 ms shorter than the values in Table 3. Mean G-square goodness of fit values 

were a little lower than the chi-square critical values (which were 247.0 for the BY task 

and 148.8 for the Y25 task). These values were lower than those in Ratcliff and McKoon, 

partly because of the smaller numbers of observations per subject in this study (if there is a 

difference between observed and expected frequencies, then this is magnified in G-square as 

the number of observations increases).
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In Ratcliff and McKoon (2018), results from BY tasks produced drift rate coefficients that 

were twice as large for the proportional-area than the equal-area conditions. Figure 5 shows 

this with the data x’s for the equal-area conditions with lower accuracy (shifted to the left) 

than those for the proportional-area conditions. In contrast, there was almost no effect of 

area in the Y25 task as shown in Figure 9. Table 4 shows the drift rate coefficients for the 

two tasks and for the good and bad subjects. There was a large effect of area (2:1) in the BY 

task, and no measurable effect on the Y25 task for both subject groups replicating the results 

from Ratcliff and McKoon. The drift rate coefficients also show that the difference between 

the good and bad subjects is much larger for the BY task than the Y25 task.

We performed a similar correlational analysis as for Experiment 1 to examine the 

relationship between model parameters, accuracy and RT values, and age. Figure 11 shows 

scatter plots, correlations, and histograms (as in Figure 4) for the 92 subjects we identified as 

good.

Boundary separation, nondecision time, and drift rate correlate between the two tasks, 

as do mean RT and accuracy. The values range from 0.47 to 0.78, all highly significant 

with 90 (92−2) degrees of freedom. Boundary separation and nondecision time did not 

correlate with each other but nondecision time correlated with drift rate coefficients. Mean 

RTs correlated strongly with nondecision time and only weakly with boundary separation. 

Accuracy was strongly correlated with the drift rate coefficients. Age was not correlated 

with RTs, boundary separation, or nondecision time. This was surprising because this 

relationship (especially with nondecision time) has been robust and reported many times 

(as in Experiment 1).

We also performed the correlational analysis on the data and model parameters from the 

74 “bad” subjects (a plot is shown in the supplement). The correlations were remarkably 

similar and Figure 12 shows the values of the correlations (e.g., the numbers above the 

diagonal on the right of Figure 11) for all combinations of model parameters as in Figure 

11 for the good subjects plotted against those for the bad subjects. The result is a strong 

linear relationship so, for example, if there was a high correlation between, say, Ter for the 

good subjects (e.g., 0.79) then there was a high correlation for the bad subjects (0.70). The 

major deviations between the two sets of correlations are in the bottom left corner and these 

correspond to moderate differences in the correlations for boundary separation with other 

model parameters for the two tasks. Other than these, the correlations for the two sets of 

data are mainly within or close to 0.2 of each other (Figure 12). This is surprising because 

it shows that the diffusion model analysis and data produce similar results for individual 

differences even when the subjects are not behaving well, i.e., there is enough regularity in 

the data even when there are large fluctuations in how subjects perform the task.

The IQ and the math test measures and age did not produce the moderate correlations 

with accuracy, mean RT, and diffusion model parameters that we obtained in Experiment 

1. This is not likely a problem with estimation of diffusion model parameters because the 

parameters and accuracy and mean RT show strong and reliable relationships within and 

between tasks as in Experiment 1. The largest correlations for IQ (32 good subjects) were 

with accuracy (for the BY and Y25 tasks, 0.39 and 0.37) and drift rate coefficients (0.25 and 
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0.22) and all other correlations were below 0.3. For the math test, all correlations for the 60 

good subjects were below 0.3.

RTs Across the Session

In Figure 13, we present the same kinds of plots for the two numerosity discrimination tasks 

as those for Experiment 1 in Figure 5. The vertical lines represent trial blocks and the thick 

(double) lines in the middle of each session represent the switch from the BY task to the 

Y25 task. Most of the lines align vertically, but those that do not come from subjects that 

did not quite finish all the blocks of trials in the session. To help see what responses may be 

fast guesses, a horizontal dashed line at 300 ms is drawn in each plot. Most responses with 

RTs below this represent fast guessing and this shows up as chance performance in regular 

analysis with an upper cutoff of 300 ms.

