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Abstract

Compromised alveolar development and pulmonary vascular
remodeling are hallmarks of pediatric lung diseases such as
bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia
with misalignment of pulmonary veins (ACDMPV). Although
advances in surfactant therapy, corticosteroids, and
antiinflammatory drugs have improved clinical management of
preterm infants, those who suffer with severe vascular complications
still lack viable treatment options. Paucity of the alveolar capillary
network in ACDMPV causes respiratory distress and leads to
mortality in a vast majority of infants with ACDMPV. The
discovery of endothelial progenitor cells (EPCs) in 1997 brought
forth the paradigm of postnatal vasculogenesis and hope for
promoting vascularization in fragile patient populations, such as
those with BPD and ACDMPV. The identification of diverse EPC
populations, both hematopoietic and nonhematopoietic in origin,
provided a need to identify progenitor cell–selective markers that

are linked to progenitor properties needed to develop cell-based
therapies. Focusing on the future potential of EPCs for regenerative
medicine, this review will discuss various aspects of EPC biology,
beginning with the identification of hematopoietic,
nonhematopoietic, and tissue-resident EPC populations. We will
review knowledge related to cell surface markers, signature gene
expression, and key transcriptional regulators and will explore the
translational potential of EPCs for cell-based therapy for BPD and
ACDMPV. The ability to produce pulmonary EPCs from patient-
derived induced pluripotent stem cells in vitro holds promise for
restoring vascular growth and function in the lungs of patients with
pediatric pulmonary disorders.
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Advances in neonatal medicine have made it
possible to provide lifesaving care for
preterm infants (1). However, owing to the
late maturation of the lung, the number of
neonates born with respiratory
complications, including respiratory distress
syndrome and bronchopulmonary dysplasia
(BPD), continues to increase (2). BPD is a
multifactorial, developmental disease
associated with alveolar simplification,
inflammation, and variable fibrotic
remodeling. Features of BPD include
bronchial and pulmonary vascular

abnormalities, the latter of which are seen in
severe BPD and associated with increased
morbidity and mortality (3, 4). As the BPD
population ages, increasing numbers of
patients with rapidly declining respiratory
function are to be expected in the future.
Novel therapies aimed at promoting
pulmonary vascularization and improving
lung function in patients with BPD are
critically needed. Severe pulmonary vascular
abnormalities are also hallmarks of alveolar
capillary dysplasia with misalignment of
pulmonary veins (ACDMPV), a rare, usually

fatal lung disorder that is linked to mutations
in the FOXF1 (Forkhead box protein F1)
gene locus, characterized by defective growth
andmorphogenesis of pulmonary capillaries
and abnormal positioning of pulmonary
veins (5–7). Most infants with ACDMPV
experience respiratory insufficiency and
pulmonary hypertension soon after birth,
andmost succumb to respiratory failure
shortly thereafter (8, 9). Similarly, pulmonary
vascular growth and functions are disrupted
in congenital diaphragmatic hernia, a more
common disorder associated with lung
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hypoplasia and pulmonary hypertension
(10). A better understanding of pulmonary
vascular formation, growth, and regeneration
is critically needed to develop effective
treatments for ACDMPV, BPD, and other
disorders of lung growth and development.

Vasculogenesis and angiogenesis are two
distinct biological processes through which
blood vessels are formed. Vasculogenesis
describes the de novo formation of the
vascular network by means of differentiation
of endothelial progenitor cells (EPCs) as they
assemble blood vessels, whereas angiogenesis
describes the process of vascular formation
by sprouting from preexisting blood vessels.
Although vascular remodeling in the mature
lung was believed to be restricted to
angiogenesis, Asahara and colleagues
published the first paper describing putative
adult EPCs in 1997, providing support to the
feasibility of EPC-based therapy for vascular
disease (11). There is continued controversy
regarding the identities and defining
characteristics of EPCs. This review will
address discoveries and controversies
surrounding the identification of both
hematopoietic and nonhematopoietic EPC
populations. We will review specific EPC
markers, key transcriptional regulators, and
various protocols developed to generate EPC
populations from pluripotent embryonic
stem cells (ESCs) and induced pluripotent
stem cells (iPSCs). Lastly, we will explore the
therapeutic potential of EPCs for regenerative
medicine for pulmonary disorders.

Development of Pulmonary
Vasculature

Vasculogenesis and Angiogenesis in
the Embryonic Lung
In mammals, vasculogenesis occurs in
extraembryonic tissues (yolk sac, allantois,
and placenta) and in the dorsal aorta, giving
rise to primitive embryonic vasculature (12).
Extraembryonic vasculogenesis is initiated by
signaling from the visceral endoderm, which
serves to direct the patterning of the
underlying mesoderm in the yolk sac (13,
14). In the mouse embryo, this begins during
gastrulation at embryonic Day 6.5 (E6.5)
(15). Mesodermal-derived bipotent
hemangioblasts serve as progenitors of
hematopoietic and endothelial cell lineages.
By E7.5, hemangioblast differentiation results
in the formation of blood islands wherein
primitive hematopoietic progenitors are

