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Motivation:

Identification of spectra produced by a shotgun proteomics mass spectrometry experiment is 

commonly performed by searching the observed spectra against a peptide database. The heart 

of this search procedure is a score function that evaluates the quality of a hypothesized match 

between an observed spectrum and a theoretical spectrum corresponding to a particular peptide 

sequence. Accordingly, the success of a spectrum analysis pipeline depends critically upon this 

peptide-spectrum score function. We develop peptide-spectrum score functions that compute the 

maximum value of a submodular function under m matroid constraints. We call this procedure a 

submodular generalized matching (SGM) since it generalizes bipartite matching. We use a greedy 

algorithm to compute maximization, which can achieve a solution whose objective is guaranteed 

to be at least 1
1 + m  of the true optimum. The advantage of the SGM framework is that known 

long-range properties of experimental spectra can be modeled by designing suitable submodular 

functions and matroid constraints. Experiments on four data sets from various organisms and mass 

spectrometry platforms show that the SGM approach leads to significantly improved performance 

compared to several state-of-the-art methods. Supplementary information, C++ source code, and 

data sets can be found at https://melodi-lab.github.io/SGM.
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1 INTRODUCTION

A shotgun proteomics experiment produces on the order of 10 mass spectra per second, 

each of which ideally is generated by a single peptide species. Hence, before the data can 

be used to answer high-level biological questions—like which functional classes of proteins 

are differentially expressed in one experimental condition versus another—we must first 

answer a simpler question, namely, “What peptide species was responsible for generating 

this observed spectrum?”
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Over the past two decades, since the description in 1994 of the SEQUEST algorithm [1], by 

far the most common way to answer this question has been via database search. All such 

methods follow roughly the same form. The input is a set of observed spectra and a database 

of peptides, typically derived from the protein sequences of the organism under study. The 

database search algorithm is then deceptively simple: for each observed spectrum, we (1) 

extract from the database all peptides whose masses lie within a user-specified tolerance 

of the precursor mass associated with the spectrum, (2) compute a quality score for each 

peptide-spectrum match (PSM), and (3) assign to the spectrum the candidate peptide that 

received the best score.

Clearly, the success or failure of a database search method depends very strongly upon 

the quality of its score function. A good database search score function must exhibit at 

least three distinct properties. First, it must be quick to compute. At a production rate of 

10 spectra per second, where each spectrum must be compared to hundreds or thousands 

of candidate peptides, an expensive score function will quickly become the bottleneck in 

any analysis pipeline. Second, the function must be accurate, in the sense that it usually 

succeeds in assigning the best score to the candidate peptide that actually was responsible 

for generating the observed spectrum. Third, the function must be well calibrated, so that 

the score assigned to the top peptide for one spectrum can be compared directly to the 

score assigned to the top peptide for a second spectrum. This third property is important 

because, in practice, the output of a database search algorithm is a ranked list of PSMs, one 

per observed spectrum. Because many observed spectra cannot be accurately identified, it is 

critical that the top of this ranked list of PSMs is highly enriched for correct identifications. 

Calibration is also important for comparing spectra containing different numbers of peaks, 

since an uncalibrated algorithm tends to give higher scores to more dense spectra.

Dozens of database search score functions have been described in the literature (reviewed 

in [2]). Most rely on first transforming the peptide sequence into a theoretical spectrum 

and then computing some type of similarity score between the observed and theoretical 

spectra. Existing similarity functions rely on cross-correlation (SEQUEST) [1], dot product 

(X!Tandem) [3], Poisson scoring (OMSSA) [4], hypergeometric scores (Myrimatch) [5], 

probabilistic models (ProbID) [6] or simple counts of overlapping peaks (Morpheus) [7].

In this work, we propose to model the affinity between an observed and theoretical spectrum 

using a process we call a “submodular generalized matching” (SGM). This approach 

generalizes and provides greater modeling power than standard bipartite matching. In order 

to describe SGMs, we need first to describe bipartite matchings, submodular functions and 

their optimization, and matroids. We briefly do so in the next few paragraphs and further 

discuss submodular function in Section 2.

A maximum bipartite matching starts with a non-negative weighted bipartite graph (V, U, E, 
w), where V is a set of “left” vertices, U is a set of “right” vertices, E ⊆ V × U is a set of 

edges, and w:E ℝ+ is a weight function on the edges, where w(A) = ∑a ∈ Aw(a) for any 

edge set A ⊆ E. The goal of a maximum bipartite matching process is to find a set of edges 

A ⊆ E that maximizes w(A) but that is a matching, i.e., no vertex may be incident to more 

than one edge. Conceptually, one might treat computing a peptide-spectrum matching score 
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as finding a maximum matching in a bipartite graph consisting of an observed spectrum 

(represented by the vertices V), a theoretical spectrum (the vertices U), and the edges E 
(feasible explanations of the observed by the theoretical spectra). In other words, given an 

edge e ∈ E where e = (v, u) with v ∈ V, u ∈ U, the weight w(e) (which may be zero) 

indicates the degree to which theoretical peak u matches observed peak v.

For several reasons, however, maximum bipartite matching alone is inadequate to produce a 

good peptide-spectrum scoring function. First, only one edge in a traditional matching may 

be incident to a vertex, even though, as described below, a given theoretical fragmentation 

event might produce multiple effects in the observed spectrum. Conversely, several different 

theoretical peaks might potentially explain a single observed peak. Second, the score 

function of a bipartite matching w(A) is necessarily additive, meaning that the weight 

of an edge does not change when considered in the context of other edges added to a 

matching. In practice, an optimal score function might need to combine matching scores 

in a non-additive fashion. To address the first problem, we use matroid constraints, and to 

address the second problem we use submodular functions. Together, these two approaches 

achieve our generalization.

A set function is said to be submodular if it exhibits the quality of diminishing returns, 

i.e., the incremental “gain” associated with a given set v decreases as the context in 

which v is considered grows larger. More formally, a function f:2E ℝ is submodular 

when for any A ⊆ B ⊂ E and v ∈ E ∖ B, f satisfies f(A ∪ v ) − f(A) ≥ f(B ∪ v ) − f(B). 
Submodular functions naturally model notions of information, diversity, and coverage in 

many applications such as information gathering [8], document summarization [9], [10], 

image segmentation [11], [12], [13], and string alignment [14]. If the inequality in the 

above definition is reversed everywhere (i.e., ≤ rather than ≥), then the function is called 

supermodular, and f is called modular if it is both submodular and supermodular.

A matroid M = (E, ℐ) is a pair consisting of a ground set E and a set of subsets 

ℐ = I1, I2, …  where Ii ⊆ E for all i. The subsets are said to be “independent” and to 

be a matroid if the subsets satisfy certain properties. Specifically, the pair M = (E, ℐ) is a 

matroid if it satisfies (i) ∅ ∈ ℐ; (ii) A ⊂ B ∈ ℐ implies that A ∈ ℐ; and (iii) given A, B ∈ ℐ
with |A | > |B| then there exists x ∈ A ∖ B such that B ∪ x ∈ ℐ. Matroids are extremely 

powerful combinatorial objects, despite their simple definition, and have undergone years of 

mathematical study [15]. It is often the case that the independent sets of matroids are used as 

constraints in discrete optimization. For example, we may wish to maximize a set function 

subject to the solution being independent with respect to one or more matroids.