The most important thing to note is that the data are considerably less stable across and 

within blocks than the data for Experiment 1. Some subjects provide relatively well-behaved 

data, that is, with stable response times across blocks. But a high proportion (45% by eye) 

show relatively unstable performance. Some subjects have RTs drifting up and down across 

blocks of trials and some subjects have this kind of behavior even within blocks of trials. 

Also, some subjects show sudden large excursions up and down. It is easy to argue that some 

subjects such as number 66 are trying out different processing strategies with a number of 

excursions in RTs below 300 ms (fast guesses). Other subjects are simply misbehaving, for 

example, number 74, with a large proportion of fast guesses.

To quantify the variability, we present the average SDs in correct RTs averaged over 

conditions and subjects with a lower cutoff of 300 ms and an upper cutoff of 4000 ms. 

For the BY task, for good subjects SD=179 ms, for bad subjects SD=245 ms and for the 

Y25 task, for good subjects SD=135 ms, for bad subjects SD=201 ms. This shows an overall 

increase in the SD in RT of over 60 ms for bad subjects relative to good subjects for both 

tasks.

We believe that these fluctuations are the result of the subject trying out different ways 

to perform the task to see what happens if they slow down, go fast, or guess. This may 

occur for these numerosity tasks for any of several reasons. First, the tasks are difficult 

and accuracy is relatively low. This may encourage subjects to try out different speed and 

accuracy regimes to see if they can improve performance. Second, low accuracy might cause 

some subjects to give up and fast guess. Third, because presentation duration is limited to 

300 ms, some subjects may try using this as a cue to respond for a run of trials which would 

produce fast guessing. Fourth, even if the subject is moderately accurate, he or she might 

explore the decision space by adjusting speed/accuracy settings thus producing longer or 

shorter decision times.

These results show problems with the data from these AMT subjects, even taking into 

account that the subjects have been in many other AMT experiments. But a surprising result 

was that when fast guesses were trimmed out, data patterns, diffusion model analyses and 
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fits to data, and individual differences were similar to those from the good subjects (but with 

lowered accuracy).

Discussion

The results from the AMT subjects replicated the four sets of benchmark findings from the 

original laboratory-based studies (Ratcliff & McKoon, 2018; Ratcliff et al., 2010), across 

four tasks: lexical decision, item recognition, and two numerosity discrimination tasks. In 

addition to replicating the empirical patterns in the data, the best-fitting parameters for 

the diffusion model had similar patterns and ranges (with a few marked differences, for 

example, nondecision times in Ratcliff et al. were 489, 632, and 643 ms for item recognition 

and 429, 539, and 572 ms for lexical decision for young adults, 60–74 year olds, and 75–90 

year olds, compared with 535 ms for item recognition and 482 ms for lexical decision in 

the Table 3). Importantly, similar patterns of correlations among model parameters across 

pairs of tasks were also replicated in the on-line studies. Finally, as in the laboratory-based 

studies, individual differences in age and IQ were related to accuracy, mean RTs, and 

diffusion model parameters for lexical decision and item recognition in similar ways to 

those in Ratcliff et al. (2010). However, IQ, age, and math scores correlated only weakly 

with model parameters for the numerosity tasks (which were not examined in Ratcliff & 

McKoon, 2018, 2020).

For lexical decision and item recognition, most of the data were of good quality with only 

a few subjects producing many fast guesses and/or unstable performance across a session. 

In contrast, for the numerosity tasks, 45% of the subjects produced many fast guesses (with 

over 5% of RTs less than 300 ms and at chance accuracy). These subjects also showed 

instability in responding across a session. There are several possible reasons for this. First, 

the numerosity tasks are difficult and without an experimenter to guide them, some subjects 

may try speeding up or slowing down to see if either of these could improve performance. 

Second, subjects might try fast guessing to see if this helps speed up the experiment. Third, 

the limited stimulus duration might encourage subjects to try to respond shortly after the 

offset of the stimulus.

The criteria we suggest for eliminating fast guesses are these: If a large proportion of a 

subject’s responses have RTs shorter than a low cutoff value and have chance accuracy, then 

that subject should be eliminated. Several cutoffs should be used to determine the point at 

which accuracy begins to be above chance (see Ratcliff, 1993). The values of the cutoffs will 

be a function of a task, for example, longer values for cognitive tasks with longer RTs and 

shorter values for perceptual tasks with shorter RTs.