Blood Island

Primitive
Vascular Plexus

Vascular Network

Angioblast

Hemogenic Endothelium

Hematopoietic
Stem/Progenitor Cell

Figure 1. Development of embryonic vasculature begins in blood islands. Blood islands
contain angioblasts at the periphery. Angioblasts differentiate to endothelial cells surrounding
the primitive hematopoietic stem/progenitors. Hemogenic endothelium serves as an additional
source of vascular cells, which differentiate into the hematopoietic lineage. To meet the needs
of the growing embryo, blood islands coalesce to form the primitive vascular plexus, which
undergoes rapid remodeling to establish a mature vascular network.
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located centrally and endothelial progenitors
(angioblasts) are located at the periphery
(Figure 1) (16, 17). Hemogenic endothelium,
identified as a side population using FACS
analysis, provides a unique source of
precursors from which multipotent
hematopoietic progenitors arise (18, 19). To
meet the demands of the growing embryo,
blood islands coalesce to form the primitive
capillary plexus (E8.5), which subsequently
undergoes rapid growth and remodeling by
means of angiogenesis (14, 20).
Proangiogenic signaling induces sprouting
from the preexisting vasculature, vascular
fusion, and intussusception, during which
vascular lumen are further divided, resulting
in the formation of vascular branching
points. In the developing embryo, blood flow
without vascular leak is seen as early as
E11.5, whereas anastomoses of microvascular
arteries and veins are first observed during
the pseudoglandular stage of lung
development at E13.5 (16, 21, 22). Extensive
vascular remodeling occurs once blood flow
is established and continues through the
saccular and alveolar stages of development
and the emergence of the complex lymphatic
network (23, 24). Endothelial cells of blood
and lymphatic vessels share the expression of
CD31 (PECAM-1) but lack expression of
hematopoietic marker CD45. Gene
expression signatures and specific cell surface
markers of fully differentiated arterial,
venous, and capillary endothelial cells have
been identified (reviewed in [12, 25]), yet
there is a lack of consensus regarding gene
expression signatures and specific markers of
pulmonary EPC subsets, keeping us from
fully understanding the process of
endopoiesis. It is likely that endopoiesis
represents a complex hierarchy of cell types,
with restricted commitment to peripheral
and proximal endothelial lineages, a concept
analogous to that of the hematopoietic tree.
As angioblasts move down the path of
differentiation, their fate likely becomes
restricted to either multipotent EPCs residing
predominantly in the peripheral pulmonary
microcirculation or proximal endothelial
colony-forming cells residing in endothelium
of large blood vessels (Figure 2). EPCs in the
peripheral microvasculature express APLNR
(apelin receptor), c-KIT, and FOXF1 and are
capable of self-renewal and further
differentiation into capillary, arterial, and
venous but not lymphatic endothelial cells
(26). Conversely, proximal endothelial
progenitors express SCA1 and PROCR
together with common endothelial markers

and serve to replenish the arterial and venous
endothelial cell lineages (Figure 2). A recent
publication by Schupp and colleagues
compiled a cellular transcriptomic atlas using
more than 15,000 human lung endothelial
cells from 73 subjects. Their analysis revealed
two populations of previously
indistinguishable venous cells, which they
termed pulmonary–venous ECs and
systemic–venous ECs. Pulmonary–venous
ECs localize with the lung parenchyma,
whereas systemic–venous ECs localize in
airways and the visceral pleura. The
functions of these cells and their relation to
other pulmonary cells remains to be
characterized (27).

Signaling Pathways Regulating
Vascular Development in the
Embryonic Lung
At approximately E9.5 in the mouse and 3
weeks after conception in the human, a
complex signaling network initiates the
process of lung morphogenesis.
Anterior–ventral foregut endoderm
progenitors become specified to pulmonary
epithelium, marked by the expression of
transcription factor NK2 homeobox 1
(NKX2-1, thyroid transcription factor 1 aka
TTF-1) (12).Nkx2-12/2 mice die at birth
because of respiratory insufficiency and lack
of peripheral pulmonary structures (28–31).
Other critical signaling pathways including
wingless-type mouse mammary tumor virus
integration site (WNT), BMPs (bone
morphogenetic proteins), retinoic acid (RA),
FGFs (fibroblast growth factors), and SHH
(sonic hedgehog) have been implicated in
lung development and were reviewed by
Whitsett and colleagues (12) and others (12,
20, 32–34). Herein, we will focus attention to
signaling pathways critical for pulmonary
microvascular development.

Vascular endothelial growth factor-A.
Formation of large pulmonary vessels in
mouse models of lung agenesis demonstrate
that the initial formation of the large
pulmonary vessels occurs without signaling
from the endoderm (35). Endoderm-derived
respiratory epithelium produces VEGF-A
(vascular endothelial growth factor-A),
which is critical for angiogenesis and
vasculogenesis in the embryonic lung.
VEGF-A is a paracrine growth factor and
member of the VEGF family consisting of
VEGF-A, -B, -C, -D, and PGF (placenta
growth factor). VEGF-A binds and activates
tyrosine kinase receptors FLT1 (VEGF
receptor type I, VEGFR1) and FLK1 (VEGF

receptor type II, VEGFR2, KDR [human]),
both of which are present in endothelial cells,
to stimulate growth and maturation of
pulmonary vasculature. In mice,
heterozygous loss ofVegfa impairs
development of the pulmonary vasculature,
whereas homozygous deletion ofVegfa
causes severe vascular abnormalities resulting
in embryonic lethality at mid-gestation (36,
37). Inhibition ofVegfa after birth causes the
loss of pulmonary microvasculature and
alveolar simplification. Vegfa overexpression
stimulates lung vascularization but disrupts
lung function, demonstrating that precise
regulation of VEGF-A is required for
embryonic development of pulmonary
vasculature (38, 39). Deletion of Flt1 or Flk1
blocks formation of primitive blood islands
andmature blood vessels, resulting in
embryonic lethality (40, 41).

SHH and FOXF1. SHH produced by
endodermally derived epithelium is critical
for pulmonary branching morphogenesis,
mesenchymal proliferation, and vascular
development in the growing embryo. Shh2/2

mice form hypoplastic single-lobe lungs, fail
to achieve proper separation between the
esophagus and trachea, and lack branching
of the distal airways (42, 43). SHH is required
for normal expression of critical regulators of
lung morphogenesis, including FGF10,
BMP4, andWNTs (12, 30, 43–45). SHH
transcriptionally activates GLI transcription
factors in the pulmonary mesenchyme, in
turn regulating expression of FOXF1, which
is expressed in mesenchymal cells,
pulmonary tissue–resident EPCs, and
differentiated capillary endothelial cells
(46–50). FOXF1 is a transcription factor
from the FOX (Forkhead Box) family,
members of which play important roles in
cellular proliferation, angiogenesis, and tissue
repair (51–57). FOXF1 gene is evolutionarily
conserved (58) and is critical for embryonic
development, carcinogenesis, and lung repair
and regeneration (59–65). Foxf12/2 mice die
in utero because of the lack of vascular
development of the yolk sac and allantois
(45). Heterozygous deletion of Foxf1 in mice
increases mortality after birth, causing lung
hypoplasia, aberrant inflammation, and
impaired formation of the pulmonary
microvasculature (66, 67). Genomic
deletions and point mutations in the human
FOXF1 gene cause ACDMPV, a severe and
usually fatal lung disorder of neonates and
infants (7, 68). FOXF1 cooperates with other
transcription factors such as STAT3 and
FOXM1 to stimulate organ morphogenesis
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(50, 69–71) and cell cycle progression (63,
72–74). Nanoparticle delivery of
proangiogenic transcription factors,
including FOXF1, STAT3, and FOXM1,
stimulates neonatal lung angiogenesis in
mouse models of ACDMPV and BPD (64,
68, 75, 76).