In fact, bipartite matching can be described in exactly this way. Given a weighted bipartite 

graph (V, U, E, w), we can formulate maximum bipartite matching as maximizing w(A) 

subject to A being independent in two matroids. Depending on the matroids (as described 

below) we may relax the constraint that an edge is incident only to one vertex. In fact, with 

this formulation, each vertex (within either V or U) may have its own limit on incident 

edges. This means that, for a vertex x ∈ V ∪ U, we may define a limit kx on how many 

edges in a generalized matching may be incident to x.
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Submodular matching generalizes this idea further as follows: rather than maximize an 

additive weight function w(A), we instead maximize a submodular function f. That is, 

submodular matching finds an edge set A ⊂ E that maximizes f(A) subject to multiple 

matroid constraints, A ∈ ℐ1 ∩ ℐ2. Submodular matching is NP-hard, but it can be well-

approximated extremely efficiently using a greedy algorithm that has a mathematical quality 

guarantee, namely, that the solution provided by the greedy algorithm (Alg. 1) is no worse 

than 1/3 times the best possible solution—this approximation ratio is constant regardless 

of the problem size [16]. Submodularity can be further exploited to accelerate the greedy 

implementation, leading to an algorithm often called accelerated or lazy greedy [17] (Alg. 

2) having almost linear time complexity in practice. Hence, computationally, the approach 

scales to very large data set sizes.

In this work, we demonstrate how submodular matching with matroid constraints can be 

used to design a natural mass spectrometry score function that incorporates two important 

pieces of prior knowledge about peptide fragmentation. First, the proposed score function 

keeps track of situations in which a single observed peak can be explained by more than 

one peak in the theoretical spectrum. Such a collision might occur, for example, in the 

fragmentation of the +2 charged peptide SSLEVHIR. One of the prefix ions (SS) has an m/z 

value nearly exactly equal to one of the suffix ions (R). If the observed spectrum has a peak 

at 175 Da/charge, then existing score functions must choose between scoring this peak as a 

single match or as two matches. The submodular approach, by contrast, allows us to assign 

a diminished score to the second match. Second, our proposed score function allows us to, 

in effect, assign “extra credit” to pairs of observed-theoretical matches that are mutually 

reinforcing. For example, when we evaluate the hypothesis that an observed spectrum was 

produced by the fragmentation of peptide QNSHLTIK, we expect a single cleavage event 

to produce a prefix ion (e.g., QNS with m/z=330 Da/charge) and its corresponding suffix 

ion (HLTIK with m/z=611 Da/charge). If the observed spectrum contains peaks at both 

611 Da/charge and 330 Da/charge, then SGM offers full joint, or non-diminished, credit to 

these pair of peaks, to account for their complementary nature. The SGM approach also 

simultaneously discredits any other sets of peaks that should not be in a complementary 

relationship with each other, for the given peptide. As we see above, the edge interactions 

can be both local and global, and this is exactly the power of submodular functions, which 

can model these properties easily while allowing fast approximate maximization.

We demonstrate that our proposed score function can be computed efficiently and that the 

resulting score function outperforms a variety of state-of-the-art methods across multiple 

data sets. Specifically, we compare SGMs with four existing methods, XCorr [18], MS-GF+ 

[19], XCorr p-value [20] and Mascot [21]. We compute the number of spectra identified at 

a 1% false discovery rate (FDR) threshold, observing statistically significant improvements 

relative to the second-best method (p <0.05, Wilcoxon signed-rank test, Fig 10).

A related framework is called max b-matching [22]. A b-matching is a set of edges M 
such that at most b(v) edges in M are incident on each vertex v ∈ V. Recent studies have 

proposed efficient algorithms to find a b-matching of maximum weight with 1/2 guarantee. 

We note that this framework and SGM share a similar ability to allow multiple edges 
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incident to one vertex. However, SGM is more flexible because it allows modelling the 

interaction between edges, whereas b-matching requires simply adding up the edge weights.

2 BACKGROUND: SUBMODULAR FUNCTION

In this section, we give further background introduction of submodular functions. Recall that 

a set function f:2E ℝ is called submodular if and only if for any A ⊆ B ⊂ E and v ∈ E ∖ B, 

f satisfies f(A ∪ v ) − f(A) ≥ f(B ∪ v ) − f(B). We define the gain of v in the context of 
X as f(v ∣ X) ≜ f(X ∪ v ) − f(X). Thus, f is submodular if f(v ∣ X) ≥ f(v ∣ Y ) for X ⊆ Y  and 

v ∉ Y . The function f is called monotonically non-decreasing if f(v ∣ A) ≥ 0 for all v ∈ E
and A ⊆ E, where f(v ∣ A) = f( v ∪ A) − f(A) is the gain of v given A. Submodularity is 

preserved within a convex cone, that is, if f1 and f2 are both submodular functions, then λ1f1 

+ λ2f2 is also submodular for all λ1, λ2 ≥ 0.

People have studied different classes of submodular functions such as entropy [23], set cover 

[24], deep submodular functions [25] and so on. Among them, perhaps the most simple 

class is that of the concave of modular functions. Suppose that f:2E ℝ is a monotone 

non-decreasing submodular function and g:ℝ ℝ is a monotone non-decreasing concave 

function, then g(f(A)) is submodular [26].

Optimizing an arbitrary set function is computationally intractable in polynomial time. 

However, submodularity provides possibilities for a variety of optimization problems. 

For example, minimizing a submodular function unconstrainedly can be exactly solved 

in polynomial time [27]. The minimum cut problem is a special case of this general 

minimization problem. However, the corresponding maximization problem is known to be 

NP-hard [28]. On the other hand, maximizing a monotonically non-decreasing submodular 

function under a cardinality constraint can be approximately solved by a simple greedy 

algorithm with a worst case lower bound of 1 − 1
e  [29]. In recent years, due in part 

to the increasing set of applications in machine learning that can utilize submodularity, 

many other related optimization problems have been studied, including submodular cover 

and submodular knapsack constrained submodular optimization [30], online submodular 

maximization [31], and optimizing ratios of submodular functions [32], to name only a few.

Algorithm 1

GREED for submodular maximization. [16]

1: Input: f and m matroid constraints ℳi = E, ℐi .

2: Output: An approximation solution A.

3: A Ø
4: while exists v ∈ E ∖ A s.t. ( v ∪ A) ∈ ∩i ℐi do

5:  v ∈ argmaxv ∈ E ∖ A, ( v ∪ A) ∈ ∩i ℐif(v ∣ A)

6:  A v ∪ A
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7: end while

8: return A

Algorithm 2

LAZYGREED for submodular maximization. [17]

1: Input: f and m matroid constraints ℳi = E, ℐi .

2: Output: An approximation solution A.

3: A Ø; Initialize priority queue Q.

4: for v ∈ E do

5:  INSERT (Q, f(v))
6: end for

7: while Q not empty do

8:  (v, a) POP(Q)
9:  if ( v ∪ A) ∈ ∩i ℐi then

10:   isFresh ← (α = f(v ∣ A))
11:   if not isFresh then

12:    α f(v ∣ A)
13:   end if

14:   if isFreash or α ≥ max(Q) then

15:    A A ∪ v

16:   else

17:    INSERT(Q, (v, α))

18:   end if

19:  end if

20: end while

21: return A

In this paper, we consider the problem of submodular maximization under multiple matroid 

constraints. In 1978, Nemhauser et al. [16] proposed a GREED algorithm (Alg. 1) which is 

guaranteed to obtain a solution A such that

f(A) ≥ 1
m + 1f A∗ , (1)

where A∗ ∈ argmaxA ∈ ∩i ℐif(A) and ℳi = E, ℐi , for i = 1, …, m are a set of m matroids 

to be used as constraints. The time complexity of GREED is O(n2) and can be further 

accelerated by LAZYGREED [17] (Alg. 2) which obtains the same solution as GREED. 

The 1
m + 1  bound can be further improved to 1 − 1

e  [33] for m = 1 and 1
m + ϵ  [34] for m ≥ 2 

using multilinear extension and the continuous greedy algorithm. These algorithm are more 
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computationally expensive, especially since they cannot use the accelerated greedy trick. 

Since our goal is not only to produce a good, but also a fast, scoring function, we elected to 

use the faster algorithms (LAZYGREED), having the 1
m + 1  guarantee.

Another benefit of submodularity and SGM is that we can deliberately punish certain 

pairs of elements by making small changes to the submodular function. This is 

extremely useful for designing suitable functions whenever we observe good biological 

properties of MS/MS, as we next show. Let f0:2E ℝ be a normalized, monotonically 

non-decreasing submodular function, and consider two elements a, b ∈ E. Let 

f′:2E ℝ be another submodular function where f′(A) = f′(A ∩ a, b ) for all A ⊆ E, 

f′( ∅ ) = f′( a ) = f′( b ) = 0 and −minv ∈ a, b f0(v ∣ E ∖ v ) ≤ f′( a, b ) ≤ 0. Note that 

f′(a ∣ E ∖ a ) = f′(E) − f′(E ∖ a ) = f′(a, b) − f′(b) = f′(a, b) = f′(b ∣ E ∖ b ) since f′(v) = 0
for v ∈ a, b .

Lemma 2.1.

f(A) = f0(A) + f′(A) is a monotonically non-decreasing submodular function.

Proof.—f′(A) is submodular by definition and so is f(A) = f0(A) + f′(A) since 

submodularity is preserved when adding submodular functions.

For all v ∈ E ∖ a, b ,

f(v ∣ E ∖ v ) = f0(v ∣ E ∖ v ) + f′(v ∣ E ∖ v ) (2)

= f0(v ∣ E ∖ v ) ≥ 0. (3)

For all v ∈ a, b ,

f(v ∣ E ∖ v ) = f0(v ∣ E ∖ v ) + f′(v ∣ E ∖ v ) (4)

≥ f0(v ∣ E ∖ v ) − min
v ∈ a, b

f0(v ∣ E ∖ v ) ≥ 0. (5)

According to submodularity, if all the final gains are non-negative (e.g. f(v ∣ E ∖ v ) ≥ 0 for 

all v ∈ E), then f(A) is monotonically non-deceasing. □

We claim that adding f′ to f0 discourages choosing the pair a, b when solving 

maxA ∈ Cf(A) = maxA ∈ Cf0(A) + f′(A) instead of maxA ∈ Cf0(A) where C is any constraint.
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Lemma 2.2.

For A∗ ∈ argmaxA ∈ Cf0(A), if A∗ ∩ a, b ≤ 1, then A∗ ∈ argmaxA ∈ Cf(A) and 

maxA ∈ Cf(A) = maxA ∈ Cf0(A). If A∗ ∩ a, b = 2, then maxA ∈ Cf(A) ≤ maxA ∈ Cf0(A).

For an α-approximate solution Â of maxA ∈ Cf0(A), if |A ∩ a, b | ≤ 1, then Â is still an 

α-approximate solution of maxA ∈ Cf(A) and f(A) = f0(A). If |A ∩ a, b | = 2, f(A) ≤ f0(A).

Proof.—Immediately, we have f(A) = f0(A) + f′(A) ≤ f0(A) for all A ⊆ E. So 

maxA ∈ Cf(A) ≤ maxA ∈ Cf0(A).

If A∗ ∩ a, b ≤ 1, then f′ A∗ = 0 and f(A) = f0(A) + f′(A) ≤ f0(A) ≤ f0 A∗ ≤ f A∗  for all 

A ⊆ E. So A∗ ∈ argmaxA ∈ Cf(A).

For the second part, again we have f(A) ≤ f0(A).

If |A ∩ a, b | ≤ 1, then f(A)
maxA ∈ Cf(A) =

f0(A) + f′(A)
maxA ∈ Cf(A)

=
f0(A)

maxA ∈ Cf(A)
≥

f0(A)
maxA ∈ Cf0(A)

≥ 1
α . 

□

Hence, adding f′ will only punish the score of the pair a and b; otherwise, the scores will be 

unaffected.

In practice, we use a concave over modular function, f(A) = g ∑v ∈ A ∩ a, b wv , where g 

is a monotonically non-deceasing concave function, and w is a non-negative weight for 

each element. Immediately, we have f(A) = f0(A) + f′(A) where f0(A) = ∑v ∈ A ∩ a, b g wv
and f0′ (A) = 1A = a, b g wa + g wb − g wa + wb , and using lemma 2.2, we show that f 

discourages choosing the pair of a, b compared to ∑v ∈ A ∩ a, b g wv , which has no 

interaction between elements. But unfortunately, the opposite of lemma 2.2, where we 

would award a particular pair of complementary elements, does not hold. It is hard to model 

complementary properties of multiple elements using submodularity. However, in this paper, 

we use an interesting trick (see Section 4.3.2 for full details) to achieve this goal.

3 BACKGROUND: MASS SPECTROMETRY DATABASE SEARCH

In this section, we introduce the spectrum identification problem. Given an observed 

spectrum dataset S and a peptide database P, for each s ∈ S with precursor m/z value 

of msand precursor charge value cs, we wish to find the peptide p ∈ P responsible for 

generating s. With the knowledge of ms and cs, it is unnecessary to consider all p in the 

entire database. We assume that the responsible p has a mass approximately equal to the 

precursor ms, subject to a tolerance ω determined by the settings in the first round of 

MS/MS. Let Ps = P ms, cs, P, ω = p:s ∈ P, m(y)/cs − ms ≤ ω . In database search, only the 

peptides in Ps, the candidate peptides, are scored. A scored spectrum-peptide pair is called a 

peptide-spectrum match (PSM).
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Denoting an arbitrary scoring function as s(p, s), the spectrum identification problem, for a 

given s, computes:

p∗ ∈ argmax
p ∈ P ms, cs, P, ω

s(p, s)
(6)

The scoring function s(p, s) is the core of any search method and a crucial determinant of the 

performance. We next introduce the widely used SEQUEST method and then show how we 

generalize it using submodular generalized matching.

3.1 The SEQUEST algorithm

SEQUEST [1] was the very first database search engine. It has a rather simple mechanism 

and runs very fast while having good performance. Nowadays, SEQUEST is still widely 

used, and many modern search engines such as MS-GF+ cite [19] and the XCorr p-value 

[20], which will be later described in Section 5.2, build their algorithms using ideas similar 

to that of SEQUEST.

We begin by describing SEQUEST because it also provides a good starting point for SGM. 

Prior to analysis, each observed spectrum is preprocessed in two steps. First, the intensity 

of each peak is replaced by its square root. Second, the m/z range spanned by the spectrum 

is divided into 10 regions uniformly, and the intensities within each region are normalized 

so that the highest intensity in that region is 50. This second step reduces the amount of 

intensity variation along the m/z axis.

Next, a theoretical spectrum is constructed for each candidate peptide. A peptide with 

namino acids is fragmented into n − 1 prefix ions (called “b-ions”) and n − 1 suffix ions 

(called “y-ions”). For each b-ion and y-ion with mass mb and my, theoretical peaks with 

intensity 50 are placed at mb and my, and neutral loss peaks with intensity 10 are placed at 

mb − 17, mb − 18, mb − 28, my − 17. my − 18, corresponding to losses of ammonia (NH3, 

17 Da), water (H2O, 18 Da) and carbon monoxide (CO, 28 Da). Furthermore, if the observed 

spectrum has a precursor charge greater than +2, then higher charged versions of the above 

peaks are also added to the theoretical spectrum.

The traditional SEQUEST score function, called XCorr, is a dot product between one 

theoretical and one observed spectrum, and can be calculated as follows:

SEQUEST(p, s) = p, s − 1
151 ∑

τ = − 75

75
∑
i = 1

N
p(i)s(i − τ) (7)

= p, s − 1
151 ∑

τ = − 75

75
sτ (8)

where s is the observed spectrum, p is the theoretical spectrum and s′ = s − 1
151 ∑τ = − 75

75 sτ

is called the background spectrum with sτ(i) = s(i − τ).
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4 SUBMODULAR GENERALIZED MATCHINGS

Producing a score function S via SGM involves four steps. First, we create a distinct 

bipartite graph where the left vertices V correspond to the observed peaks and the right 

vertices U to theoretical peaks for each PSM needing to be scored. Second, we produce a 

submodular evaluation function f(A) defined over edges of that bipartite graph. Third, we 

define a set of matroids ℳv = E, ℐv  and ℳu = E, ℐv  whose independent sets are to be 

used as constraints. Fourth, we compute the score itself, s = maxA ∈ ℐv ∩ ℐuf(A). We discuss 

each of these steps in detail below.

4.1 Bipartite graph production

All of our models have as their core a bipartite graph representation of the matching between 

observed and theoretical spectra peaks (Figure 1A). A bipartite graph is one whose vertices 

can be divided into two disjoint sets U and V such that every graph edge e = (v, u) connects 

a vertex v ∈ V to a vertex u ∈ U. For each PSM, we build a bipartite graph G = (V , U, E), 
where V and U are the sets of peaks in the observed and theoretical spectrum, respectively, 

and for e = (v, u) ∈ E, theoretical peak u is responsible for the existence of observed peak v 
with a corresponding weight w(e).

For a given edge e = {v, u}, the weight w(e) is defined w′( v, u )xvyu, where w′( v, u ) is a 

weight matrix and xv, yu are intensities of v and u. w′( v, u ) describes the general biological 

relationship between the observed and theoretical peaks given their mass-to-charge ratios, 

mv and mu. For example, if mu − mv is close to 0 or 18 (a water loss), then w′( v, u )
should be high. Note that the matrix w′ is sparse since we do not expect relationships 

to exist between two peaks at an arbitrary m/z difference. Also, the values of w’ are a 

function only of the m/z difference, i.e., w′( v, u ) = ℎ mv − mu  where h(·) is a function 

and is learned empirically using the average intensity near high-confidence b-ions and 

y-ions (Subsection 4.2). Note that our empirical weights may also be helpful for other 

scoring methods. In Section 6.3, we show that using our empirical weighting scheme does 

indeed yield improvements for a method like SEQUEST; however, the submodular function 

introduced in the next section makes better use of this weighting information.

4.2 Empirical weights

In this section, we show how we derive our empirical weights that lead to the improved 

performance demonstrated in Figure 12.

Figure 2 shows the average intensities of observed peaks near b-ions or y-ions in high 

confidence PSMs (q = 0.01) for the worm-01 charge +2 data set. Figure 3 shows the average 

intensities for one data set, Plasmodium TMT-10 (described in Section 5.1). In the figures, 

we see strong peaks at the band y-ions, as well as peaks with offsets of +1 Th peaks 

(+1 isotope peaks), −17 Th (NH3-loss), −18 Th (H2O-loss) and (for b-ions) −28 Th peaks 

(CO-loss).

The edges are added to E based on these average intensities for b-ion and y-ions separately. 

The weight of each edge is w( v, u ) = w′( v, u )x mv , where mv is the m/z of v, and x is 
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the preprocessed observed spectrum as introduced in Section 3.1. Recall that in Section 4.1 

w′( v, u ) is determined by mv−mu. For low resolution data, w′( v, u ) is read from Table 1. 

For high resolution data, the w′( v, u ) values are obtained from Figure 3. In both settings, 

we calculate mv−mu and use the number in the table or intensity in the plot.

For charge +3 data, where the b-ions and y-ions are charge +1 or charge +2, we 

do similar steps but using the mass-to-charge ratio of the higher charged ion, where 

mv, c + =
mv, 1 + + c − 1

c  is the m/z of charge c+ ion of v.

4.3 Submodular evaluation function

In this section, we define the submodular set function f(A) producing a score of an edge set 

A, that corresponds to how well a set of theoretical peaks (the vertex subset of U incident 

to edges A) explains a set of observed peaks (the vertex subset of V incident to edges A). 

While the function f may evaluate an arbitrary subset of edges, we only consider sets A 
that constitute matchings subject to the matroid constraints when producing PSM scores,. 

Therefore, we assume that A is a matching when describing this function.

Before discuss the particular function we have designed for PSM scoring, we describe a set 

of properties of fthat naturally lead us to the class of monotone non-decreasing submodular 

functions. First, in general, we want the theoretical spectrum to explain as much of the 

observed spectrum as possible. This means that if one match is a subset of the other, 

then we expect the first to score no greater than the second. In other words, f should be 

monotone non-decreasing, or f(A) ≤ f(B) for all A ⊆ B. Second, in many cases, we would 

not wish to over-credit a given set of selected edges. For example, if an observed peak is 

well-explained by a given theoretical peak, then any other theoretical peak that also explains 

the same observed peak should be discounted or, in some sense, “explained away.” Without 

some kind of discounting procedure, we would be overconfident about this observed peak. 

Moreover, a non-discounted score function might discourage an optimization algorithm 

from finding alternative explanations of the theoretical peak. This is a natural diminishing 

returns property, and can be described as f(A ∪ e ) − f(A) ≥ f(B ∪ e ) − f(B), ∀A ⊆ B ⊂ E
and e ∉ B. This is equivalent to the definition of submodular functions.

In general, even approximately maximizing an arbitrary set function is hopelessly intractable 

since it at least costs O 2|E| , exponential in the number of set of edges. However, 

maximizing a monotonically non-decreasing submodular function subject to cardinality 

constraints can be approximately solved by a simple and efficient greedy algorithm with a 

1 − 1
e  guarantee [29]. The same algorithm maximizes said function subject to intersection 

of two matroid constraints (described below) with a 1/3 guarantee [16]. Hence, submodular 

functions are both natural for the problem of generalized matching for PSM scores, but also 

allow efficient algorithms to obtain approximate optima of high quality.

There are rich classes of submodular set functions that one might choose from. We have 

developed a family of such functions, as described below, that are uniquely suited for PSM 

scoring and that allow for a rich and powerful relationship to exist between a peptide and its 
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observed spectrum. In the following two subsections, we describe two submodular functions 

f1 and f2, that each capture an important part of PSM scoring. Taking a convex combination 

of such functions preserves submodularity (e.g., f = f1 + f2 is submodular when the fi’s are 

submodular). So our final scoring method is a mixture of two functions. This is discussed 

next.

4.3.1 Matching one observed peak to multiple theoretical peaks—In general, 

we do not want an observed peak to be over-explained and hence over-valued by multiple 

fragment ions. When an observed peak is accounted for on the left side, if it is matched 

again, then the second match should not be given as much credit as when the second match 

is considered alone. This diminishing returns property is exactly modeled by submodularity 

since if ei is the ith match, then f ei ∣ e1, …, ei − 1 ≤ f ei  whenever f is a submodular 

function. Here we assume that f(Ø) = 0. This relationship is depicted in Figure 4A and 

can be represented using the following function:

f1(A) = ∑
v ∈ V

g1 ∑
e ∈ A ∩ δv

w(e) , (9)

where g1(x):ℝ+ to ℝ is a monotonically non-decreasing concave function and δv ⊆ E are 

the edges incident to node v ∈ V . The function f1(A) therefore provides submodularity 

on the edges grouped by the observed node due to the use of δv . f1(A) is a submodular 

function since it is a sum of monotonically non-decreasing concave functions composed 

with non-negative modular set functions [26]. Note that we have flexibility in the choice 

of g1(x), and are allowed to model this interaction in diverse ways using different g1(x) 

functions. In our experiments we use g1(x) = βlog(1 + β−1x , where β is a parameter. We also 

experimented with g1 = xα for α = 1/2, 1/3 and 1/4, but this class of function yielded worse 

empirical results (data not shown).

4.3.2 Scoring complementary pairs of matched observed peaks—In a spectrum 

produced by a well fragmented peptide, b-ions and corresponding y-ions always appear 

in pairs. Therefore, a score function should ideally provide a boost for a b-ion vb if 

its corresponding y-ion vb is also present (Figure 4B). This leads to a relationship of 

the inequality, f ab ∪ ab > f ab + f ab , where ab ∈ δvb and ab ∈ δvb. Unfortunately, this 

relationship is supermodular (essentially a negative submodular), which is a much harder 

or impossible to optimize with mathematical worst case guarantees. Therefore, we use a 

modular function to express the inherent complementarity between b- and corresponding 

y-ions. Such functions are as close to supermodular as possible while still being submodular. 

Hence, relationships among edges that are naturally supermodular use a modular function; 

relationships that are naturally modular use a weakly submodular function, and relationships 

that are naturally submodular use a strong submodular function. The “strength” of the 

submodularity, in this context, corresponds precisely to the curvature (magnitude of the 

second derivative) of the concave functions that are employed Given a concave over modular 

function f(A) = g(m(A)), we define curvature, in the current context, as d2g(x)
dx2 x = m(V )

. 
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For PSM scoring, we therefore use the following function, which acts as our submodular 

surrogate for a supermodular relationship between corresponding ion pairs:

f2(A) = γ2 ∑
i ∈ Ub‐ion 

m A ∩ Ei ∪ ∑
j ≠ i

Ej + m A ∩ Ei (10)

where Ub-ion is the set of b-ions for a given theoretical spectrum, and if i is an b-ion then i  is 

the corresponding y-ion, and vice versa. (We say that i  is the co-ion of i, and any j ≠ i, j is a 

“non-co” ion.) The function m(A) = ∑e ∈ Awe is a modular weight function. The coefficient 

γ2 = ∑e ∈ E w(e) scales the function to be combined with the other fi’s. Hence, we see that 

f2 maximally credits any edge sets in A that correspond to an ion and its co-ion (since 

they are in different components in each term of the sum), whereas any edges that do not 

have this complementary (i.e., an ion and its non-co ions) are discounted if they are jointly 

selected within A.

4.3.3 Combination of submodular functions—We can use a weighted sum of the 

above two submodular functions as the evaluation function. The magnitude of the weight 

is important, because we do not want one term to dominate the other. For example, if f1 is 

naturally larger than f2 (i.e. f1(A) ≫ f2(A) for all A ⊆ E), then when maximizing the sum 

f1 + f2, the solution will focus primarily on f1 with little consideration of f2. To avoid this 

problem, we use the following combination:

f(A) = λcal f1(E) + 1 − λcal  f2(E) λmch 
f1(A)
f1(E) + 1 − λmch 

f2(A)
f2(E)

where 0 ≤ λcal , λmch  ≤ 1. Inside the brackets, we use a convex mixture of normalized 

functions so that 0 ≤ f1(A)/f1(E) ≤ 1 is always comparable with 0 ≤ f2(A)/f2(E) ≤ 1. The 

mixture, however, is still normalized to be in the range [0, 1] so we then calibrate this result 

by multiplying by λcal f1(E) + 1 − λcal  f2(E) which does not affect the optimization since 

it is independent of A. Intuitively, this calibration ensures that PSM scores are comparable 

across different observed spectra (Figure 6).

To understand further why the calibration procedure is helpful, consider the expression for 

f(A):

f(A) = λcalf1(E) + 1 − λcal f2(E) λmch
f1(A)
f1(E) + 1 − λmch

f2(A)
f2(E)

= λcal λmch f1(E) + λcal λmch f2(E)
f1(A)
f1(E)

+ λcal λmch f2(E) + λcal λmch f1(E)
f2(A)
f2(E)
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= α1f1(A) + α2f2(A),

where λi = 1 − λi for convenience, where fi(A) = fi(A)/fi(E) for i ∈ 1, 2  are now two [0, 

1]-normalized (and hence compatible) submodular functions as mentioned above, and where 

αi, i ∈ 1, 2  are two coefficients. These coefficients, in fact, both mix and scale the functions, 

because α1 = λmch  λcal f1(E) + λcal f2(E)  and α2 = λmch λcalf2(E) + λcalf1(E) . Hence, we 

see how λmch influences the optimization while λcal selects a calibration score. These are 

hyperparameters over the algorithm and can be tuned on a development set. Figure 4.7 

below shows the effects of these parameters.

4.4 Matroid constraints

Now that we have an appropriate submodular evaluation function f, we next discuss how we 

produce the final PSM score s. One possible approach would use s = f(E),, thereby allowing 

all possible edges to comprise a score. This would be a poor choice, however, since the 

observed spectrum contains many noise peaks, and we have no oracle to decide whether a 

given peak is real signal or not. Although preprocessing steps can be very helpful to limit the 

influence of noise, it is impossible to fully eliminate all such cases. Moreover, the observed 

peaks of one fragment ion may happen to have the same m/z as other ions. In this case, the 

latter ion will have an unexpected co-ion, and we do not want to reward this in any way.

Thus, using all edges E will produce a final score that suffers from many false interactions. 

Fortunately, when we use a submodular function as described above, we expect the edges 

that do accurately explain the observed spectrum, in general, to have much greater weights 

than the noise edges. Moreover, limiting the set of edges being scored to satisfy certain 

constraints (which we call a “generalized matching”) forces the edges comprising a score to 

compete with each other. This competition limits the ability of incorrect edges to artificially 

boost the score. Finally, for most false PSMs, even the best set of edges will not lead to a 

high score.

The next question is how to set up the right constraints. A simple way is to use standard 

bipartite matching constraints. This, as mentioned in Section 1, is problematic since every 

edge in such a matching can be incident to at most only one vertex. In practice, one observed 

peak might be explained by multiple fragment ions, and one fragment ion might truly 

explain multiple observed peaks. What we would like is a “generalized matching” where 

every vertex may be incident to more than one, but we still limit the total number of edges.

The intersection of two matroid constraints perfectly represents this generalized matching 

property. As mentioned in Section 1, a matroid is a pair (E, ℐ), where E is a finite set and ℐ
is a family of what are called “independent” subsets of E. An edge set solution A satisfies 

a matroid constraint if and only if A ∈ ℐ. A particular kind of matroid that is useful for 

our model is called a partition matroid. A partition matroid is based on a partition of E into 

disjoint subsets sets Ei i = 1
ℓ , and ℓ non-negative integers ki i = 1

ℓ , where ∪i = 1
ℓ Ei = E and 

Ei ∩ Ej = Ø for i ≠ j. A set A ⊆ E is independent if and only if A ∩ Ei ≤ ki, ∀i. Therefore, 
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ℐ = A|A ⊆ E, |A ∩ Ei ∣ ≤ ki, ∀i . We have two natural partitions of edges E, namely 

δv, v ∈ V  and δu, u ∈ U  where, again, δ(v) is the set of edges incident to v and likewise 

for δ(u). Therefore, we define two partition matroids ℳv = E, ℐv  and ℳu = E, ℐu , 

where ℐv = A|A ⊆ E, |A ∩ δ(v) ∣ ≤ kv∀v ∈ V  and ℐu = A|A ⊂ E, |A ∩ δ(u) ∣ ≤ ku∀u ∈ U . 

We immediately see that a matching constraint for A is equivalent to A ∈ ℐv ∩ ℐu, where 

kv = ku = 1 for all v ∈ V  and u ∈ u. A natural and immediate generalization of bipartite 

matching, moreover, is to set kv ≥ 1 and/or ku ≥ 1, where kv (resp. ku) corresponds to 

the maximum allowed number of incident edges to vertex v (resp. u) in any generalized 

matching. The values kv and ku are seen as parameters of the constraint and correspond, for 

example, to allowing an observed peak to be explained by multiple fragment ions and one 

ion to explain multiple observed peaks in the PSM. In practice, we set kv = ∞, because in 

the four datasets we studied, the maximum number of edges connected to v is only 2. Hence, 

there is no need for constraints on the observed side.

4.5 The final score function

Our final score, for a given PSM, is computed as maxA ∈ ℐv ∩ ℐuf(A), where ℐv and ℐu

are the independent sets of two partition matroids with appropriate values of kv and ku. An 

exact solution is computationally intractable, but fortunately, as mentioned previously, an 

approximate solution can be easily and scalably calculated using a simple greedy algorithm 

with a mathematical guarantee of 1/3 [35].

Our score function can be regarded as a generalization of both SEQUEST and maximum 

bipartite matching. SEQUEST uses a dot product operation to calculate the score which 

is, in fact, equivalent to maximizing a modular set function subject to a particular 

bipartite matching constraint, namely, one where |δv | = |δu | = 1, i.e., where edges exist 

only between a theoretical peak and its corresponding observed peak. One difference 

between SEQUEST and such a bipartite score is that SEQUEST uses a background 

spectrum s′ = s − 1
151 ∑τ = − 75

75 sτ  (i.e., the difference between a foreground and average 

background spectra, which can be negative) rather than just a non-negative foreground 

spectrum. In a submodular matching, however, we cannot use the background spectrum 

directly since it is not always non-negative, something that would violate both the 

monotonicity and submodularity of our objective f(A) and render the efficient greedy 

algorithm mathematically vacuous. However, we can use the background information 

without resulting in negative values if we subtract a similar background factor after finding 

the maximum matching, as in: s = maxA ∈ ℐv ∪ ℐuf(A) − ατ, where α is a parameter and 

τ = ∑i ∈ U
1

151 ∑j = − 75
75 s m/zi + j  is a background factor. Subtracting τ from the score 

is not precisely the same as using the background spectrum in SEQUEST but has the 

same intended purpose and, as we show below, works well while preserving monotonicity, 

submodularity, and hence the mathematical guarantees and applicability of the greedy 

algorithm.
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4.6 Score calibration

As described in Section 1, calibration is a critical step of a good score function. We say that 

a PSM score function is well calibrated if a score of x assigned to spectrum si has the same 

meaning or significance as a score of x assigned to spectrum sj. During a database search, 

the top-scoring PSMs from different observed spectra are combined into a final, ranked list. 

The ranking will be reflective of the true qualities of the PSMs only if the scores of different 

observed spectra are comparable. In SGM, we calibrate each PSM’s score by subtracting the 

average score of all the PSMs involving that spectrum, as follows

s∗(p, s) = s(p, s) −
∑p′ ∈ Pss p′, s

Ps
, (11)

where s(p, s) is the non-calibrated score, and Ps is the set of candidate peptides associated 

with spectrum s.

The subtraction term is a constant with respect to each spectrum and does not affect which 

peptide is chosen. Rather, it only helps to produce a good overall ranking of top-scoring 

PSMs. Other search methods, such as MS-GF+ and the XCorr p-value, calibrate scores using 

dynamic programming. Using similar techniques for SGM scoring is left to future research, 

because SGM scoring is inherently non-linear, unlike SEQUEST which is a simple linear 

dot-product-based score.

4.7 Selection of score function parameters

Our submodular functions use the hyperparameters λcal, λmch and {ku}u∈U. To select values 

for these hyperparameters, we performed an FDR-based evaluation with cases ku ∈ {1, 2, 3, 

4, 5} when λcal = λmch = 1.0 on the data set worm-01-ch2 (described in Section 5.1). The 

results (Figure 4.7(a)) show that ku = 2 yields the best performance. Next, we tested cases 

λcal ∈ {0.4, 0.6, 0.8, 1.0} on yeast-01ch2, while fixing λmch = 1.0. We then selected λcal = 

0.6 based on these results (Figure 4.7(b)). Next, we tested λmch ∈ {0.4, 0.6, 0.8, 1.0} while 

fixing λcal = 0.6. The value λmch = 0.8 had the best performance (Figure 4.7(c)). For α, we 

calculate the average score of SGM,

α1 =
∑s ∈ S ∑p ∈ Ps ∪ Dss(p, s)

∑s ∈ S Ps ∪ Ds

and the average foreground score of SEQUEST,

α2 =
∑s ∈ S ∑p ∈ Ps ∪ Ds p, s

∑s ∈ S Ps ∪ Ds

where S is the set of all observed spectra and Ps and Ds are corresponding target and 

decoy sets of s ∈ S. The value α is then chosen to be 
α2
α1

. Although the derivation of these 

parameters was empirical in our study, we hope in future work to develop strategies that can 

learn these automatically.
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Ideally, these hyperparameters generalize across the different datasets. To test this, we tried 

all combinations of hyperparameters on one run from the yeast and worm data sets (yeast-01 

and worm-01). The results (Figure 8) show that the parameters that work well on one dataset 

tend also to work well on the other dataset, implying that the parameters generalize well 

across datasets.

5 METHODS

We use four different data sets to benchmark the performance of SGM relative to three 

state-of-the-art methods, and we employ several different quality measures to compare the 

results.

5.1 Data sets

The yeast (S. cerevisiae) and worm (C. elegans) data sets were collected using tryptic 

digestion followed by acquisition using low-resolution precursor scans and low-resolution 

fragment ions. A total of 108,291 yeast and 68,252 worm spectra with charges ranging 

from 1+ to 3+ were collected. Each search was performed using a ±3.0 Da tolerance for 

selecting candidate peptides. Peptides were derived from proteins using tryptic cleavage 

rules without proline suppression and allowing no missed cleavages. A single fixed 

carbamidomethyl modification was included. Further details about these data sets, along 

with the corresponding protein databases, may be found in [36].

The malaria parasite Plasmodium falciparum was digested using Lys-C, labeled with an 

isobaric tandem mass tag (TMT) relabeling agent, and collected using high-resolution 

precursor scans and high-resolution fragment ions. The data set consists of 240,762 spectra 

with charges ranging from 2+ through 6+. Searches were run using a 50 ppm tolerance for 

selecting candidate peptides, a 0.03 Da fragment mass tolerance, a fixed carbamidomethyl 

modification, and a fixed TMT labeling modification of lysine and N-terminal amino acids. 

Further details may be found in [37].

The human dataset was digested using trypsin, labeled with an isobaric tandem mass 

tag (TMT) relabeling agent, and collected using high-resolution precursor scans and high-

resolution fragment ions. The data set consists of 1,133,534 spectra with charges ranging 

from 2+ through 6+. Searches were run using a 10 ppm tolerance for selecting candidate 

peptides, a 0.02 Da fragment mass tolerance, a fixed carbamidomethyl modification, and a 

fixed TMT labeling modification of lysine and N-terminal amino acids. Further details may 

be found in [38].

5.2 Database search methods

We compare SGM with four state-of-art methods: SEQUEST, MS-GF+ [19], XCorrp-value 

[20] and Mascot [21]. In Section 3, we have already described SEQUEST and its XCorr 

score function. In the experiments, we use a re-implementation of SEQUEST called “Tide” 

[18], available in Crux version 2.1.16790 [39]. One problem with SEQUEST in practice, 

as demonstrated below, is that the raw XCorr score is poorly calibrated. The MS-GF+ 

[19] search engine uses an alternative score function and employs dynamic programming 

to exactly compute the score distribution over the universe of candidate peptides for a 
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linear scoring function. This gives far better calibration. In the experiment, we use MS-GF+ 

version 9980, and PSMs are ranked by the “Evalue” score. The XCorr p-value [20] uses a 

similar dynamic programming approach to calibration, applied to the SEQUEST XCorr 

score. We also use Crux for XCorr p-value. For clarity, we refer to the two variants 

of SEQUEST as “XCorr” (for results based on ranking with the raw XCorr score) and 

“p-value” (for results based on ranking by the XCorr p-value). Mascot is another traditional 

searching method. Unlike Sequest, Mascot uses a probabilistic metric to measure the 

likelihood of observed spectra and canidiate peptides. We use an online Mascot server 

(version 2.3.01).

To ensure a fair comparison, we use equivalent values for search settings for all search 

engines whenever possible. In general, we use the appropriate discretization of the fragment 

m/z axis for each given data set. The only exception is that, for technical reasons related to 

the dynamic programming procedure, the XCorr p-value can only be calculated using an m/z 

resolution of 1.0005079 Da. For Tide, MS-GF+ and Mascot, default search parameters are 

used, except that, to make a fair comparison, handling of isotope peak errors is turned off 

in MS-GF+. (In the Appendix, we show that this option does not affect our conclusions.) 

Furthermore, to avoid variability in how proteins are digested to peptides and how “decoy” 

peptides (see Section 5.3) are generated, we use the same digested peptide database as input 

to all search algorithms. We create these databases by using the “tide-index” command in 

Crux, with “clip-nterm-methionine” set to “True”.

5.3 Evaluation of methods

We employ a widely used approach, target/decoy search [40], to assign confidence estimates 

to PSM scores. These confidence estimates allow us to compare the performance of different 

search engines, since there is no ground truth to measure accuracy. We create a “decoy” 

set by randomly permuting the (non-terminal) amino acids of each peptide in a “target” 

set, which is the real candidate peptide set. For each spectrum, all peptides in a database 

comprised of targets plus decoys are searched, and the single peptide with the highest score 

is selected. If more than one peptide has the highest value, then ties are broken randomly.

Two complementary metrics for comparing two algorithms using target/decoy search were 

considered. The first, simpler approach is the “target match percentage” (TMP), defined 

as the fraction of observed spectra for which the top-scoring match involves a target 

peptide. For a perfectly random score function, the TMP is expected to be ∼50%. The best 

possible TMP is 100%; however, this is not achievable in practice, because any real data set 

will contain spectra that cannot be identified, either because the corresponding generating 

peptide is not in the given peptide database or because the spectrum was generated by 

a non-peptide contaminant. These “foreign” spectra are expected to match targets and 

decoys with equal frequency. TMP is not a widely used performance measure; however, we 

employ it here because TMP provides a measure of the quality of a score function that is 

independent of a score function’s calibration. This is because the TMP only compares scores 

for PSMs within one spectra. Hence, the distribution of PSM scores for spectrum A can be 

dramatically different from another spectrum B, but the TMP achieved by the score function 

can still be high.
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Additional steps are required to evaluate the calibration of a score function. After obtaining 

a ranked list of the top-scoring PSM for each spectrum, we set a score threshold and label 

every PSM scoring better than the threshold as “accepted.” The false discovery rate at a 

given threshold can be estimated as FDR = number of accepted decoy PSMs
total number of accepted PSMs  [40]. In practice, we 

compute for each PSM its corresponding q-value, defined as the minimum FDR at which 

a PSM with that score is accepted [41]. Because many mass spectrometry studies report 

results using an FDR threshold of 1%, we sometimes report the number of target PSMs 

accepted at q ≤ 0.01. To evaluate the performance of a search engine over a variety of 

q-value thresholds, we also plot the number of accepted target PSMs as a function of q-value 

threshold and compute the area under the plot from 0 ≤ q ≤ 0.1. Because the FDR-based 

evaluation involves creating a ranked list of top-scoring PSMs from many different spectra, 

this metric requires good cross-spectrum calibration.

6 RESULTS

6.1 Comparison of four search methods

We begin by computing the target match percentage of the four search methods—SGM, MS-

GF+, p-value and XCorr—on the four data sets described in Section 5.1. In all four cases, 

SGM achieves the greatest TMP (Table 2). Each of these data sets consists of multiple mass 

spectrometry runs: 3, 3, 20, and 100, for the yeast, worm, Plasmodiumand human data sets, 

respectively. Consequently, for the latter two data sets we were able to compute the TMP 

separately for each run and then use a Wilcoxon signed-rank test to identify statistically 

significant differences. This analysis (Figure 10) indicates that, for the malaria data set, 

SGM performs better than XCorr (p = 0.11), and for the human data set, SGM performs 

significantly better than all three competing methods (p = 1.6 × 10−5). The consistently 

good TMP performance of the SGM method on these diverse data sets indicates that, for 

each observed spectrum, this score function does a very good job of ranking the generating 

peptide above all other candidate peptides.

Next we evaluate the methods using false discovery rate estimation, thereby additionally 

taking into account the calibration of the scores. In practice, this evaluation is the most 

important, since it directly reflects how the end user will interpret the results of the search. 

The results (Figure 9) suggest that, once again, SGM performs better than MS-GF+, XCorr, 

XCorrp-value and Mascot for the yeast, worm and Plasmodium data sets. We quantified 

the performance of the first four methods by counting the number of accepted PSMs at 

a q-value threshold of 0.01, and we again used a Wilcoxon signed-rank test to estimate 

significant differences for the data sets comprised of many runs. This analysis shows that 

SGM significantly outperforms all three competing methods on both the Plasmodium and 

human data sets. The p-values relative to the second-ranked method, XCorr, are 0.0015 for 

Plasmodium and 0.0014 for the human data set (Figure 10).

6.2 Verifying the utility of submodularity

The SGM approach employs a combination of two submodular functions, each of which 

is designed to capture a particular property of high quality matches between spectra and 

peptides. To verify that the good results in Section 6.1 are indeed a reflection of these 
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properties, we examined more closely the high-confidence identifications produced by 

SGM. For this analysis, we focus on a single, randomly selected run (“TMT10”) from 

the Plasmodium data set.

First, we show that f1 discourages choosing multiple edges incident to one observed peak. 

To do so, we compare the number of multiply matched observed peaks in high confidence 

PSMs (q ≤ 0.01) generated using two methods: a simple, modular approach versus using f1. 

The distribution of the number of multiply matched peaks decreases when we use f1 (Figure 

11A), which implies that our submodular function discourages multiply matched observed 

peaks.

Second, we show that f2 encourages choosing a b-ion if its corresponding y-ion is already 

chosen, and vice versa. As before, we compute the number of jointly matched band y-ion 

pairs among the high confidence PSMs, with and without inclusion of f2. As expected, the 

number of matched b- and y-ion pairs increases when we use f2 (Figure 11B), implying that 

our submodular function indeed encourages such matching.

6.3 Investigation of empirical weights

Our method is different from XCorr in two respects. First, we use empirically derived 

edge weights based on an analysis of the data (Section 4.2). Second, we generalize the dot 

product score to one based on a submodular generalized matching. We performed further 

experiments to ascertain which of these two changes are primarily responsible for the good 

results reported above.

In particular, we contrast our empirical weights with the “classical” weights employed 

by methods such as XCorr and MS-GF+. The methods use a fixed weights for 

each ion type. The classical weights used in the XCorr score are defined as 

w′( v, u ) = δmv, mu + 0.2∑l ∈ − 17, − 18, − 28 δmv + l, mu′ δi, j = 1 if i = j and 0 otherwise. 

Hence, the classical weight is 1 if mv − mu = 0; 0.2 if mv − mu ∈ {−17, −18, −28} and 0 

otherwise.

To investigate the relative importance of SGM and the empirical weighting scheme, we 

analyze the contributions of these two components separately. We do the test on a single 

run (“TMT10”) from the Plasmodium data set, evaluating performance using target-decoy 

q-values. We compare four different search methods: SGM with and without empirical 

weights, and XCorr with and without empirical weights. In this experiment (Figure 12), the 

combination of SGM with empirical weights achieves by far the best performance. While 

the empirical weights help both XCorr and SGM, the SGM with the standard XCorr weights 

is still better than XCorr with our empirical weights. Hence, it is fair to say that the SGM 

process is the more important of the two. This is not surprising because the power of SGM, 

and the use of submodular functions, is that we can allow global long-range interaction 

amongst edge scores, something that is not possible with XCorr.
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6.4 Running time

To evaluate the running time of SGM relative to other search tools, we measured the wall 

clock time of four search methods on a single Intel Core 2 Quad Q9550 2.83GHz CPU on 

the Plasmodium TMT-10 dataset. The dataset consists of 8841 spectra, each with an average 

of 365 target peptides and an equal number of decoy peptides. This analysis (Table 3) shows 

that SGM has a comparable run time with MS-GF+ and the Tide p-value. The raw XCorr 

score calculation is extremely fast because it simply consists of calculating a dot product, 

with no explicit calibration procedure.

7 CONCLUSION

We have introduced a novel class of score functions for use in tandem mass spectrometry 

database search. A key advantage of our SGM is that we can model many PSM 

properties, including long-range interactions among peaks in an observed spectrum, using 

a rich and powerful framework, namely that of submodularity and various matroid 

constraints. An additional advantage is that our model runs fast since we may use 

a simple accelerated greedy algorithm to find the maximum value of the submodular 

function with a mathematical quality guarantee of 1
3 . We show that our approach achieves 

statistically significant improvements in performance relative to several state-of-the-art 

methods according to two different evaluation metrics.

In SGM, we use three hyperparameters, chosen from a grid of possible values (Section 4.7). 

Our empirical analysis suggests that these hyperparameters generalize well across datasets. 

Therefore, we do not need to re-tune these hyperparameters to different datasets.

In future studies, we will explore other submodular functions in an attempt to further 

improve performance. For example, we can explore algorithms that can learn submodular 

functions and parameters from training data [10], [42]. We can will also consider other 

generalizations of our framework to better model the process of spectrum generation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. PSM bipartite graphs.
(A) V is the set of all peaks in an observed spectrum. The horizontal lines attached on the 

left represent the peak intensities in the observed spectrum. U is the set of all fragment ions 

for a given theoretical spectrum derived from a given peptide. An edge (v, u) connects v 
∈ V with u ∈ U if v might possibly be explained by u with an associated non-negative 

weight. (B) Red lines are selected edges for a particular match. Non-horizontal edges might 

correspond to neutral losses.
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Fig. 2. 
Average intensity near b-ion and y-ion peaks from high-confidence (q < 0.01) PSMs in 

the worm-01 dataset. We see strong signals at m/z=0 (central peak), m/z=+1 (+1 isotope), 

m/z=−17 (NH3 loss), m/z=−18 (H2O loss) and m/z=−28 (CO loss for b-ion only).

Bai et al. Page 27

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Average intensity near b-ion and y-ion from high-confidence (q < 0.01) PSMs in the 

Plasmodium TMT-10 dataset. We see strong signals at m/z=0 (central peak), m/z=+1 (+1 

isotope), m/z=−17 (NH3 loss), m/z=−18 (H2O loss) and m/z=−28 (CO loss for b-ion only). 

The intensities in this figure are also used for the empirical weights w({ev, eu}) for high 

resolution data for both Plasmodium and human. For each v and v, we compute the mass-to-

charge ratio difference mv − mu and then use the corresponding peak intensity.
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Fig. 4. Illustration of submodular functions.
V is the set of all peaks in an observed spectrum, with blue horizontal lines representing 

the observed spectrum intensities. U is the set of all fragment ions for a given theoretical 

spectrum. Edge (v, u) with v ∈ V and u ∈ U if v might E possibly be explained by u with 

an associated non-negative weight. E is set of all edges. (A) Two theoretical peaks match 

the same observed peak. The submodular function assigns a score intermediate between 

the max and the sum of the two edge scores. (B) Two complementary theoretical peaks 

match to different observed peaks. The submodular function assigns a “bonus” for this 

complementarity.
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Fig. 5. 
Visualization of the bipartite graph. The top nodes are observed peaks and the bottom ones 

are theoretical. Red solid lines are selected edges while dashed lines are unselected. On the 

top, corresponding observed peaks for b and y-ion pair are connected and thick if they are 

matched. On the bottom, matched b and y-ion pairs are marked in same color.
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Fig. 6. Score calibration of SGM.
Each panel plots, for a single charge state, the SGM score distribution of top-scoring PSMs, 

separated into target and decoy distributions. Panels on the left are uncalibrated scores, and 

panels on the right are calibrated. In each plot, the x-axis is normalized so that the score 

threshold at q = 0.01 equals 1.
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Fig. 7. 
FDR-based evaluation of SGM using different hyperparameters.
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Fig. 8. 
The plot shows the number of high-confidence PSMs (q ≤ 0.01) obtained by SGM on the 

yeast data (x-axis) versus the worm data set (y-axis). Every point represents the performance 

of one combination of parameters.
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Fig. 9. FDR-based comparison of search methods.
Each panel plots, for a single data set and a variety of score functions, the number of spectra 

identified as a function of FDR threshold.
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Fig. 10. Statistical comparison of methods.
Each panel plots, for a single data set, the comparison between four methods in terms of 

the target match percentage or the number of targets PSMs accepted at q < 0.01. A directed 

edge from A to B means that method A’s mean score is significantly larger (p < 0.05) than 

method B’s mean score, according to a Wilcoxon signed-rank test. The numbers in the nodes 

are mean values.
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Fig. 11. PSM properties captured by the submodular function.
(A) The number of multiple matched observed peaks decreases when we use the submodular 

function f1. (B) The number of multiple matched band y-ion pairs increases when we use the 

submodular function f2.
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Fig. 12. 
Evaluation of the SGM and XCorr score functions on a subset of the Plasmodium data set, 

with and without using the empirical weighting scheme.
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TABLE 1

The empirical weights w ev, eu  used for low resolution data (yeast and worm). For each v and u, we compute 

the mass-to-charge ratio difference mv − mu and read the correspond entry from the table.

b-ion

mv − mu −28 −27 −19 −18 −17 −16

w′( v, u ) 0.1101 0.0225 0.0121 0.3128 0.2364 0.0784

mv − mu −15 −12 −1 0 +1 +2

w′( v, u ) 0.0112 0.0107 0.0481 0.6122 0.2514 0.0511

y-ion

mv − mu −18 −17 −16 0 +1 +2

w′( v, u ) 0.1364 0.1179 0.0345 1 0.4253 0.0741
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TABLE 2

Target match percentage achieved by the four score functions on four data sets. In each row, the maximal value 

is shaded red.

Dataset SGM MS-GF+ p-value XCorr

yeast 70.59 66.19 65.47 64.91

worm 82.83 77.59 77.39 76.43

Plasmodium 69.91 66.85 65.53 69.39

human 74.40 60.40 73.26 74.12
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TABLE 3

Run time of four methods per spectrum on the Plasmodium TMT-10 data set.

SGM MS-GF+ p-value XCorr

8.48 × 10−2s 8.99 × 10−2s 6.89 × 10−2s 3.39 × 10−3s
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