Plots of RTs across trials can be used be to examine the stability of responses across a 

session. If instability across a session is high with the distribution of RTs moving up and 

down (longer and shorter RTs, or with the distributions compressing and expanding, or with 

runs of fast guesses (as identified as above), then these subjects might also be eliminated. An 

example of this kind of instability is subject 105 in Figure 5 who produced about 8 blocks of 

lexical decision trials with mainly fast guesses and had increasing RTs within blocks in item 

recognition. This kind of instability produces higher variances in RTs than for subjects who 
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do not show this instability (e.g., Bridges, et al., 2020). There are many more such examples 

in Figure 13 and in the full set of plots in the supplement. These methods should, of course, 

be used independent of (without looking at) the hypotheses being tested.

Some researchers may want to link the fluctuations in RTs to long-range correlations in 

RTs across a session such as might be examined in analyses of 1/f noise (e.g., Gilden, 

2001; Wagenmakers, Farrell, & Ratcliff, 2004; Van Orden, Moreno, & Holden, 2003). But 

it is important to understand whether the fluctuations are automatic and are not the result 

of conscious strategic changes in the way the task is performed, or whether the subject is 

experimenting with the task by seeing what happens if they slow down or go fast. If the 

subject is deliberately trying different strategies, then such fluctuations will be of much less 

interest than if they were automatic fluctuations in processing.

The model-based analysis for the BY task in Experiment 2 involved exploration of ways to 

deal with subjects and data after finding systematic deviations between fits to data in the 

0.1 quantile RTs because of low numbers of observations per condition. Our best guess for 

an analysis was one that trims RTs at values that are different for each subject based on 

the time at which his or her accuracy begins to rise above chance. If a reader does not like 

the analyses with separate lower bounds for each subject, at least they illustrate potential 

problems in data and provide a starting point for alternative analyses. In contrast, the fits to 

data from Experiment 1 used standard methods and did not need separate cutoffs for each 

subject because of the larger numbers of observations per condition.

Instability over a session produces distortions in data with wider RT distributions than those 

in local stable regions of responding. What was surprising is that accuracy, RT, and diffusion 

model analyses produced quite similar patterns of results across conditions for the good and 

bad subject groups. This is probably because bad data (e.g., 20%) from large fluctuations in 

RTs can be overwhelmed by good data (e.g., 80%) once fast guesses are eliminated. Before 

it can be claimed that modeling is robust to bad data in general, this need to be replicated 

and generalized to tasks other than those used here. Despite this apparent robustness, the 

diffusion model parameters may be distorted because data would be averaged, for example, 

over different speed- accuracy settings.

The finding that patterns of results are similar for data from good and bad subjects should 

not be used to justify the use of bad data in model comparisons. Instability in data could 

easily produce biases toward one or another model. Thus it is important to eliminate 

subjects with unstable data for model comparisons (at the very least, such subjects should be 

identified and examined separately in model comparisons).

Overall, the results from these two experiments and four tasks show that accuracy and 

RT data from AMT subjects along with diffusion model analyses of those data replicate 

results from experiments with carefully controlled in-person data collection. However, the 

results also showed serious problems with data from subjects for whom there were large 

fluctuations in the location of RT distributions over runs of trials. In many cases, these 

regions involved runs of fast guesses.
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These results show that a lot of care needs to be taken in using RT data from AMT or 

other data collected on-line (or even laboratory experiments that have little experimenter 

interaction and guidance). We suggested some simple methods of identifying subjects who 

are not behaving in a stable manner. The use of these or similar methods should be routine 

in data analysis and can only help to reduce failures to replicate experimental results or 

model-based analyses.
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Funding:

This work was supported by funding from the National Institute on Aging (Grant numbers R01-AG041176 and 
R01-AG057841).

Availability of data and materials:

The datasets generated during and analyzed during the current study are available at https://

osf.io/za9y8/.

References

Anwyl-Irvine AL, Massonni J, Flitton A et al. (2020). Gorilla in our midst: An online behavioral 
experiment builder. Behavioral Research Methods, 52, 388–407.