Angiopoietin 1 and ephrins. Multiple
paracrine and juxtacrine interactions among
epithelial, mesenchymal, and vascular
progenitors direct the development of
pulmonary vasculature. While embryonic
respiratory epithelial cells produce VEGF-A,
pericytes also contribute to angiogenesis by
secreting ANG1 (angiopoietin 1), which

binds to the TIE-2 receptor (CD202b, TEK),
on the surface of endothelial cells (77).
During embryogenesis, ANG1 promotes
vascular growth and stimulates maturation
of newly formed blood vessels. In the adult
lung, ANG1maintains quiescence of the
mature vasculature (78). Tie22/2 and
Ang12/2 mice display a simplified vascular
network with reduced branching and fewer
endothelial cells (79, 80). Pericytes also
influence endothelial permeability and
regulate blood flow via secretion of Ephs
(ephrins). Deletion of EphrinB2 in mice
disrupts angiogenesis and alveolarization,
resulting in a simplified lung (81–83).

Hematopoietic EPCs

Myeloid Angiogenic Cells
To identify endothelial progenitor cells,
Asahara and colleagues used temporal and
spatial information regarding formation of
blood islands in which angioblasts were
identified at the periphery and hematopoietic
progenitors at the center of the islands (11).
The spatial relationships among these cells
and the overlap in expression of specific cell
surface antigens suggests the concept that
these two cell types originated from a
common precursor. Magnetic bead sorting
was used to isolate CD341 (human) or
FLK11 (murine) mononuclear cell (MNC)
populations from peripheral blood (11). In
vitro, CD341 cells adhered to fibronectin-
coated dishes and developed a spindle shape.
Coculture of CD341 and CD342 cells
resulted in the formation of blood island–like
clusters consisting of round cells at the center
and sprouting, spindle-shaped cells at the
periphery. CD341 cells at the periphery
uptake acLDL (Dil-labeled acetylated low-
density lipoprotein), whereas cells located
centrally failed to do so and subsequently
detached from the fibronectin coating. The
murine FLK11 cell fraction behaved in a
similar manner. Attached CD341 (AT-
CD341) cells gradually lost expression of the
hematopoietic marker CD45, expressed low
amounts of monocyte–macrophage marker
CD68, and increased amounts of endothelial
markers, CD31, TIE-2, FLK1, E-selectin, and
eNOS (endothelial nitric oxide synthase).
The authors concluded that AT-CD341 cells
had differentiated into endothelial-like cells
in culture. In vivo studies showed that these
CD341 and FLK11 cells engrafted into sites
of injury in mouse and rabbit models of
hindlimb ischemia, where they integrated
into capillary vessel walls and colocalized
with CD31 and TIE-2. (11). These findings
were the first to describe CD341 (human)
and FLK11 (murine) cells as circulating
adult EPCs, supporting the concept of
postnatal vasculogenesis.

Tissue integration of circulating EPCs
was further supported by experiments with
embryoid bodies, chicken embryos, and
canines (84–86). Angiostatin significantly
inhibited EPC growth in vitro, whereas
angiostatin had no effect on mature
endothelial cells (87). Hill and colleagues
measured the number of EPC colony-
forming units (CFU-Hill) in the peripheral
blood of men with varying degrees of
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Figure 2. The hierarchy of endopoiesis begins with mesoderm-derived hemangioblasts. FLK11

hemangioblasts serve as a branching point separating endothelial and hematopoietic cell
lineages. Angioblasts are the first primitive cells committed to the endothelial lineage.
Angioblasts serve as initial progenitors of committed peripheral and proximal endothelial
progenitors. Multipotent endothelial progenitor cells (EPCs) (c-KIT1APLNR1FOXF11)
differentiate into capillary cell types, as well as arterial and venous endothelial cells.
Conversely, endothelial colony-forming cells (ECFCs) (SCA11PRORC1) are more restricted
progenitors, producing only arterial and venous cell types. Lymphatic endothelial cells
(PROX11PDPN1LYVE11) differentiate directly from venous cells.

TRANSLATIONAL REVIEW

476 American Journal of Respiratory Cell and Molecular Biology Volume 65 Number 5 | November 2021



cardiovascular risk but without prior history
of vascular disease and demonstrated a
correlation between the number of
circulating EPCs and the Framingham risk
factor score. EPCs from individuals with a
high risk for cardiovascular events exhibited
increased senescence in vitro, compared with
low-risk individuals, suggesting that EPCs
play a role in vascular homeostasis (88).
These studies relied on either the colony-
forming capacity or “blood island–like”
morphology of EPCs in vitro, despite using
distinct methods to achieve colony growth on
fibronectin. Low proliferation rates and
expression of monocyte and macrophage
markers in EPCs derived in vitro led Rehman
and colleagues to suggest that circulating
angiogenic cell is an appropriate name for
these EPC-like cell populations (89).
Prolonged culture of these cells resulted in
the formation of colonies that resembled
“islands” in which hematopoietic cells at the
center contained both myeloid and lymphoid
cell lineages. Cells at the periphery were
macrophage-like, which expressed cell surface
markers shared with endothelial cells (90, 91).
These findings demonstrated that the
previously identified clusters were not blood
islands containing “putative EPCs” but rather
various cells of hematopoietic origin that
gained endothelial-like phenotypes in culture.
Through the release of proangiogenic growth
factors, such as VEGF, these cells were
capable of promoting angiogenesis in animal
models of ischemia and served to predict
cardiovascular outcomes in patients.

Nonhematopoietic EPCs

Circulating Endothelial Colony-
Forming Cells
Although endothelial cells found in peripheral
blood were initially consideredmature cells
that had sloughed from the vascular wall and
entered circulation (92), Lin and colleagues
identified a distinct EPC population that they
termed endothelial outgrowth cells, identified
after sex-mismatched bonemarrow
transplantation (93). The authors observed
that peripheral blood samples of transplant
recipients contained a predominant
population of circulating endothelial cells that
matched the genotype of the recipient
whereas only 5% matched the genotype of the
donor, indicating that the latter population of
cells originated from the donor. Endothelial
cells derived from both recipient and donor
genotypes were produced in vitro. Cells from

