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Abstract

Chronic obstructive pulmonary disease (COPD) is a common, complex
disease andamajor causeofmorbidity andmortality.Althoughmultiple
genetic determinants of COPD have been implicated by genome-wide
association studies (GWASs), the pathophysiological significance of
these associations remains largely unknown. From a COPD
protein–protein interactionnetworkmodule,we selectedanetworkpath
between two COPD GWAS genes for validation studies: FAM13A
(family with sequence similarity 13 member A)–AP3D1–CTGF–
TGFb2. We find that TGFb2, FAM13A, and AP3D1 (but not CTGF)
form a cellular protein complex. Functional characterization suggests
that this complex mediates the secretion of TGFb2 through an AP-3
(adaptor protein 3)–dependent pathway, with FAM13A acting as a
negative regulator by targeting a late stage of this transport that involves
thedissociationof coat–cargo interaction.Moreover,we find thatTGFb2
is a transmembraneprotein that engages theAP-3complex fordelivery to
the late endosomal compartments for subsequent secretion through
exosomes. These results identify a pathophysiological context that unifies

the biological network role of two COPDGWAS proteins and reveal
novel mechanisms of cargo transport through an intracellular pathway.

Keywords: chronic obstructive pulmonary disease; network medicine;
network validation; genome-wide association study; cell trafficking

Clinical Relevance

After validating the network connection among FAM13A
(family with sequence similarity 13 member A), AP3D1,
and TGFb2, we identified TGFb2 as a novel cargo of AP3
(adaptor protein 3)–mediated cellular trafficking that is
secreted in exosomes. We also identified a unique mechanism
by which FAM13A negatively regulates this cellular trafficking
process. Our work not only provides new understanding of
TGFb2’s regulation but also reveals a molecular mechanism
linking two genome-wide association study genes involved in
chronic obstructive pulmonary disease susceptibility.
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Chronic obstructive pulmonary disease
(COPD) is a common, chronic, progressive
lung disease; it is the fourth leading cause of
death in theUnited States and is amajor cause
of morbidity andmortality around the world
(1). The development of COPD results from
both long-term environmental exposures
(typically cigarette smoking) and genetic
factors. Recent genome-wide association
studies (GWASs) have identified 82 genetic
loci that are significantly associated with
COPD (2); however, the key genes and
functional variants within most of these
GWAS loci are unknown (3). In addition,
identifying biological connections among the
known COPDGWAS genes has been
challenging, thus limiting their scientific
impact.

We previously identified a set of proteins
hypothesized to be connected by
protein–protein interactions, known as a
disease networkmodule. To build this disease
networkmodule, we started with a set of well-
established COPD genes (from COPD
GWASs andMendelian syndromes that
include COPD) as initial input genes for
building the network (referred to as “seed
genes”) (4). The COPDGWAS genes used as
seed genes for this network analysis were
located in genomic regions that were
significantly associated with COPD and often
had strong biological support for involvement
in COPD pathogenesis and/or nicotine
addiction; they included IREB2 (5),MMP12
(6),HHIP (7), RIN3 (8), CHRNA3 (9),
CHRNA5 (10), TGFB2 (8), and FAM13A
(family with sequence similarity 13 member
A) (11). All of the gene products of these
COPDGWAS seed genes had publicly
available protein–protein interaction data
except for FAM13A; therefore, we included
affinity purification/mass spectrometry data
from FAM13A and identified a disease
networkmoduleof 163connectedproteins (in
addition to FAM13A) (11).

Although molecular network models of
complex diseases can provide important
biological insights, functional validation
studies are required to confirm these
molecular relationships and to investigate
their pathobiological mechanisms (12). We
postulated that closely connected proteins in
the protein–protein interaction network for
COPDwould be more likely to have related
biological functions inCOPDpathogenesis. In
this study, we selected the network path
FAM13A–AP3D1–CTGF–TGFb2 for further
analysis. Like FAM13A, TGFB2 is another
GWAS gene implicated in COPD (8, 13).

Substantial evidence links the TGFb family of
proteins (consisting of TGFb1, TGFb2, and
TGFb3) with COPDpathogenesis, as they are
involved inmultiple cellular events relevant to
lung biology, including extracellular matrix
production, cellular proliferation, and
immune modulation (14). Although most
COPD research has focused on TGFb1,
elevated levels of TGFb2 have been found in
lungs of spontaneously hypertensive rats
exposed to cigarette smoke (14). Moreover,
TGFb2 has been found to impact rat lung
branching during morphogenesis andmucin
production in human bronchial epithelial
(HBE) cells (15, 16).

Although the FAM13A genomic
region has consistently been a top
association in COPD GWASs, there has
been limited understanding of its biological
roles. We hypothesized that the postulated
protein–protein interactions connecting
FAM13A and TGFb2 would implicate
important biological mechanisms
involving these COPD GWAS genes that
would provide novel insights into COPD
pathogenesis.

Methods

Network Visualization and Analysis
The COPD disease network module was
visualized by using Cytoscape 3.8.2 (17)
using a forced directed layout. COPD
GWAS nodes were then repositioned for
visualization purposes. Shortest path
analysis was performed by using
PesCa 3.0 (18).

Cell Lines and Cell Culture
16HBE cell line was purchased from Sigma
(SCC150), and human embryonic kidney
293T cells were purchased from theAmerican
Type Culture Collection. These cell lines were
cultured in Dulbecco’s modified Eagle
medium supplemented with 10% FBS,
penicillin (50 U/ml), and streptomycin (50
mg/ml). Normal human bronchial epithelial
cells (NHBEcells)werepurchased fromLonza
(CC-2540) and propagated by using a BEGM
Bullet Kit (CC-3170, Lonza) as per the
manufacturer’s instructions. Cells were
cultured in humidified incubators (Thermo
Fisher Scientific) set at 37�C and 5% CO2.
WhetherMycoplasmawas present was tested
routinelybyusing theMycoalertDetectionKit
from Lonza (LT07-218).

Fractionation of the Secreted Proteins
in Cell Culture Medium
16HBE cells were seeded in 10-cm cell culture
dishes (Corning). Secreted proteins were
collected after culturing in 10ml ofOptiMEM
(31985070,Gibco) for 12hours. Twohundred
microliters of the collected medium was
subjected to ultracentrifuge at 100,0003 g for
45 minutes, resulting in the pellet fraction
containing allmembrane-bound proteins and
the supernatant fraction containing all soluble
proteins. Meanwhile, cells were washed with
PBS and lysed with 10 ml of lysis buffer
containing 1% Nonidet P-40 to generate the
total intracellular fraction. All fractions were
then subjected to ELISA to quantify the
TGFb1 and TGFb2 protein concentrations.

ELISA
ELISAs were performed by using a Human
TGF-b2Quantikine ELISAKit (DB250, R&D
Systems) and a Human TGF-b1 ELISA Kit
(ELH-TGFb1, RayBiotech) according to the
manufacturers’ protocols.

Protein Transmembrane Structure
Prediction and Motif Search
The potential transmembrane structure in
TGFb2 was predicted by using a hidden
Markov model (19, 20). The tyrosine-based
motif was identified by using the Multiple
ExpectationMaximizations for Motif
Elicitation Suite (University of Nevada, Reno
and University ofWashington) (21).

Sequence Conservation Analysis
The full protein sequences of TGFb1
(accessionnumberNP_000651.3) andTGFb2
(accession number NP_003229.1) were
downloaded fromNational Center for
Biotechnology Information reference gene
database. The ClustalW algorithm (Desmond
G. Higgins, University College Dublin) was
used for multisequence alignment.

Statistical Analysis
Data are expressed as the mean6 SD, and the
statistical significanceasdeterminedbyanalysis
in GraphPad Prism is reported in the figures
andfigurelegends.Statisticaldifferencesamong
multiple groups were calculated by using
ANOVA, and then pairwise testing between
groups was performed by using a Tukey
multiple comparison test. For pairwise
comparisons in ELISA experiments, theWelch
t test, which allows differences in variance
between groups,was used instead of a standard
two-tailed t test. For other pairwise
comparisons, standard two-tailed t tests were
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used. A P value of,0.05 was considered to
indicate statistical significance. In figures,
asterisks denote statistical significance
(*P, 0.05 and **P, 0.01).

Results

Selecting a Network Path for
Functional Validation Studies
To identify novel biological relationships
among COPDGWAS genes, the shortest
paths in the protein–protein interaction
COPD network module among the eight
COPDGWAS genes were identified (4)
(Figure 1). Therewere two shortest pathswith
one intervening node (CHRNA5–CHRNA7–
CHRNA3 and CHRNA5–CHRNB4–

CHRNA3), which included components of
the nicotinic acetylcholine receptor. There
were five shortest paths with two intervening
nodes. Three of these two-node paths linked
TGFb2 to components of the lungmicrofibril
and/or elasticfiber (22), aknownrepositoryof
TGFb in the lung (23), and to MMP12, an
elastolytic proteinase (TGFb2–BGN–ELN–
MMP12, TGFb2–DCN–ELN–MMP12, and
TGFb2–FBN1–ELN–MMP12). In addition
to these known biological relationships, two-
node connections between CHRNA5 and
MMP12 (CHRNA5–CANX–LPA–MMP12)
and between FAM13A and TGFb2
(FAM13A–AP3D1–CTGF–TGFb2) were
identified, potentially indicating novel
biological relationships amongCOPDGWAS
genes. Considering the reported biological

effects of TGFb2 in rat lung development and
in response to cigarette smoke (14, 16), the
identification of functional genetic variants
influencing FAM13A and TGFb2 in those
COPDGWASregions, and the absenceof any
known relationship between FAM13A and
TGFb2 (24, 25), we selected the
FAM13A–AP3D1–CTGF–TGFb2 pathway
for further validation and mechanistic
investigation.

Validating a Network Connection
among FAM13A, AP3D1, and TGFb2
By performing coprecipitation studies
initially, we found that FAM13A,TGFb2, and
AP3D1 form a complex in 293T cells (Figure
2A). We also found that TGFb2 associates
with CTGF and with AP3D1 (Figure 2B).
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Figure 1. Shortest network paths in the chronic obstructive pulmonary disease (COPD) network module. The COPD network module from Sharma
and colleagues (4) is shown, with the eight COPD genome-wide association study genes that were used as seed genes to build the module being
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Figure 2. FAM13A binds to TGFb2 and impedes its secretion. (A) 293T cells were transfected with plasmids expressing Flag-FAM13A or HA-TGFb2.
Forty-eight hours later, binding of Flag-FAM13A to HA-TGFb2 or endogenous AP3D1 was examined by IP. (B) 293T cells were transfected with Flag-
CTGF or HA-TGFb2 plasmids as indicated, and binding of HA-TGFb2 to Flag-CTGF or endogenous AP3D1 was examined by IP of the whole-cell
lysate. Cells were treated with 10mM MG132 for 10 hours before harvesting to ascertain that the negative interaction between CTGF and AP3D1
cannot be attributed to the protein degradation of CTGF. (C) 16HBE cells were transfected with HA-TGFb2 plasmids or siRNA targeting AP3D1
(AP3D1i). Forty-eight hours later, protein binding of TGFb2 to endogenous FAM13A or AP3D1 was assessed. (D) 16HBE cells were transfected with
AP3D1i or scramble siRNA, together with a FAM13A plasmid or empty vector. At 2 days after transfection, protein binding of FAM13A to endogenous
TGFb2 and AP3D1 was examined by IP. (E) 16HBE cells were infected with lentivirus expressing nontargeting shRNA (STDsh) or shRNA targeting
FAM13A (FAM13Ash). Three days later, cells were transfected with AP3D1i or scramble siRNA. The indicated protein amount was determined by
using immunoblots. (F) Intracellular and extracellular TGFb2 protein amount from assays in E were measured by using an ELISA at 2 days after
transfection. Data were generated from three repeats. Error bars indicate SDs. **P , 0.01. AP3 = adapter protein 3; HBE = human bronchial
epithelial.
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However, contrary to the connections within
the protein–protein interaction module we
developed, CTGF failed to bind to AP3D1 in
293T cells. Thus, the connection between the
COPDGWAS genes, FAM13A and TGFB2,
was feasible without involvement of CTGF
and is even closer than our network analysis
had predicted.

Lung epithelial cells likely play a key
role in COPD pathogenesis, including
airway remodeling (26).Thus,weconducted
further studies on an immortalized cell line
from the human bronchial epithelium
(16HBE cell line). This cell line allowed us to
track transfected epitope-tagged FAM13A,
as the antibody against FAM13A was
inefficient in immunoprecipitating the
endogenous protein and thus prevented us
from examining interactions by the
endogenous FAM13A in primary cells.
Intriguingly, knocking down AP3D1
abolished the binding of FAM13A and
TGFb2 in 16HBE cells (Figures 2C and 2D),
indicating that the AP3 (adaptor protein 3)
complex may bridge their binding to
connect themfunctionally.Thus,we focused
on the FAM13A–AP3D1–TGFb2 network
connection for further functional studies.

AP-3 Mediates the Secretion of TGFb2
with FAM13A Acting as a
Negative Regulator
AP3D1 is a component of the AP-3 coat
complex, which generates transport carriers
from the trans-Golgi network and the early
endosome for delivery to the late endosome
and lysosome (27, 28). Besides AP3D1, we
previously identified twoother components of
the AP-3 complex, AP3M1 and AP3B1, as
being FAM13A-interacting proteins (11).
Thus, we next sought to determine whether
TGFb2 secretion involves transport through
an AP-3 pathway in HBE cells (16HBE cells).
Indeed, we found that silencing AP3D1
reduces the extracellular concentration of
TGFb2 (Figures 2E and 2F). Moreover,
silencing FAM13A increases the level of
secreted TGFb2 (Figures 2E and 2F), which is
abolished whenAP3D1 is also silenced
(Figures 2E and 2F). Thus, these results
suggested not only that TGFb2 secretion
involves an AP-3 pathway but also that
FAM13A acts as a negative regulator in this
transport.

TGFb2 Is a Transmembrane Cargo
Protein of the AP-3 Pathway
We next addressed a mechanistic question.
Coat complexes are recruited to the cytosolic

side of intracellularmembrane compartments
togeneratetransportvesicles.Thus,as theycan
only bind cargo proteins that are exposed to
thecytosolicsideof thesemembranes,howcan
the AP-3 complex engage TGFb2 for its
secretion, when considering that the best
characterized TGFbmember, TGFb1, is
secreted as a soluble protein, which would
involve its transit within the lumen of
intracellular membrane compartments?

Aligning the sequences of TGFb1 and
TGFb2,wenoted that theyhave a high level of
overlapping sequence content, with the
exception of the N-terminal portion (Figure
3A; see alsoFigure E1 in the data supplement).
By using hiddenMarkov algorithm–based
secondary protein structure prediction (19),
we found a plausible transmembrane domain
near the N terminus of TGFb2 (Figures 3A
and 3B). Moreover, a tyrosine-based motif,
YXXF (with Y indicating tyrosine, X
indicating any amino acid, andF indicating a
hydrophobic amino acid), is predicted to
reside on the cytosolic side of the putative
TGFb2 transmembrane domain (Figures 3A
and 3B). As the AP3 complex has been shown
to bind tyrosine-basedmotifs (27, 28),wenext
pursued the intriguing possibility that TGFb2
is transported as a transmembrane cargo
protein by AP-3 recognizing a tyrosine-based
motif in the N terminus of TGFb2.

Performingmutations to destroy the two
key residues in this binding motif in TGFb2,
fromYCVL (consistent with the YXXFmotif
structure) to ACVN (Figure 3C), we found
that the resulting mutant has markedly
reduced association with AP3D1 and
FAM13A (Figure 3D) and is also poorly
secreted (Figure 3E). Moreover, the mutant
TGFb2 showed increased accumulation in the
cell. Thus, these results supported the
hypothesis that TGFb2 is transported as a
transmembrane cargo protein through an
AP-3 pathway for its secretion.

WealsofoundthatTGFb2doesnotaffect
the expression of FAM13A, neither at the
mRNA level nor at the protein level (Figure
E2). Incontrast, inresults similar to those from
previous studies (29, 30), we found that
TGFb1mayaffect the expressionofFAM13A.
In the case of 16HBE cells, there is a trend for
TGFb1 reducing the protein level, but not the
mRNA level, of FAM13A (Figure E2).

TGFb2 Is Mainly Secreted
through Exosomes
We then addressed another mechanistic
question. The AP-3 coat complex is only
knowntodelivercargoes to the lateendosomal

compartments (27, 28). Thus, how can this
transport result in TGFb2 being secreted?
Besides being degraded by the lysosome,
transmembrane cargo proteins that reach the
late endosomal compartments are now
appreciated as having a second general fate:
being secreted through exosomes because of
the late endosome fusing with the plasma
membrane (31, 32). Thus, we next examined
whether such a fate could explain howTGFb2
ultimately becomes secreted.

Subjecting the culture medium to high-
speed ultracentrifugation, which segregates
proteins intosolubleversusmembrane-bound
pools, we detected a significant fraction of
secreted TGFb2 residing in the latter pool
(Figure 4A), suggesting that the extracellular
TGFb2 exists mostly in exosomes. We also
found that FAM13A regulates TGFb2
secretion mainly by targeting this pool, as
FAM13A overexpression or silencing mainly
affects the amount of TGFb2 in the
membrane-bound pool while havingminimal
effects on the level of soluble TGFb2 (Figure
4A). Furthermore, we found that the amount
of TGFb2 in the extracellular
membrane–bound pool is diminished when
its tyrosine-based motif is mutated (Figure
4B). In contrast, we did not detect a significant
fraction of extracellular TGFb1 residing in the
membrane-bound pool (Figure 4C), which is
consistent with TGFb1 being known to be
secreted as a soluble protein (33). Further
expanding on these findings, we observed
similar effects of FAM13A overexpression and
silencing on the secretion of TGFb2 and
TGFb1 in primary normal human bronchial
epithelial cells (NHBE cells) (Figure E3). Thus,
these results not only revealed that transport
through an AP-3 pathway ultimately leads to
TGFb2 being secreted in exosomes but also
provided further support that TGFb2 is
transported as a transmembrane cargoprotein.

FAM13A Retains TGFb2 on
AP3 Vesicles
We next sought insight into how FAM13A
negatively regulates the AP-3 transport of
TGFb2. Initially, we performed
coprecipitation studies and found that
knocking down FAM13A reduces the
association of TGFb2 with AP3D1 (Figure
5A), whereas FAM13A overexpression had
the opposite effect of enhancing this
association (Figure 5B). In results consistent
with these findings, we found by using
confocal microscopy that knocking down
FAM13Areduces thecolocalizationofTGFb2
withAP3D1 (Figures 5C and 5D), whereaswe

ORIGINAL RESEARCH

536 American Journal of Respiratory Cell and Molecular Biology Volume 65 Number 5 | November 2021



found that FAM13A overexpression had the
opposite effect (Figures 5C and 5D). These
results were surprising, when considering that
a factor thatenhancestheassociationofacargo
protein with a coat complex is typically
expected to promote cargo transport by
promoting the sorting of the cargo into the
pathway mediated by the coat complex.
However, because FAM13A inhibits the
transport of TGFb2 while enhancing its
associationwith theAP3complex,wewere left
to conclude that FAM13A is more likely to

inhibit a late stage of a transport pathway,
which involves cargo–coat dissociation so that
the cargo can be transferred from a transport
carrier to its target compartment.

A key prediction of such a role is that
FAM13A should also enhance localization of
both TGFb2 and AP3 at the target
compartment ofAP3 vesicles, whichwould be
the late endosomal compartments. Indeed,we
found by using confocal microscopy that
FAM13A overexpression enhances the
colocalization of TGFb2 with LAMP1, which

marks both the late endosome and the
lysosome (34), whereas we found that
FAM13A silencing has the opposite effect
(Figures6Aand6B).FAM13Aoverexpression
also promotes the localization of AP3 at these
compartments, whereas FAM13A silencing
has the opposite effect (Figures E4B andE4C).
Moreover, we confirmed that LAMP1marks
not only the lysosome but also the late
endosome in 16HBE cells, as it shows
appreciable colocalization with Rab7, a late
endosomemarker (Figure E4A). Thus, the
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Figure 3. TGFb2 is a transmembrane cargo protein in AP-3 transport. (A) The transmembrane structure was predicted on the basis of the amino acid
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Figure 4. TGFb2 is secreted in exosomes. (A) 16HBE cells were transfected with an empty vector/FAM13A-expressing plasmid or were stably
transfected with FAM13Ash/STDsh lentivirally as indicated. TGFb2 protein levels, either intracellular or extracellular, were quantified by using an
ELISA. The total extracellular TGFb2 protein level was also further subdivided into membrane-bound versus soluble fractions, with exosomes being
included in the membrane-bound fraction. (B) 16HBE cells were transfected with HA-tagged WT or mutant TGFb2. TGFb2 protein levels, either in
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collective results further supported the
conclusion that FAM13A acts as a negative
regulator of TGFb2 transport by preventing a
late stage of AP-3 transport, cargo–coat
dissociation, a process that would be needed
forTGFb2 tobe transferred fromAP3vesicles
to the late endosomal compartments for
subsequent secretion through exosomes.

Discussion

GWASs have identified thousands of
significant associations in complex diseases,
but the impact of these discoveries on our
understanding of disease pathogenesis has
been relatively limited thus far. We
investigated network interactions among
proteinsexpressedbyGWASgenes, reasoning
that this approach could lead to important
insights intomechanisms of complex diseases
like COPD. In this study, we have focused on
two of the most well-established COPD
GWAS genes, FAM13A and TGFB2. In
addition to consistent, genome-wide
significant evidence for a genetic association
with COPD, potentially functional genetic
variants that influence both of these genes
have been identified (24, 25). Thus, the
FAM13A and TGFB2 genetic loci are
clearly associated with COPD, and FAM13A
and TGFB2 are key genes within those
GWAS loci.

Networkanalysisofapreviously reported
protein–protein interaction network module
for COPD suggested a protein–protein
interaction network connection involving
FAM13A–AP3D1–CTGF–TGFb2 (4).
AP3D1 encodes thed subunit of theAP-3 coat
complex, which mediates intracellular
transport from the trans-Golgi network and
fromtheearlyendosometothe lateendosomal
compartments that include the late endosome
(also known as multivesicular bodies) and
lysosomes (27, 28). Mutations in AP3D1 are
associatedwithHermansky-Pudlaksyndrome
(HPS) type 10 (35, 36). Although some forms
ofHPSareassociatedwithpulmonaryfibrosis,
whetherpatientswithHPStype10candevelop
pulmonary fibrosis is confounded by the fact

that these patients die early in childhood,
thereby potentially masking pulmonary
fibrosis susceptibility.

Here, we confirmed the protein–protein
interactions among FAM13A, AP3D1, and
TGFB2, but we found that AP3D1 did not
interact directly with CTGF in our model
system. The reported interaction between
AP3D1 and CTGF in the ConsensusPathDB
database (Max Planck Institute for Molecular
Genetics) was not validated by our
coprecipitation studies. Thus, the
protein–protein interaction network
modeling pointed toward a novel relationship
between COPDGWAS genes, but the
observed interactionwas even closer than that
suggested by the network disease module.
Multiple complex diseases have been studied
with network analysis methods to identify the
disease networkmodule within the molecular
interactome of protein–protein interactions,
includingasthma(37).Ourresults suggest that
follow-up coprecipitation studies can provide
valuable validation of these network
relationships.

We initially pursued coprecipitation
studies to detect a protein complex consisting
of FAM13A, TGFb2, and AP3D1 in cells. To
gain insight into the function of this complex,
we found thatperturbing the level of FAM13A
expression affects TGFb2, specifically its
secretion from cells. In contrast, we found no
evidence for TGFb2 affecting FAM13A
expression at either the mRNA level or the
protein level. We further noted that TGFb1
has been reported previously to regulate
FAM13A levels (29, 30), and we have also
observed a trend in the reduction of the
FAM13A protein level upon TGFb1
treatment. In light of this initial set offindings,
we focused on understanding how FAM13A
regulates the secretion of TGFb2. This
investigation has resulted in multiple
noteworthy findings.

First, in contrast to TGFb1, which is
secreted as a soluble protein, we have found
that TGFb2 is secreted as a transmembrane
protein. The initial hint came from the
consideration that coat complexes are
recruited to the cytosolic side of intracellular

membrane compartments, which does not
allow them to interact with soluble secreted
proteins that are transportedwithin the lumen
of intracellular compartments. This led us to
elucidate that, in contrast toTGFb1,TGFb2 is
transported as a transmembrane protein by
the AP3 pathway, which is mediated by the
AP-3 complex recognizing a tyrosine-based
motif residing in the cytosolic domain of the
transmembrane TGFb2.

Further support for this conclusion
comes from another puzzle that we sought to
address. TheAP-3pathwaydelivers cargoes to
the late endosomal compartments (27, 28).
Thus, how can transport through an AP-3
pathway result in TGFb2 being secreted from
the cell? As a clue, we noted that the late
endosome forms internal vesicles (also known
as multivesicular bodies), which can be
secreted as exosomes (31, 32). Indeed, in the
cell culture medium, most of the secreted
TGFb2 exists in a membrane-bound pool,
suggesting its secretion through exosomes.
Notably, this finding not only reveals an
unanticipated way that transport through the
AP-3 pathway can ultimately lead to secretion
of TGFb2 from the cell but also further
supports the likelihood that TGFb2 exists as a
transmembrane cargo protein of the AP-3
pathway.

A third notable finding comes from our
elucidation of howFAM13Aacts as a negative
regulatorofTGFb2transport.Cargotransport
throughan intracellular pathway requires coat
proteins initially binding to cargo proteins for
their sorting into transport vesicles.
Subsequently, this bindingmust be released so
that the cargo can be transferred from the
transport carrier to the target compartment.
FAM13A likely inhibits this late stage of cargo
transport, as such a role would explain how
FAM13A enhances the interaction between
TGFb2 and AP3D1 while also inhibiting
TGFb2 secretion (Figure E5). To our
knowledge, a factor that regulates transport at
the level of coat–cargo dissociation has not
been identified previously. As such, this novel
finding contributes to a fundamental
understanding of the regulatory mechanisms
acting in vesicular transport.

Figure 4. (Continued). exosomes or in the soluble extracellular parts, were quantified by using an ELISA. (C) 16HBE cells were transfected with an
empty vector/FAM13A-expressing plasmid or were stably transfected with FAM13Ash/STDsh lentivirally as indicated. TGFb1 protein levels, either
intracellular or extracellular, were quantified by using an ELISA. The total extracellular TGFb1 protein level was also further subdivided into
membrane-bound versus soluble fractions, with the former being used to track the pool in exosomes. For statistics performed on the studies above,
data were generated from three repeats, and error bars indicate SDs. *P , 0.05 and **P , 0.01.
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It is further notable that FAM13A was
previously reported to be one of the top hits in
an unbiased RNA interference screen to
identify novel factors regulating the secretory
pathway (38). Thus, an intriguing prospect is
that the inhibitory role thatwehave elucidated
for FAM13A in TGFb2 transport could have
more widespread relevance. Future pursuit of
this possibility may identify additional
proteins whose intracellular transport is
regulated by FAM13A, thereby providing
further insights into mechanisms that
contribute to the pathogenesis of COPD.

We had previously found that FAM13A
inhibits Wnt/b-catenin signaling (11). In the

current study, we identified another function
for FAM13A, which unifies the roles of two
leading COPDGWAS genes. However, the
precise meaning of this biological connection
between FAM13A and TGFb2 for COPD
pathogenesis remains to be determined. We
speculate that the regulation of exosomal
TGFb2 secretion by lung epithelial cells could
play an important role inCOPD susceptibility
in response to cigarette smoke, potentially by
influencing the development of chronic lung
inflammation—which can persist for decades
after smoking cessation (39). Further research
to investigate the impact of the
FAM13A–AP3D1–TGFb2 network

connection on lung inflammation, and the
relationship of this cell trafficking effect with
other FAM13A functions, such asWnt/
b-catenin signaling, will be required.

In summary, we have identified a
potentially important biological connection
between COPDGWAS genes via a novel
mechanism of cargo transport through the
AP3 pathway. Our results also suggest new
questions to address for the future. For
example, it is uncertain whether cell types
other than bronchial epithelial cells have
similar regulatory relationships between
FAM13A and TGFb2. Moreover, animal
studies will provide an even more
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Figure 6. FAM13A enhances the distribution of TGFb2 at the late endosomal compartments. (A) 16HBE cells were transfected with an empty vector/
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physiological context for understanding our
findings. Itwill alsobe interesting todetermine
whether our findings may have relevance to
lung diseases other than COPD. In any case,
we have demonstrated that protein–protein

interaction network analysis can be used to
identify potentially important biological
relationships amongGWASgenes in complex
disease. Dissecting these relationships will not
only provide new insights into disease

mechanisms but will also suggest novel
directions in therapeutic intervention.�

Author disclosures are available with the text
of this article at www.atsjournals.org.
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