Bramley NR, Gerstenberg T, Tenenbaum JB, & Gureckis TM (2018). Intuitive experimentation in the 
physical world. Cognitive Psychology, 105, 9–38. [PubMed: 29885534] 

Bridges D, Pitiot A, MacAskill MR, Peirce JW (2020). The timing mega-study: comparing a range of 
experiment generators, both lab-based and online. PeerJ, 8, e9414. [PubMed: 33005482] 

Cattell RB, & Cattell AKS (1960). The individual or group culture fair intelligence test. Champaign: 
IPAT.

Crump MJC, McDonnell JV, Gureckis TM (2013) Evaluating Amazon’s Mechanical Turk as a tool for 
experimental behavioral research. PLoS ONE, 8, e57410. [PubMed: 23516406] 

Dekel R, Sagi D (2020). Perceptual bias is reduced with longer reaction times during visual 
discrimination. Communications Biology, 3, 59. [PubMed: 32042064] 

de Leeuw JR, Motz BA (2016). Psychophysics in a Web browser? Comparing response times collected 
with JavaScript and Psychophysics Toolbox in a visual search task. Behavioral Research Methods, 
48, 1–12.

Gallistel CR, & Gelman R (1992). Preverbal and verbal counting and computation. Cognition, 44, 
43–74. [PubMed: 1511586] 

Gilden DL (2001). Cognitive emissions of 1/f noise. Psychological Review, 108, 33–56. [PubMed: 
11212631] 

Halberda J, Mazzocco MMM, & Feigenson L (2008). Individual differences in nonverbal number 
acuity predict maths achievement. Nature, 455, 665–668. [PubMed: 18776888] 

Hendrickson AT, Perfors A, Navarro DJ, & Ransom K (2019). Sample size, number of categories 
and sampling assumptions: Exploring some differences between categorization and generalization. 
Cognitive Psychology, 111, 80–102. [PubMed: 30947074] 

Hilbig BE (2016). Reaction time effects in lab- versus Web-based research: Experimental evidence. 
Behavioral Research Methods, 48, 1718–1724.

Kucera H, & Francis W (1967). Computational analysis of present-day American English. Providence, 
RI: Brown University Press.

Ratcliff and Hendrickson Page 24

Behav Res Methods. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/za9y8/
https://osf.io/za9y8/


Laming DRJ (1968). Information theory of choice reaction time. New York: Wiley.

Mason W, & Suri S (2012). Conducting behavioral research on Amazon’s Mechanical Turk. Behavior 
Research Methods, 44, 1–23. [PubMed: 21717266] 

Merriam-Webster. (1990). Merriam-Webster’s ninth new collegiate dictionary (9th ed.). Springfield, 
MA: Author.

Ratcliff R (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

Ratcliff R (1985). Theoretical interpretations of speed and accuracy of positive and negative responses. 
Psychological Review, 92, 212–225. [PubMed: 3991839] 

Ratcliff R (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–
532. [PubMed: 8272468] 

Ratcliff R (1994). Using computers in empirical and theoretical work in cognitive psychology. 
Behavior Research Methods, Instruments and Computers, 26, 94–106.

Ratcliff R (2008). Modeling aging effects on two-choice tasks: response signal and response time data. 
Psychology and Aging, 23, 900–916. [PubMed: 19140659] 

Ratcliff R (2013). Parameter variability and distributional assumptions in the diffusion model. 
Psychological Review, 120, 281–292. [PubMed: 23148742] 

Ratcliff R & Childers R (2015). Individual differences and fitting methods for the two-choice diffusion 
model. Decision, 2, 237–279.

Ratcliff R, & McKoon G (2008). The diffusion decision model: Theory and data for two-choice 
decision tasks. Neural Computation, 20, 873–922. [PubMed: 18085991] 

Ratcliff R, & McKoon G (2018). Modeling numeracy representation with an integrated diffusion 
model. Psychological Review, 125, 183–217. [PubMed: 29144149] 

Ratcliff R, & McKoon G (2020). Decision making in numeracy tasks with spatially continuous scales. 
Cognitive Psychology, 116, Article 101259. [PubMed: 31838271] 

Ratcliff R, Pino C, & Burns WT (1986). An inexpensive real-time microcomputer-based cognitive 
laboratory system. Behavior Research Methods, Instruments, & Computers, 18, 214–221.