the recipient expanded�17-fold in vitro,
whereas cells from the donor, the endothelial
outgrowth cells, expanded.1,000-fold.
Endothelial outgrowth cells exhibited a
cobblestone morphology, incorporated
acLDL, and expressed endothelial markers
KDR, vWF (vonWillebrand factor),
VE-cadherin, CD31, and CD34 and
uniformly lacked CD14, distinguishing them
frommonocytes and macrophages. Taken
together, the ability of circulating endothelial
progenitors to undergo clonal expansion was
matched with cell surface markers to identify
EPC populations. A multidimensional
approach to EPC identification, including
cell surface markers as well as clonogenic
and proliferative potentials in vitro, was used
to establish the hierarchy of EPCs in adult
peripheral and umbilical cord blood (UCB),
analogous to the well-established
hematopoietic tree (94). MNCs from adult
peripheral blood and fromUCB of full-term
infants formed endothelial cell colonies
in vitro; however, the colonies formed from
UCB were larger and emerged earlier than
those that arose from adult peripheral blood
(95). Both adult and UCB endothelial cell
colonies expressed endothelial markers
CD31, CD141 (thrombomodulin, TM),
CD105 (END [endoglin]), CD146 (MCAM
[melanoma cell adhesion molecule]),
VE-cadherin, vWF, and KDR but lacked
expression of hematopoietic lineage markers
CD14 and CD45. Serial passaging of
endothelial cell colonies revealed that UCB-
derived cells could undergo at least 100 cell
doublings, whereas proliferation of adult-
derived endothelial cell colonies ended as
cells underwent senescence after 20–30 cell
doublings. The majority of adult-derived
colonies were small, consisting of 2–50 cells
per cluster, together with the formation of
few colonies of.500 cells. In contrast, a
majority of UCB-derived colonies contained
2,000–10,000 cells per colony that had high
telomerase activity and formed perfused
blood vessels in vivo (95). Based on these
studies, endothelial cell colonies were
subdivided into high proliferative potential
(HPP) and low proliferative potential (LPP)
endothelial progenitors. HPP endothelial
progenitor cells are nowmore commonly
referred to as endothelial colony-forming
cells (ECFCs).

Consensus on Nomenclature of
Endothelial Progenitors
Since the first study describing EPCs in
peripheral blood was published in 1997 (11),

the ambiguity in nomenclature, origin, and
function of EPC-like populations
complicated the field. While recognizing the
translational potential of EPCs, preparations
and culturing methods produced distinct cell
types capable of promoting angiogenesis by a
diversity of mechanisms. A published
consensus statement suggested that EPCs
isolated in culture would be referred to as
either myeloid angiogenic cells (MACs) or
ECFCs (96). Early-outgrowth, proangiogenic
cells of hematopoietic origin were termed
MACs, whereas nonhematopoietic, late-
outgrowth cells able to contribute to vascular
repair and de novo vascular formation were
termed ECFCs.

Resident Pulmonary EPCs

Adult endothelial cells typically reside in a
state of quiescence with a low rate of
proliferation (97); however, several groups
identified variability in the rate of endothelial
cell turnover. Another study demonstrated
that endothelial tissues are composed of a
heterogeneous pool of cells with varying
proliferative potentials (98). The pulmonary
vascular system can be subdivided into
proximal and distal regions. The proximal
region consists of veins and arteries, whereas
the distal or gas exchange region is
composed of microvascular (capillary)
networks (12). Repair of the
microvasculature is dependent on
proliferation of mature capillary endothelial
cells as well as resident tissue EPCs.
CirculatingMACs contribute to lung repair
by promoting angiogenesis and providing
signals that enhance proliferation of
pulmonary parenchymal cells via release of
paracrine factors, such as VEGF. MACs
engraft poorly and do not contribute
substantially to angiogenesis in a cell-
autonomous manner (99). In contrast,
pulmonary-resident EPC populations with
both HPP and vasculogenic competence
have been identified (100). Single-cell
clonogenic assays, comparing rat pulmonary
artery endothelial cells and pulmonary
microvascular endothelial cells,
demonstrated that the majority of
pulmonary microvascular endothelial cells
(75%) divided in culture and (50%) gave rise
to large colonies (.2,000 cells/colony).
Conversely, the majority of pulmonary artery
endothelial cells (60%) were already fully
differentiated (101). Taken together, Alvarez
and colleagues reasoned that because of the
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large surface area of the microvascular bed
and its enhanced growth potential,
pulmonary microvascular endothelial cells
are enriched with progenitors. “Side”
population cells identified by Hoechst dye
efflux (102, 103) are heterogeneous and

highly enriched for cells with progenitor
properties, making up 0.03–0.07% of adult
pulmonary cells (102). EPCs capable of
differentiating into both hematopoietic and
lymphatic cell lineages, and able to establish
the hierarchy of endovascular progenitor,

transit-amplifying, and differentiated cells,
have been isolated from lung tissue (104,
105). EPC subsets were identified using
antibodies against CD157 and protein
receptor C (106, 107). The following
sections will describe the most recently
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Figure 3. Directed differentiation protocols designed to produce EPCs. (A) Schematic of stepwise directed differentiation designed to generate
EPCs from embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs). (B) Directed differentiation of human iPSCs (hiPSCs) into cord
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Table 1. Summary of Differentiation Protocols for the Generation of Various EPC Populations

Starting Cell
Type Cell Type Generated Protocol Summary Key Contribution Citation

mESC FLK11/E-cadherin2 Generation and isolation of
FLK11 cells after 4 d in
culture
Addition of VEGF165 to
sorted cells results in sheets
of CD311 ECs

mESC-derived Flk11 cells give
rise to endothelial and mural
cell types
VEGF165 promotes
development of the
endothelial lineage

Yamashita et al.,
2000 (123)

hESC
Embryoid Body

CD311/KDR1/VE-
Cadherin1/CD452

Generation of EBs
Treatment with SCF, Flt3L,
IL-3, IL-6, G-CSF, and
BMP4
FACS sorted CD451 and
CD452 populations
Culture in EC media

Role of cytokines and BMP4 in
promoting hematopoietic
differentiation
Identification of CD452

bipotent cells with
hematopoietic and
endothelial capacity

Chadwick et al.,
2003 (121)

hESC
Embryoid body

SCL1/LMO21/FLT1/
CD312/CD342/KDR2

Generation of early-stage EBs
with factors such as BMP4,
VEGF, SCF, and Tpo
Dissociation of EBs and
plating single cells in
semisolid blast colony
growth medium

Large-scale generation of
hemangioblast cells under
serum-free culture conditions

Lu et al., 2007
(122)

hESCs
Embryoid body

CD1441/KDR1/CD312 Generation of EBs using the
established protocol by
Chadwick and colleagues
(2003) with varying
concentrations of BMP4

BMP4 accelerates commitment
of hESCs to the endothelial
cell lineage while inhibiting
commitment toward
hematopoiesis

Goldman et al.,
2009 (144)

hESC/iPSC
Embryoid body
1
Monolayer

CD311/CD1461/KDR1/
CD1331/CD341

Generation of EBs
Plating of EBs on
fibronectin-coated dishes in
EGM-2 media supplemented
with VEGF
Expansion of vascular
progenitor fraction in EGM-2
media

Three-dimensional and two-
dimensional culture system
for the simultaneous
generation of hematopoietic
and vascular progenitors
Use of minimal factors
(VEGF, BMP4, FGF2)

Park et al., 2013
(145)

iPSCs
Embryoid body

CD311/VE-cadherin1/
KDR1/eNOS1

VE-cadherin1 cells are isolated
from EBs and seeded on
fibronectin-coated dishes

Characterization of humoral-,
pharmacological-, and
biomechanical-induced func-
tional phenotypes of iPSC-
derived ECs

Adams et al.,
2013 (146)

iPSC
Monolayer

CD341/CD311 Adherent culture system with
small molecule GSK3
inhibition in the absence of
exogenous growth factors

Temporal activation of WNT
signaling, using small
molecule CHIR, is sufficient
to generate EPCs in the
absence of factors VEGF
and FGF2

Lian et al., 2014
(125)

hESC/iPSC
Monolayer

NRP-11/CD311/
CD1441/KDR1 (CB-
ECFCs)

Adherent culture system with
Activin A, BMP4, VEGF, and
FGF2 in serum-free media

Two-dimensional system that
does not require EB
development, feeder cells, or
TGF-b inhibition
Protocol generates HPP-
ECFCs with robust vessel-
forming ability in vivo

Prasain et al.,
2014 (124)

hESC
Embryoid body
1
Monolayer

VE-cadherin1/CD311/
CD341/CD142/
KDRhigh

Three-phase protocol including
both suspension and
adherent culture method

Controlled modulation of BMP,
Wnt, VEGF, and Notch
pathways results in rapid
production of EPCs by Day 6
and mature ECs by Day 14

Sahara et al.,
2014 (147)

iPSC
Monolayer

CD1441/KDR1/CD311/
CD341/CD1051

Six-day differentiation protocol
involving differentiation to
mesodermal lineage with
either CP21 or CHIR and/or
BMP4 with subsequent
exposure to VEGF-A to
induce EC development

Efficient and quick production
of endothelial cells with
efficiencies between 61.8%
and 88.8%

Patsch et al., 2015
(148)

(Continued)
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identified pulmonary-resident EPC
populations.

Tissue-Resident ECFCs
To determine the source of circulating
ECFCs, Ingram and colleagues (100)
compared vessel wall–derived human
umbilical vein endothelial cells, human aortic
endothelial cells, and UCB-derived ECFCs.
Human umbilical vein endothelial cells and
human aortic endothelial cells could be
passaged in culture for at least 40 population
doublings and shared cell surface markers
CD31, CD141, CD105, CD146, VE-cadherin,
vWF, and VEGFR2 (KDR) but not
hematopoietic markers CD45 and CD14. In
slight disagreement with the findings
described by Alvarez and colleagues, Ingram
and colleagues demonstrated that subsets of
human umbilical vein endothelial cells and
human aortic endothelial cells behaved
similarly to UCB-derived ECFCs in
clonogenic assays. All three cell populations
formed small and large colonies, similar to
those formed by HPP and LPP ECFCs (95).
Exposure to hyperoxia in vitro or after
isolation of lung ECFCs from hyperoxia-
exposed rats impaired proliferation,
decreased clonogenic capacity, and resulted
in fewer capillary-like networks in vitro.
Intrajugular administration of ECFCs
isolated from human cord blood into
hyperoxia-exposed neonatal rats attenuated
pulmonary hypertension and restored
colony-forming and capillary
network–forming capabilities (108).

Protective effects of ECFCs despite low
engraftment demonstrate that ECFCs likely
function through paracrine mechanisms.
Taken together, these findings demonstrate
that the intima of large pulmonary blood
vessel walls is a source of both HPP and LPP
ECFCs and that these cells likely act through
paracrine mechanisms to improve
pulmonary function after injury.

c-KIT1 Tissue-Resident EPCs
A number of cell selective markers
distinguish one tissue-resident EPC
population from another, including the
c-KIT receptor (also known as CD117).
C-KIT is a receptor tyrosine kinase that acts
as a receptor for SCF (stem cell factor) and
plays a critical role in hematopoiesis. C-KIT
promotes endothelial cell proliferation and
survival (47, 109, 110). Lineage tracing
studies showed that c-KIT1 cells
differentiate into endothelial but not
epithelial cells (109). C-KIT1 EPCs were
detected in the alveolar region of neonatal
mouse and human tissues (47, 110). C-KIT1

EPCs expressed common endothelial
markers CD31, CD102 (ICAM-2), and
EMCN but lacked expression of pericyte
(CD140b), fibroblast (CD140a), epithelial
(CD326), and hematopoietic (CD45) cell
markers (26, 47). Analysis of single-cell RNA
sequencing (scRNA-seq) data frommouse
and human newborn lungs identified a
unique and conserved gene signature of c-
KIT1 ECs that was enriched in expression of
FOXF1 and its transcriptional target genes,

including TIE-2, VE-cadherin, and VEGFR2
(47). Endothelial-specific deletion of Foxf1 or
the inactivation of Kit in mice decreased the
number of c-KIT1 EPCs in the lung and
impaired postnatal lung angiogenesis and
alveolarization (47). Conversely, adoptive
transfer of c-KIT1 (but not c-KIT2)
endothelial cells into hyperoxia-exposed
neonatal mice resulted in engraftment of c-
KIT1 cells into the alveolar
microvasculature, and their proliferation and
expansion after injury increased capillary
density and reduced alveolar simplification
(47). Interestingly, a recent study (26)
demonstrated that the c-KIT1 EPC cell
subset is also heterogeneous, consisting of
FOXF11c-KIT1 and FOXF12c-KIT1 EPCs.
Only FOXF11c-KIT1 EPCs were capable of
engraftment into the neonatal lung to
stimulate angiogenesis and improve
alveolarization in a mouse model of
ACDMPV (26). C-KIT and FOXF1 identify
a subset of pulmonary EPCs that are highly
sensitive to hyperoxia exposure and are
capable of engrafting and enhancing
regeneration of alveolar tissue in mouse
models of ACDMPV. Importantly, these
data provide proof of principle that adoptive
transfer of pulmonary FOXF11c-KIT1

EPCs into the neonatal circulation can
stimulate lung angiogenesis and prevent
alveolar simplification.