Ratcliff R, Thapar A, & McKoon G (2001). The effects of aging on reaction time in a signal detection 
task. Psychology and Aging, 16, 323–341. [PubMed: 11405319] 

Ratcliff R, Thapar A & McKoon G (2003). A diffusion model analysis of the effects of aging on 
brightness discrimination. Perception and Psychophysics, 65, 523–535. [PubMed: 12812276] 

Ratcliff R, Thapar A, & McKoon G (2004). A diffusion model analysis of the effects of aging on 
recognition memory. Journal of Memory and Language, 50, 408–424.

Ratcliff R, Thapar A, & McKoon G (2010). Individual differences, aging, and IQ in two-choice tasks. 
Cognitive Psychology, 60, 127–157. [PubMed: 19962693] 

Ratcliff R, & Tuerlinckx F (2002). Estimating the parameters of the diffusion model: Approaches 
to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin and 
Review, 9, 438–481. [PubMed: 12412886] 

Ratcliff R, Van Zandt T, & McKoon G (1999). Connectionist and diffusion models of reaction time. 
Psychological Review, 106, 261–300. [PubMed: 10378014] 

Semmelmann K, Weigelt S (2017) Online psychophysics: reaction time effects in cognitive 
experiments. Behavioral Research Methods, 49, 1241–1260.

Simcox T, & Fiez JA (2014). Collecting response times using Amazon Mechanical Turk and Adobe 
Flash. Behavior Research Methods, 46, 95–111. [PubMed: 23670340] 

Slote J, Strand JF (2016). Conducting spoken word recognition research online: Validation and a new 
timing method. Behavior Research Methods, 48, 553–566. [PubMed: 25987305] 

Stewart N, Chandler J, & Paolacci G (2017). Crowdsourcing samples in cognitive science. Trends in 
Cognitive Sciences, 21, 736–748. [PubMed: 28803699] 

Van Orden GC, Moreno MA, & Holden JG (2003). A proper metaphysics for cognitive performance. 
Nonlinear Dynamics, Psychology, and Life Sciences, 7, 49–60.

Wagenmakers E-J, Farrell S, & Ratcliff R (2004). Estimation and interpretation of 1/f noise in human 
cognition. Psychonomic Bulletin and Review, 11, 579–615. [PubMed: 15581115] 

Woods AT, Velasco C, Levitan CA, Wan X, Spence C (2015). Conducting perception research over the 
internet: a tutorial review. PeerJ, 3, e1058. [PubMed: 26244107] 

Ratcliff and Hendrickson Page 25

Behav Res Methods. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Quantile probability plots for the lexical decision and item recognition tasks for data and 

model predictions averaged over subjects in the same way. The x’s are the data and the 

o’s are the predictions joined by the lines. The five lines stacked vertically above each 

other are the values predicted by the diffusion model for the 0.1, 0.3, 0.5, 0.7, and 0.9 

quantile RTs as a function of response proportion for the conditions of the experiments. The 

quantiles are labeled on the left-hand side of the bottom right plot and equal-area rectangles 

drawn between the quantiles are shown on the right side of that plot (which represent RT 

distributions). The M in the top right plot shows the median RT because some subjects did 

not have enough error responses for low frequency “new” words to compute quantiles.
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Figure 2. 
Plots of accuracy, the 0.1, 0.5 (median), and 0.9 quantile correct response times (RTs) for 

every subject and every condition for the lexical decision task. For the quantiles, only values 

are presented from conditions with over 15 observations. The two SDs in the quantile RTs 

are computed from a bootstrap method, and for probability (that plots both correct and error 

probabilities and so has redundancy), they are based on binomial probabilities.
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Figure 3. 
The same plot as in Figure 2 for the item recognition data and model fits.
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Figure 4. 
Scatter plots, histograms, and correlations for age, IQ, accuracy and mean RT, and diffusion 

model parameters, nondecision time, boundary separation, and drift rate averaged over 

conditions for the lexical decision and item recognition tasks. acc=accuracy, RT=mean RT, 

a=boundary separation, Ter=nondecision time, v=mean drift rate, Lex is the lexical decision 

task, and Rn is the item recognition task.
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Figure 5. 
Plots of every RT across the session for the lexical decision and item recognition tasks.