Car4-High Tissue-Resident EPCs
Recently, Niethamer and colleagues
described a new population of microvascular

Table 1. (Continued).

Starting Cell
Type Cell Type Generated Protocol Summary Key Contribution Citation

hESC
Monolayer

KDR1/CD341/CD311/
VE-cadherin1

hESCs are cultured on stem
cell niche LN matrices
(LN521)
This protocol involves the
use of factors such as
Activin A, BMP4, VEGF, and
bFGF

A chemically defined, xeno-free
protocol using LN coating to
generate roughly 95%
functional EPCs

Nguyen et al.,
2016 (126)

hESC/iPSC
Monolayer

CD1571/CD311/
CD1441/CD341/
KDR1/CXCR41

(HPP-ECFCs)

Synergistic three-phase
protocol using unique media
compositions
Generation of primitive
streak ! KDR1 mesoderm
! primitive endothelium

Highly efficient, fully defined
protocol for generation of
EPCs with minimal variability
HPP-ECFC–like cells with
expression of EPC marker
CD157 in addition to other
standard EPC surface
markers

Farkas et al., 2020
(149)

Definition of abbreviations: bFGF = basic fibroblast growth factor; BMP4=bone morphogenetic protein 4; CB-ECFCs=cord blood endothelial
colony-forming cells; EB=embryoid body; EGM-2=endothelial growth medium-2; eNOS=endothelial nitric oxide synthase; EPCs=endothelial
progenitor cells; FGF2= fibroblast growth factor 2; hESC=human embryonic stem cell; HPP-ECFCs=high-proliferative-potential endothelial
colony-forming cells; iPSC= induced pluripotent stem cell; LN= laminin; mESCs=murine embryonic stem cells; SCF= stem cell factor;
TGF-b= transforming growth factor-b; VEGF=vascular endothelial growth factor.
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endothelial cells expressing high amounts of
Carbonic Anhydrase 4 (Car4-high ECs)
(111). Ellis and colleagues found that�15%
of pulmonary endothelial cells express Car4
(112). These Car4-high ECs are critical for
lung repair after injury and are strategically
located in regeneration zones surrounding
sites of alveolar damage caused by influenza
or bleomycin. Importantly, Car4-high ECs
are primed to respond to VEGF-A signaling
from neighboring alveolar type 1 (AT1) cells
to stimulate lung repair. During lung
development, Car41 ECs form close spatial
relationships with AT1 cells and are
separated from them by a thin basement
membrane, without intervening pericytes.
Formation and maintenance of Car41 ECs
required AT1-derived VEGF-A signaling
(111, 112).

General Capillary Cells
Advances in scRNA-seq, lineage tracing, and
confocal microscopy have made it possible
to systematically identify and visualize
heterogeneous cell populations. Gillich and
colleagues demonstrated that alveolar
capillaries consist of a mosaic comprising
two intermingled cell types, which they
termed general capillary cells (gCaps) and
aerocytes (aCaps) (113). Lineage tracing
demonstrated that these cells arise from
common bipotent progenitors that
differentiate to form the capillary network.
The features and functions of gCap and
aCap cells are strikingly distinct. Aerocytes
appear during embryonic development at
E17.5 and mature into large cells with
extensions and pores spanning multiple
alveoli. Aerocytes are located in thin regions

of the alveolar walls and their elongated
morphology is analogous to that of AT1
cells, supporting their specialized role in gas
exchange. Conversely, gCaps are smaller,
contain fewer pores, and rarely span
multiple alveoli, where they are found in
close association with stromal cells. Gene
expression profiling predicted both their
cooperative and distinct functions.
Aerocytes express high amounts of Car4 and
are likely involved in leukocyte trafficking.
gCaps express c-KIT andMHC class
II–associated genes and may be involved in
antigen presentation. Based on scRNA-seq
data, both cell types are predicted to signal to
one another. Aerocytes produce ligands
such as apelin (APLN) and SCF (also
known as KIT ligand) recognized by the
APLN and c-KIT receptors present on

Days

Protocol
objective

Media
details

Days

Protocol
objective

Media
details

START
A

B
START

SORT

–3 to –2 0 to 3 3 to 7 7 to 15

Single cell
seeding on

laminin

Single cell
seeding

–1 to 0 0 to 1

Primitive streak
formation

STEMdiff
APEL 2

+
GSK3-�i

BMP4
FGF2

STEMdiff
APEL 2

+
BMP4
FGF2

Endothelial cell
growth medium 2

+
VEGF

Mesoderm
formation

Endothelial formation

STEMdiff, APEL + VEGF, DAPT,
Forskolin

Maintenance of
endothelial cells

1 to 2 2 to 5 5 to 10

mTeSR1

NutriStem

Vascular specification Endothelial amplificationMesoderm induction

Xeno-free basal medium + VEGF165, bFGF,
SB431542 

Protocol 1:
CD31 purification

on day 7

Analyze a fraction of
cell to determine

CD31 or CD144%

Protocol 2:
CD31 purification

on day 11

Xeno-free basal medium
+

Activin A
BMP4

CHIR99021

Xeno-free basal medium
+

VEGF165
bFGF
BMP4
DAPT

Figure 4. Additional directed differentiation protocols designed to produce EPCs. (A) Differentiation of human ESCs to EPCs in xeno-free
culture conditions (126). (B) Differentiation of hiPSCs to CD1571 HPP-ECFCs (149).
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gCaps. Conversely, gCaps produce
endothelin 1 (EDN1) and VEGF-A, which
may activate EDNRB (endothelin B) and
FLK1 receptors on aCaps. In a mouse model
of emphysema, lineage-labeling studies
demonstrated that gCap but not aCap cells
proliferated after injury and served as
progenitors of both gCap and aCap cells
during alveolar repair.

EPCs and the Tree of Endopoiesis
The diversity of EPC populations with
overlapping cell surface markers and gene
expression profiles makes comparing these
EPC populations a nontrivial task.
Similarities in phenotypic and functional
characteristics support the close relationships
among these cells, which may represent cell
states rather than distinct cell types. It is

likely that proximal and distal pulmonary
vasculature contain unique, heterogeneous
populations of tissue-resident EPCs.We can
begin to draw comparisons and hypothesize
how these cell types fit together to establish a
hierarchy of endopoiesis (Figure 2).
Consistent with their expression of Sca1, it is
likely that the ECFC signature overlaps with
side population cells, residing in arterial and

Table 2. Completed Clinical Trials Involving Testing of EPCs as a Transplantation Cellular Therapeutic for Various Conditions,
as Reported by ClinicalTrials.gov

Disease Identifier Number Cell Type Used Outcome Citation

Pulmonary
Idiopathic pulmonary
arterial hypertension

NCT00641836 Autologous transplantation
of circulating EPCs

Preliminary study showed
feasibility and safety.
Might have beneficial
effects

Wang et al., 2007 (142)

Idiopathic pulmonary
arterial hypertension

NCT00551408 Not reported No study results found N/A

Pulmonary hypertension NCT00469027 Transplantation of
autologous eNOS-
overexpressing EPCs

Tolerated by patients
Evidence of short-term
improvement associated
with long-term benefits in
function and quality of life

Granton et al., 2015 (143)

NSCLC
COPD

NCT00826683 Identification of circulating
EPCs in peripheral blood
of patients with NCSLC
compared with patients
with COPD

No study results found N/A

Hepatic
Advanced liver cirrhosis NCT01333228 Bone marrow–derived

EPCs expanded ex vivo
vWF1/acLDL1

No adverse effects
observed
Higher levels of VEGFR2,
vWF, and acLDL showed
greater improvement in
liver function

D’Avola et al., 2016 (150)

Cardiac
Coronary artery disease

Refractory angina
NCT00694642 CliniMACS selection of

autologous CD1331 cells
No study results found N/A

Idiopathic dilated
cardiomyopathy

NCT00629096 Intracoronary infusion of
autologous bone
marrow–derived MNCs

No study results found N/A

Other
Critical limb ischemia NCT01595776 CliniMACS selection of

autologous CD1331 cells
Six of eight (75%) patients

experienced complete
wound healing
Two of eight (25%)
patients experienced no
benefit

Arici et al., 2015 (151)

Leg ulcer/gangrene NCT00221143 CliniMACS selection of
autologous CD341 cells
from mobilized donors

Improvement in Wong-
Baker FACES pain rating,
TBPI, transcutaneous
partial oxygen pressure,
total or pain-free walking
distance, and ulcer size
observed in all patients

Kawamoto et al., 2009
(152)

Lymphedema (after
mastectomy)

NCT01112189 Transplantation of
autologous CD341 cells
(unsorted) from buffy coat
samples

Significantly reduced
volume of Lymphedema
and improved associated
symptoms

Maldonado et al., 2011
(153)

Definition of abbreviations: acLDL=Dil-labeled acetylated low-density lipoprotein; COPD=chronic obstructive pulmonary disease;
MNCs=mononuclear cells; N/A=not applicable; NSCLC=non-small cell lung cancer; TBPI = toe brachial pressure index; VEGFR2 = vascular
endothelial growth factor receptor 2; vWF=von Willebrand factor.
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venous endothelium of large pulmonary
vessels. ECFCs also express protein receptor
C, suggesting overlap with the EPC
population identified by Yu and colleagues
(107). Car41 cells and aCaps are located in
close apposition to AT1 cells and express
EDNRB and CAR4. gCaps and c-KIT1 EPCs
express c-KIT and may represent the same
population of lung-resident EPCs.
Differences in cell markers may be related to
technical differences in their isolation or to
differences in cell “states” rather than distinct
cell types. Further investigation of EPC
heterogeneity in the lung, both at
homeostasis and during vascular repair after
injury, will advance our understanding of
pulmonary endopoiesis and aid in
identifying cells useful for treatment of
pulmonary diseases.

EPCs: Bench to Bedside

Advances in cell biology are providing new
insight into fundamental mechanisms
underlying organogenesis, tissue repair, and
oncogenesis. Mouse ESCs, human ESCs,
mesenchymal stem cells (MSCs), and iPSCs
provide useful tools for exploring the stages
of vascular development and endothelial cell
differentiation. Stem cells hold great promise
for future cell-based therapies because they
can be used to generate large quantities of
specific cell types in vitro. Transplantation of
MSCs (114), MSC conditioned media (115),
andMSC-derived exosomes (116) have been
extensively studied in both animal models of
lung disease and in human clinical trials
(reviewed in (117, 118)). After
transplantation, MSCs are believed to serve
primarily as sources of vasculogenic growth
factors, supplying VEGF, FGF2, ANG1, and
EGF (epidermal growth factor) to
neighboring cells. MSCs alone have limited
engraftment potential, whereas
cotransplantation of MSCs with ECFCs
increases vascular engraftment (117, 119).
Risks of MSC transplantation include graft
versus host disease andmalignancy,
indicating the need for further optimizations
of MSC therapies for clinical use (120).

Directed Differentiation of ESCs and
iPSCs into EPCs
Since the discovery of distinct EPC
populations, considerable work has focused
on development of protocols enabling
directed differentiation of mouse and human
stem cells to produce engraftable endothelial

cells (Table 1). Early protocols seeking to
develop EPCs relied either on the three-
dimensional generation of embryoid bodies
or on two-dimensional monolayer cell
culture systems to isolate hemangioblasts,
known to give rise to both hematopoietic and
endothelial cell progenitors (121, 122). ESC-
derived bipotent cells producing endothelial
andmural cell lineages have also been
described (123). Recently, differentiation
protocols have evolved to a sophisticated
multiphase system allowing for stepwise
differentiation from ESCs/iPSCs to
mesodermal precursors, hemangioblasts,
angioblasts, and, finally, endothelial
progenitors, which can be maintained or
differentiated into mature endothelial cells
(Figure 3A). In 2014, Prasain and colleagues
published a robust protocol using a two-
dimensional monolayer culture system of
ESCs or iPSCs to generate large quantities of
stable cord blood ECFCs (Figure 3B) (124).
Cord blood ECFCs were expanded and
maintained for up to 18 passages without loss
of endothelial surface markers (124). ESC/
iPSC-derived ECFCs are highly proliferative,
form capillary-like structures in Matrigel,
and contribute to vascular repair in both
ischemic limbs and hyperoxia-injured retinas
(124). Lian and colleagues demonstrated that
canonical WNT/b-catenin signaling is
required for generation of CD341CD311

EPCs from iPSCs (125). Directed EPC
differentiation was achieved by activation of
canonical WNT signaling using GSK3
inhibition (CHIR99021), in the absence of
exogenous growth factors VEGF and FGF2
(Figure 3C). Functional
VEGFR21CD341CD311VE-cadherin1

EPCs were produced using laminins and
chemically defined xeno-free conditions
without Matrigel (Figure 4A) (126).
Endothelial progenitor cells with high
proliferative potential that express the
progenitor cell marker CD157 or classical
endothelial markers, CD31, VE-cadherin,
CD34, KDR, and CXCR4, were produced
from both ESCs and iPSCs (Figure 4B).
Although questions remain regarding how
ESC/iPSC-derived endothelial progenitors
phenocopy their endogenous counterparts,
ESCs and iPSCs share the potential to
produce large quantities of EPCs required
for cell-based therapies for pulmonary
diseases.

EPCs in Regenerative Medicine
Discoveries such as surfactant,
antiinflammatory drugs, and corticosteroids

as well as gentle approaches to ventilation
have made it possible to improve lung
function and enhance survival of preterm
infants with respiratory diseases.
Nevertheless, debilitating pediatric lung
diseases associated with decreased,
dysfunctional, and damaged vasculature
remain without effective treatments. In
recent years, several approaches have been
considered to improve the neonatal
pulmonary vasculature. One such promising
option is cell therapy with EPCs (99). Despite
the controversies surrounding EPC
classification, positive outcomes of EPC
transplantation were reported in mice (26,
47, 127), rats (128, 129), rabbits (130),
canines (131), and nonhuman primates
(132–135). Studies in neonatal mice
demonstrated that hyperoxia exposure
reduced EPC numbers in the blood, bone
marrow, and lung (136). Reduced numbers
of EPCs were found in mouse models of
ACDMPV (26, 47). Decreased numbers of
EPCs were present in lungs from patients
with BPD, pulmonary arterial hypertension
(PAH), and chronic obstructive pulmonary
disease (137–140). ECFC frequency in cord
blood was reduced in infants with a
gestational age,28 weeks compared with
infants with a gestational age.28 weeks.
Infants with reduced ECFC frequency
subsequently developed BPD (4). Increased
frequency of EPCs was associated with better
survival after acute lung injury and reduced
risks of developing BPD (4, 141). A search
for “endothelial progenitor cells” in the
National Institute of Health’s clinical trials
database identified more than 180 completed
trials andmany more in “recruiting” and
“active” stages; however, only 5 clinical trials
are related to pulmonary disorders. Ongoing
clinical trials explore the therapeutic
potential of EPCs for cell therapies.
Autologous bone marrow or peripheral
blood samples are collected, manipulated or
enriched ex vivo, and infused back into
patients with vascular injury.

A prospective, randomized trial tested
whether EPC transplantation together with
conventional therapy improved clinical
outcomes of patients with idiopathic PAH
(142). Fifteen participants received a one-
time intravenous infusion of EPCs
(mean=0.63 107 cells per infusion) in
addition to conventional therapy and 16
participants received conventional therapy
alone. Twelve weeks after treatment, the
mean walking distance was increased in
patients with PAHwho received both the
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EPC infusion and conventional therapy
compared with patients with PAHwho
received the conventional therapy alone.
Autologous EPCs significantly improved
pulmonary artery pressure, pulmonary
vascular resistance, and overall cardiac
output without severe adverse outcomes
(142). A phase 1 clinical trial conducted by
Granton and colleagues (143) used apheresis
to isolate MNCs from peripheral blood of
patients with severe PAH. Endothelial
outgrowth cells were produced fromMNCs
from blood and transfected with a plasmid
containing human eNOS cDNA and infused
into patients with PAH. Participants were
assigned to one of three escalating cell dose
regimens consisting of 7, 25, and 50 million
cells, respectively, administered over 3
consecutive days. Although no cell
dose–effect relationship was reported,
participants from all groups experienced
short-term hemodynamic improvement.
More clinical studies investigating cell
dosing, efficacy, and timing of
administration are critically required to
establish a treatment that is both effective
and best tolerated by patients. Several studies
using EPCs in PAH, non-small cell lung
cancer, and chronic obstructive pulmonary
disease are listed on ClinicalTrials.gov;
however, the results of these studies are not
yet available. Autologous EPC
transplantation has been used in clinical
trials, testing its safety and efficacy for
treatment of diseases affecting the respiratory

system, heart, liver, and other organs (Table
2). EPCmobilization and EPC-coated stents
provide additional uses for EPC delivery to
targeted organs.

To achieve postnatal alveolarization in
patients with pulmonary diseases, EPCs must
properly engraft into regions of damaged
tissue and be able to form functional
relationships with various endogenous cell
types to ensure that the vascular system is
rebuilt properly and efficiently. Coordination
between the vascular and lymphatic systems
must also be demonstrated in an effective
EPC-based therapy. These crucial points
need to be examined and addressed as more
trials are conducted and completed in this
field. Advances in EPC isolation, methods of
production in vitro, and knowledge
regarding mechanisms of vascular
regeneration will enable autologous and
iPSC-derived EPC therapeutics for
pulmonary diseases in the future.

Conclusions and
Future Directions

In just two decades, great strides have been
made in identifying, evaluating, and
understanding the role of EPCs in
development and disease, as well as their
potential for translational medicine. Many
similarities and differences can be drawn
from the vast amount of work describing

EPC populations, which lead to the
conclusion that the hierarchy of endothelial
cell development (endopoiesis) is a complex
network with similarities to hematopoiesis.
Endothelial development involves
heterogeneous populations of progenitor
cells with various differentiation and
proliferative potentials. Advances in
technology, such as imaging, lineage tracing,
and scRNA-seq, are enabling identification
of a diverse population of EPCs in the lung.
The ability to derive EPC populations from
patient-specific iPSCs and to modify them ex
vivo is the first of many steps on a path
toward discovering patient-tailored
therapies. EPCs derived from patient-specific
iPSCs reduce the need for donor matching or
the risk of adverse effects of lung vascular
repair for our most fragile patient
populations. Future discoveries enabling the
identification of distinct EPC populations
and understanding their specific roles in
endopoiesis are needed. EPCs generated
in vitro require extensive testing to ensure
their stability and ability to regenerate
vasculature without causing off-target effects.
As we begin to operationalize EPCs in
therapies, it will be important to establish
source methods for their collection and
propagation ex vivo to provide patient-
specific cells that can be used throughout a
patient’s life.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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