The numbers on the left are the subject numbers in the order analyzed. The vertical thick 

(double) lines in the middle of the plot represent the point at which the task switched from 

lexical decision to item recognition. The thin vertical lines represent blocks of trials (when 

they do not align, the subject did not finish all the trials). The dashed horizontal line is at 300 

ms and serves as an approximate way of identifying fast guesses (an RT below this is almost 

certainly a fast guess, RTs above but close to it may be fast guesses). Long RTs greater than 

1300 ms are replaced by 1300 ms (this was done so that the focus could be on the shorter 

RTs).
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Figure 6. 
Two distributions of drift rate (with larger and smaller SD’s) and values of accuracy and 

mean RT corresponding to the values of drift rate on the x-axis.
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Figure 7. 
Quantile-probability functions for the BY task for the “good” subjects, left column, and 

“bad” subjects, right column. These plot RT quantiles against response proportions (correct 

responses to the right of 0.5 and errors to the left). The green/central lines are the median 

RTs. The number of dots in the conditions in the plots is shown in the top right corner, with 

the top one in each condition corresponding to the right-hand point in the plot. The more 

extreme functions are for proportional-area conditions, and the less extreme for equal-area 

conditions. In a number of cases for the difference of 20 conditions, some subjects had no 

errors which means that those error quantile RTs (for data) could not be computed and so are 

not plotted.
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Figure 8. 
Plots of accuracy, the 0.1, 0.5 (median), and 0.9 quantile correct response times (RTs) for 

every subject and every condition for the BY task as for Figure 2.
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Figure 9. 
Quantile-probability functions for the Y25 task for the “good” subjects, left column, and 

“bad” subjects, right column as for Figure 6. Note that for the model predictions there are 

pairs of circles for the equal-area and proportional-area conditions, but the predictions are so 

close together that the points almost overlay each other.
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Figure 10. 
Plots of accuracy, the 0.1, 0.5 (median), and 0.9 quantile correct response times (RTs) for 

every subject and every condition for the Y25 task as for Figure 2.
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Figure 11. 
Scatter plots, histograms, and correlations for age, accuracy and mean RT, and diffusion 

model parameters, nondecision time, boundary separation, and drift rate averaged over 

conditions for the 92 “good” subjects for the two numerosity discrimination tasks. 

acc=accuracy, RT=mean RT, a=boundary separation, Ter=nondecision time, v=mean drift 

rate, BY is the blue/yellow task, and 25 is the Y25 task.
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Figure 12. 
Plots of the correlation coefficients from Figure 10 (above the diagonal) against the same 

correlations for the “bad” subjects. The dashed lines are parallel to the line with slope 1 and 

are values of the correlation 0.2 above that line and 0.2 below it.
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Figure 13. 
Plots of every RT across the session for the BY and Y25 tasks (see Figure 5). The numbers 

on the left are the subject number in the order analyzed and the “x” on the right denotes 

“bad” subjects. The dashed horizontal line is at 300 ms and serves as an approximate way of 

identifying fast guesses and long RTs greater than 1000 ms are replaced by 1000 ms.
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Table 1:

Subject ages and scores on IQ and math fluency tests.

N
Age Cattell IQ Math Grade Equivalent

Mean SD Mean SD Mean SD

Lex dec/memory w/Cattell 142 35.5 10.0 96.2 13.9

Numerosity w/Cattell 52 33.8 8.9 96.4 19.3

Numerosity w/Math 114 39.4 12.5 12.2 4.3
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Table 2:

Accuracy and correct and error mean RTs for Experiment 1, lexical decision and item recognition

Lexical decision Pr “word” Mean RT “word” Mean RT “nonword”

HF word 0.963 637 577

LF word 0.863 723 701

VLF word 0.727 769 746

Nonword 0.074 742 710

Item recognition Pr “old” Mean RT “old” Mean RT “new”

2P HF 0.706 719 748

2P LF 0.819 706 725

1P HF 0.580 748 756

1P LF 0.688 737 746

New HF 0.228 767 744

New LF 0.153 774 721
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Table 3:

Diffusion model parameters for the four tasks from Experiments 1 and 2

Task (and subject group) a T er η/σ1 s z s t z G2/χ2 df

Lexical decision 0.122 0.482 0.051 0.037 0.128 0.061 45.2 34

Item recognition 0.111 0.535 0.126 0.043 0.191 0.055 76.4 54

Lex dec (RTM 2010, college) 0.157 0.429 0.139 0.072 0.149 0.080 97

Lex dec (RTM 2010, 60–74) 0.204 0.539 0.113 0.028 0.154 0.095 79

Lex dec (RTM 2010, 75–90) 0.213 0.572 0.129 0.040 0.143 0.101 77

Item rec (RTM 2010, college) 0.141 0.489 0.230 0.063 0.189 0.069 100

Item rec (RTM 2010, 60–74) 0.170 0.632 0.237 0.037 0.194 0.074 92

Item rec (RTM 2010, 75–90) 0.182 0.643 0.214 0.031 0.200 0.077 88

BY (“good”) 0.100 0.499 0.0607 0.049 0.252 0.050 229.4 212

Y25 (“good”) 0.097 0.441 0.0322 0.053 0.154 0.051 121.6 122

BY (“bad”) 0.115 0.468 0.0750 0.068 0.258 0.057 244.8

Y25 (“bad”) 0.100 0.451 0.0339 0.058 0.209 0.053 145.0

BY (R&M 2018) 0.114 0.446 0.066 0.083 0.266 a/2 261 212

Y25 (R&M 2018) 0.102 0.386 0.027 0.076 0.203 0.054 301 252

good subjects, BY η0=0.064, Y25 η0=0.040, vc=−0.040

bad subjects, BY η0=0.048, Y25 η0=0.076, vc=−0.048
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Table 4:

Drift rate parameters for the four tasks from Experiments 1 and 2

Task (and subject group) v1 v2 v3 v4 v5 v6

Lexical decision 0.417 0.224 0.119 −0.270

Item recognition 0.175 0.296 0.064 0.149 −0.186 −0.281

Lex dec (RTM 2010, college) 0.457 0.227 0.127 −0.240

Lex dec (RTM 2010, 60–74) 0.412 0.238 0.141 −0.253

Lex dec (RTM 2010, 75–90) 0.437 0.280 0.169 −0.249

Item recog (RTM 2010, college) 0.159 0.334 0.052 0.168 −0.266 −0.328

Item recog (RTM 2010, 60–74) 0.196 0.297 0.040 0.138 −0.291 −0.352

Item recog (RTM 2010, 75–90) 0.192 0.271 0.044 0.113 −0.249 −0.317

BY (“good”) 0.0304 0.0141

Y25 (“good”) 0.0375 0.0379

BY (“bad”) 0.0222 0.0100

Y25 (“bad”) 0.0340 0.0337

BY (R&M 2018) 0.037 0.016

Y25 (R&M 2018) 0.031 0.032
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Table 5:

Accuracy and correct and error mean RTs for the BY and Y25 tasks from Experiment 2 (averaged over the 

area variable).

Numerosity Accuracy Correct mean RT Error Mean RT

15/10 0.644 709 685

20/15 0.635 680 670

25/20 0.632 683 660

30/25 0.612 675 650

40/35 0.598 661 647

20/10 0.735 678 646

30/20 0.707 663 630

40/30 0.675 661 627

30/10 0.799 645 603

40/20 0.768 642 592

Numerosity Pr “large” Mean RT “large” Mean RT “small”

10 0.102 576 564

15 0.157 568 589

20 0.359 589 622

30 0.850 583 580

35 0.904 563 543

40 0.917 557 518

Behav Res Methods. Author manuscript; available in PMC 2022 December 01.


	Abstract
	Recruiting Subjects
	General Procedures
	The Cattell Culture-Fair IQ
	The Math Fluency Test
	Experimental Tasks
	The Diffusion Decision Model
	Experiment 1
	Results
	Accuracy and RT
	Fits of the Diffusion Model to Data
	RTs Across the Session
	Experiment 2
	Accuracy and RT Results
	Diffusion Model Fits
	RTs Across the Session
	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:

