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N E U R O S C I E N C E

Predicting speech from a cortical hierarchy of  
event-based time scales
Lea-Maria Schmitt1,2*, Julia Erb1,2, Sarah Tune1,2, Anna U. Rysop3,  
Gesa Hartwigsen3, Jonas Obleser1,2*

How do predictions in the brain incorporate the temporal unfolding of context in our natural environment? We here 
provide evidence for a neural coding scheme that sparsely updates contextual representations at the boundary of 
events. This yields a hierarchical, multilayered organization of predictive language comprehension. Training artifi-
cial neural networks to predict the next word in a story at five stacked time scales and then using model-based 
functional magnetic resonance imaging, we observe an event-based “surprisal hierarchy” evolving along a temporo-
parietal pathway. Along this hierarchy, surprisal at any given time scale gated bottom-up and top-down connectivity to 
neighboring time scales. In contrast, surprisal derived from continuously updated context influenced temporopari-
etal activity only at short time scales. Representing context in the form of increasingly coarse events constitutes a 
network architecture for making predictions that is both computationally efficient and contextually diverse.

INTRODUCTION
While the past predicts the future, not all context that the past pro-
vides is equally informative: It might be outdated, contradictory, or 
even irrelevant. Nevertheless, the brain as a “prediction machine” 
(1) is seemingly equipped with a versatile repertoire of computations 
to overcome these contextual ambiguities. A prominent example is 
speech, where a slip of the tongue may render the most recent con-
text uninformative, but we can still predict the next word from its 
remaining context. At much longer time scales, we can reuse context 
that suddenly proves informative, as a speaker returns to a topic 
discussed earlier. Using natural language comprehension as a work-
ing model, we here ask: How does the brain dynamically organize, 
evaluate, and update these complex contextual dependencies over 
time to make accurate predictions?

A robust principle in the cerebral cortex is the decomposition of 
temporal context into its constituent time scales along a hierarchy 
from lower- to higher-order areas, which is evident across species 
(2, 3), recording modalities (4, 5), sensory modalities (6, 7), and cog-
nitive functions (8,  9). For instance, sensory cortices closely track 
rapid fluctuations of stimulus features and operate on short time 
scales [e.g., (10)]. By contrast, association cortices integrate stimuli 
over an extended period and operate on longer time scales [e.g., 
(11)]. Hierarchical specialization has been shown to emerge from 
structural and functional large-scale connectivity across cortex 
(12, 13), with connectivity between neighboring areas allowing for 
efficient mapping between time scales (14, 15).

Conceptually, these hierarchies of “temporal receptive windows” 
are often subsumed under the framework of predictive coding (16): 
A nested set of time scale–specific generative models informs pre-
dictions on upcoming sensory input and is updated on the basis of 
the actual input (17). In particular, context is thought to shape the 
prediction of incoming stimuli via feedback connections. These 

connections would link each time scale to its immediate shorter time 
scale, while the prediction error is propagated forward through the 
hierarchy (18). In line with these accounts of hierarchical predictive 
coding, feedforward and feedback connections in cortex (19, 20) 
have been shown to carry prediction errors and predictions (21, 22), 
respectively.

However, studies on the neural underpinnings of predictive coding 
have primarily used artificial stimuli of short temporal context [but 
see (23)] and used local versus global violations of expectations, 
effectively manifesting a two-level cortical hierarchy [but see (24)]. 
We thus lack understanding of whether the hierarchical organization 
of prediction processes extends to natural environments unfolding 
their temporal dependencies over a multitude of interrelated time scales.

With respect to functional organization in human cortex, tempo-
roparietal areas are sensitive to a rich set of hierarchies and time 
scales in speech (25, 26). Most relevant to the present work, semantic 
context in a spoken story has been shown to map onto a gradient 
extending from the early auditory cortex representative of words up 
to the intraparietal sulcus representative of paragraphs (27) or the 
broader storyline in a narrative (28). This time scale–specific repre-
sentation of context is reminiscent of the multilayered generative 
models proposed to underlie predictive coding (29, 30). Compatible 
with this notion, previous studies on speech comprehension found 
evidence for neural coding of prediction errors at the level of sylla-
bles (31), words (32), or discourse (33).

However, the interactions between multiple representational 
time scales of speech in predicting upcoming words remain unclear. 
Here, we ask whether the temporoparietal processing hierarchy 
enabling natural speech comprehension is also implicated in evalu-
ating the predictiveness of time scale–specific semantic context and 
integrating informative context into predictions. We recorded blood 
oxygen level–dependent (BOLD) responses while participants lis-
tened to a narrated story, which provides rich semantic context and 
captures the full dynamic range of speech predictability. We set out 
to identify prediction error signaling, which can be formulated as 
surprisal (34). Psycholinguistic surprisal theory states that surprisal is 
proportional to the cognitive effort required to update a probabi-
listic prediction when encountering a new word (35,  36), which 
modulates BOLD activity (37) and reading time (38).
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Here, we focus on two potential computational architectures that 
could underlie a cortical hierarchy of predictive language compre-
hension. One attractively simple candidate architecture constructs 
context representations at all time scales with each upcoming word 
by replacing outdated context with context just recently encountered. 
An important implication of such a continuously updating processing 
hierarchy is that context representations at all time scales are 
tuned to current processing demands when predicting an up-
coming word. In a recent study, Chien and Honey (39) showed that 
a computational model with continuous updates best explained 
how neural responses to a story rapidly aligned across participants 
in areas with shorter but only later in areas with longer receptive 
windows.

A competing candidate architecture is effectively based on the 
event structure of context, with changes in situational features indi-
cating the end of an event. For example, it is known that scenes in a 
movie are encoded as event-specific neural responses (40) and that 
more parietal receptive windows represent increasingly coarse events 
in movies (41). The segmentation of context into hierarchical events 
is implemented via an additional boundary detector that initiates the 
recombination of an event with preceding events at higher process-
ing stages at an event boundary only. This sparsely updating pro-
cessing hierarchy calls for fewer updates to context representations, 
which have been shown to speed up processing (42) and allow to 
draw on semantically more diverse context representations when 
making predictions. We here hypothesize that such a network ar-
chitecture is a more appropriate model for prediction processes in 
the brain.

In the present study, we followed the rationale that neural com-
putations can be inferred by comparing the fit of neural data to outputs 
from artificial neural networks with different architectures (43, 44). 
We derived context-specific surprisal associated with each word in 
the story from single layers of long short-term memory (LSTM)–
based language models with either a continuous (45) or a sparse 
updating rule [hierarchical multiscale LSTM (HM-LSTM) (42)]. These 
language models make probabilistic predictions on upcoming words 
by exploiting representations of context at different time scales with 
the aim to minimize surprisal and the capability to learn from expe-
rience, thereby sharing key features with language prediction in humans 
(30). Furthermore, LSTM models have been shown to effectively 
explain neural (46) and behavioral responses to speech (47).

Our results speak to the event-based organization of semantic 
context as a valid model of predictive processing in the brain. We 
show that a “surprisal hierarchy” of increasingly coarse event time 
scales evolves along the temporoparietal pathway, with stronger 
connectivity to neighboring time scales in states of higher word sur-
prisal. Surprisal derived from continuously updated context had a 
nonhierarchical effect on temporoparietal activity only at short time 
scales. Together, these results suggest that representing context in 
the form of hierarchical events constitutes a network architecture 
that is computationally efficient while providing a diverse range of 
context for making predictions.

RESULTS
Thirty-four participants listened to a 1-hour narrated story while 
their hemodynamic brain responses were recorded using functional 
magnetic resonance imaging (fMRI). To emulate a challenging lis-
tening scenario, we presented the story against a competing stream 

of resynthesized natural sounds [for an analysis focusing on cortical 
representations of acoustics, see (48)].

The surprisal associated with each word in the story was modeled 
at multiple time scales of semantic context by two artificial neural 
networks, an LSTM model with a continuous updating rule and an 
HM-LSTM model with a sparse updating rule (Fig. 1A). First, we 
encoded surprisal at multiple time scales into univariate neural re-
sponses and fit a gradient to temporoparietal peak locations of time 
scales. Encoding models were estimated separately per each language 
model, using ridge regression with fourfold cross-validation. Second, 
we investigated how surprisal gates the information flow between 
brain regions sensitive to different time scales.

Two competing language models of hierarchical  
speech prediction
We trained two artificial neural networks on more than 130 million 
words of running text to predict an upcoming word by its preceding 
semantic context. More specifically, language models consisted of 
LSTM cells (45), which incorporate context that might become 
relevant at some time (cell state) or that is relevant already to the 
prediction of the next word (hidden state). By stacking five LSTM 
layers, our models operated on different time scales of context, with 
higher layers coding for long-term dependencies between words.

In the continuously updating (or “vanilla”) LSTM, recurrent 
memory states are updated at each layer with every new bottom-up 
word input (Fig. 1B). A second model, the sparsely updating HM-
LSTM, uses a revised updating rule where information from a lower 
layer is only fed forward at the end of an event (Fig. 1C). This allows 
for less frequent updates between layers and stronger separation be-
tween contextual information represented at different layers.

Model-derived metrics of predictiveness at  
multiple time scales
For each word in the entire presented story (>9000 words), we 
determined its predictability given the semantic context of the pre-
ceding 500 words. Hidden states were combined across layers and 
mapped to an output module, which denotes the probability of 
occurring next for every word in a large vocabulary of candidate 
words. The word with the highest probability was selected as the 
predicted next word. Overall, the LSTM (proportion correct across 
words, 0.13) and the HM-LSTM (0.12; fig. S1) were on par in accu-
rately predicting the next word in the story.

To derive the predictability of words based on layer-specific context 
(or, for our purpose, time scale), we allowed information to freely 
flow through pretrained networks yet only mapped the hidden state 
of one layer to the output module by setting all other layer weights to 
zero. Outputs from these “masked” language models represented the 
predictiveness of words at one of five time scales.

As the primary metric of predictiveness, we calculated the degree 
of surprisal associated with the occurrence of a word given its con-
text (i.e., negative logarithm of the probability assigned to the actu-
al next word). The surprisal evoked by an incoming word indexes 
the amount of information that was not predictable from the context 
represented at a specific time scale (35, 36). Notably, surprisal was con-
siderably higher at longer time scales in the LSTM (P < 0.001, Cohen’s 
d = 2.43; compared to slopes drawn from surprisal shuffled across 
time scales) but remained stable across time scales in the HM-
LSTM (P = 0.955, d = 0.05; direct comparison of LSTM versus HM-
LSTM: P < 0.001, d = 2.7; Fig. 2A).



Schmitt et al., Sci. Adv. 7, eabi6070 (2021)     3 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 18

To determine the temporal integration window of each time 
scale, we scrambled input to the network at different granularities 
corresponding to a binary logarithmic increase in the length of 
intact context (i.e., 1 to 256 words). The LSTM showed no increase 
in temporal integration windows at higher layers (LSTM: P = 0.219, 
d = 0.11). In contrast, in the HM-LSTM, surprisal decreased more 
strongly at longer compared to shorter time scales as more intact 
context became available (HM-LSTM: P =  0.027, d =  0.73; LSTM 
versus HM-LSTM: P < 0.001, d = 0.76; Fig. 2B).

Our secondary metrics expressed the predictability of a word in 
relation to other words. First, the entropy of the probability distribu-
tion over candidate words indicates the difficulty to make a definite 
prediction on an upcoming word. Second, the dissimilarity of vector 
representations (or embeddings) coding for the constituent features 
of the predicted and actual next word (product-moment correla-
tion) indicates conceptual (un-)relatedness.

We derived surprisal, entropy, and dissimilarity associated with 
single words in the story from masked models at each of five time 
scales and from “full” models across all time scales, separately for 
each language model (see fig. S2 for correlations of metrics). All 
features were convolved with the hemodynamic response function 
(HRF), and we will collectively refer to them as “features of predic-
tiveness” from here on.

Higher model-derived surprisal of words  
slows down reading
To test the behavioral relevance of model-based predictiveness, 
another 26 participants performed a self-paced reading task where 
they read the transcribed story word by word on a noncumulative 
display and pressed a button as soon as they had finished reading. 
When regressing response speed onto time-lagged features of pre-
dictiveness and a set of nuisance regressors (e.g., word length and 
frequency), we found that, as expected, reading speed slowed down 
for words determined as more surprising by language models given 
the full context across all time scales (Fig. 2C).

Furthermore, we predicted response speed on held-out testing 
data and z-scored the resulting encoding accuracy (i.e., product- 
moment correlation of predicted and actual response speed) to 
a null distribution drawn from scrambled features of predictive-
ness while only keeping nuisance regressors intact. This yielded 
the unique contribution of the predictiveness of words (i.e., sur-
prisal, entropy, and dissimilarity) to reading speed, which was 
significant for both language models (LSTM: P < 0.001, d = 1.51; 
HM-LSTM: P < 0.001, d = 1.64; LSTM versus HM-LSTM: P = 
0.975, d = 0.35). Together, these findings suggest that both language 
models picked up on processes of speech prediction that shape 
behavior.

Fig. 1. Modeling neural speech prediction with artificial neural networks. (A) Bottom: Participants listened to a story (gray waveform) during fMRI. Middle: On the 
basis of preceding semantic context (“The wild wine was called”), a language model assigned a probability of being the next word to each word in a large vocabulary (gray 
bars). The probability of the actual next word (“ink grapes”; colored bars) was read out from each layer of the model separately, with higher layers (darker blue colors) 
accumulating information across longer semantic time scales. Top: Word probabilities were transformed to surprisal, convolved with the hemodynamic response func-
tion (HRF, bell shapes), and mapped onto temporoparietal BOLD time series (colored lines). (B) Two language models were trained. With each new word-level input, the 
“continuously updating” LSTM (45) combines “old” recurrent long-term (  c w−1  l    ) and short-term memory states (  h w−1  l    ) with “new” bottom-up linguistic input (  h w  l−1  ) at each 
layer l. This allowed information to continuously flow to higher layers with each incoming word. f, forget gate; i, input gate; g, candidate state; o, output gate. (C) The 
“sparsely updating” HM-LSTM (42) was designed to learn the hierarchical structure of text. An upper layer keeps its representation of context unchanged (copy mecha-
nism) until a boundary indicates the end of an event on the lower layer and information is passed to the upper layer (update mechanism). Networks were unrolled over 
the sequence of words for illustration only.
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Selecting temporoparietal regions of interest involved in 
speech processing
We hypothesized that the speech prediction hierarchy is represented 
as a gradient along the temporoparietal pathway. This rather coarse 
region of interest (ROI) was further refined to only include regions 
implicated in processing of the listening task.

To this aim, we calculated pairwise intersubject correlations (49), 
which revealed consistent cortical activity across participants in a 
broad bilateral language network. Responses were most prominently 
shared in auditory association cortex and lateral temporal cortex as 
well as premotor cortex, paracentral lobule, and mid cingulate 

cortex (Fig. 3A). Crucially, as sound textures presented in the 
competing stream were randomly ordered across participants, this 
approach allowed us to extract shared responses specific to the 
speech stream.

The context representations necessary to make predictions are 
thought to be located in temporal and parietal cortex regions, while 
most other regions showing increased intersubject correlations are 
thought to be implicated in networks of cognitive control and action 
(50). Therefore, we limited all further analyses to those temporal 
and parietal parcels (51), in which more than 80% of vertices yielded 
a significant intersubject correlation. We tested for significance by 

Fig. 2. Evaluating model-derived surprisal. (A) Word surprisal was derived from full models including all layers (gray distribution) and from single layers of masked 
models (colored distributions), separately for the LSTM (top) and HM-LSTM (middle); black circles, grand-median surprisal. Linear functions were fit to word surprisal 
across layers, and resulting slope parameters were compared to empirical null distributions (LSTM, red; HM-LSTM, blue) and between language models (LSTM versus HM-
LSTM, gray; bottom). (B) Input to models was scrambled at different granularities corresponding to an increase in the length of intact context (i.e., 1 to 256 words). For 
each layer of models, linear functions were fit to word surprisal across these context windows. A negative slope parameter indicates a stronger benefit (or lower surprisal) 
from longer context (i.e., larger integration window or time scale). Linear functions fit to integration windows across layers indicate the benefit of higher layers from 
longer context (bottom). (C) Speed in a self-paced reading task was modeled as a function of time-lagged predictiveness and a set of nuisance regressors (i.e., length, 
frequency, and number of words as well as content versus function words). Weight profiles are shown for surprisal in full models as well as word length and frequency, 
two factors known to have a major impact on reading speed (100) and thereby illustrating the magnitude of the surprisal effect; positive weights indicate an increase in 
response speed; error bands represent ±SEM. We extracted the encoding accuracy in the self-paced reading task uniquely explained by the predictiveness of context 
(standardized to scrambled features of predictiveness; bottom); dashed gray line, critical significance level for single participants; inset, nonstandardized encoding accu-
racies. ***P < 0.001 and *P < 0.05; n.s., not significant.



Schmitt et al., Sci. Adv. 7, eabi6070 (2021)     3 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 18

ranking the median group-level intersubject correlation of single 
vertices against a bootstrapped null distribution [P < 0.01, adjusted 
for false discovery rate (FDR)]. The cortical sheet of the six parcels de-
termined as ROIs was flattened, resulting in a two-dimensional plane 
spanned by an anterior-posterior and inferior-superior axis (Fig. 3B). 
We expected gradients of speech prediction to unfold along the infe-
rior-superior axis, that is, from temporal to parietal areas.

Differential tuning to continuously versus sparsely updated 
time scales of surprisal in temporoparietal cortex
In an encoding analysis, we regressed hemodynamic responses of single 
vertices in the temporoparietal ROI onto model-based features of 
predictiveness (i.e., surprisal, entropy, and dissimilarity at single time 
scales and for full models) and a set of acoustic and linguistic nuisance 
regressors. For each language model, we extracted five temporoparietal 
maps showing the time scale–specific regression weights of surprisal.

When performing spatial clustering on these weight maps (Pvertex 
and Pcluster < 0.05; compared to scrambled surprisal by means of a 
cluster-based permutation test), we found large positive clusters in 
both hemispheres for surprisal at shorter time scales of the LSTM 
(Fig. 4A, yellow outlines) but, if at all, only focal clusters at longer 
time scales (Fig. 4A, red outlines). Hence, temporoparietal activity 
primarily increased in response to words that were less predictable 
by the context provided at shorter, continuously updated time 
scales. In contrast, we found clusters of distinct polarity, location, 
and extent for surprisal at all time scales of the HM-LSTM (Fig. 4B). 
This suggests that even longer time scales had the potency to modu-
late temporoparietal activity when they were sparsely updated.

Sparsely updated time scales of surprisal evolve along 
a temporoparietal processing hierarchy
To probe the organization of surprisal at different time scales along 
a temporoparietal gradient, we collapsed across the anterior-posterior 

axis of single weight maps and selected the local maximum with the 
largest positive value on the inferior-superior axis. Fitting a linear 
function to these peak coordinates of time scales, we found flat 
slope parameters indicating random ordering of LSTM time scales 
in both hemispheres (left: P = 0.458, d = −0.15; right: P = 0.716, 
d = −0.07; compared to slopes drawn from coordinates scrambled 
across time scales; Fig. 4C). Conversely, we found steep positive 
slopes for the HM-LSTM in both hemispheres (left: P < 0.001, 
d = 0.72; right: P < 0.001, d = 0.75; Fig. 4C), reflecting the representation 
of surprisal at longer time scales in more parietal regions. The grand- 
average slope of the HM-LSTM in the left hemisphere indicates that 
surprisal at a sparsely updated time scale is represented 12 mm superior 
to its directly preceding time scale along the unfolded temporopa-
rietal surface. Most relevant, this finding was underpinned by 
a significant difference of slope parameters between the LSTM and 
HM-LSTM (left: P = 0.005, d = 0.9; right: P < 0.001, d = 0.89; Fig. 4C), 
demonstrating a temporoparietal processing hierarchy of word 
surprisal that preferably operates on sparsely updated 
time scales.

The absence of a gradient for surprisal at continuously updated 
time scales was corroborated when specifically targeting the dorsal 
processing stream. To this aim, we confined surprisal at the first 
time scale to peak in temporal regions and surprisal at all other time 
scales to peak superior to the first time scale in more parietal regions. 
Slope effects along the dorsal stream largely complied with those 
found in the unconstrained approach (LSTM, all P ≥ 0.134; HM-
LSTM, all P ≤ 0.006; LSTM versus HM-LSTM, all P ≥ 0.103), there-
by ruling out the possibility that the presence of a competing ventral 
stream obscured the consistent ordering of time scales.

In addition, rotating weight maps around the full circle in steps of 
5° before collapsing across the first dimension showed that surprisal at 
sparsely updated time scales was processed along a broad gradient, 
roughly covering rotations from 0° to −90° in both hemispheres 

Fig. 3. Selection of ROIs. (A) When listening to a story against background noise, pairwise intersubject correlations showed stronger synchronization of BOLD activity in 
cortical areas implicated in the language network. (B) The cortical surface was flattened. All temporal and parietal parcels (51) highlighted by white outlines were included 
as ROIs in the following analyses. Black outlined parcels serve as reference point only. EAC, early auditory cortex; AAC, auditory association cortex; LTC, lateral temporal 
cortex; TPOJ, temporo-parieto-occipital junction; IPC, inferior parietal cortex; SPC, superior parietal cortex; V1, primary auditory cortex; EVC, early visual cortex; SSC/MC, 
somatosensory and motor cortex; L, left; R, right. Maps were smoothed with an 8-mm full width at half maximum (FWHM) Gaussian kernel for illustration only.
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Fig. 4. Encoding surprisal at multiple time scales. (A) Top row: Temporoparietal weight maps of LSTM-derived surprisal at each time scale were tested against zero; 
positive z values indicate increased BOLD activity in response to more surprising words; black outlines, significant clusters; white outlines, parcels; colored outlines, short 
(light) to long (dark) time scales, separately for the left and right hemispheres. Bottom row: Time scale–specific peak coordinates were determined along the inferior- 
superior axis (colored triangles numbered according to time scale), shown for grand-average weight profiles. Testing for a processing hierarchy along the dorsal stream, 
time scales were constrained to peak superior to the first time scale; colored dots, single-subject peak coordinates; black circles, grand-median peak coordinates. In the 
unconstrained approach, time scales were allowed to peak at any location, and maps were rotated around the inferior-superior axis (shown for −45°) to test for the spatial 
specificity of the effect. (B) Same as above but for the HM-LSTM. (C) Linear functions were fit to peak coordinates across time scales, and resulting slope parameters were 
compared to empirical null distributions (LSTM, red; HM-LSTM, blue) and between language models (LSTM versus HM-LSTM, gray); black circles, grand-average slope pa-
rameters; insets, coefficients of determination for single-subject fits. In addition, we tested for slope effects around the full circle (rose plots); white areas indicate positive 
slope parameters; fat colored lines, significant slope clusters of single language models; fat gray lines, significant clusters of slope differences between language models. 
Maps of encoding accuracies were z-scored to null distributions drawn from scrambled features of predictiveness and compared between language models. SMG, supra-
marginal gyrus; AG, angular gyrus; A1, primary auditory cortex; MTG, middle temporal gyrus. Maps were smoothed with an 8-mm FWHM Gaussian kernel for illustration 
only. **P < 0.01 and ***P < 0.001.
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(Pvertex and Pcluster < 0.05; compared to scrambled surprisal by means of 
a cluster-based permutation test). No effect was found for the LSTM.

In a complementary decoding approach (see text S7), we recon-
structed surprisal at the five time scales from patterns of neural 
activity in single ROIs (i.e., temporoparietal parcels). Contrasting 
decoding accuracies between language models, left-hemispheric 
early auditory cortex contained more information about surprisal at 
medium, sparsely updated time scales, whereas inferior and superior 
parietal cortex preferentially represented surprisal at long, sparsely 
updated time scales (fig. S3). This finding converges with the organi-
zation of the gradient described earlier for sparsely updated but not 
continuously updated time scales of surprisal.

Unlike for the sparsely updated time scales of surprisal, neither 
the time scales of entropy (all P ≥ 0.583) nor dissimilarity (all 
P ≥ 0.623) organized along a dorsal gradient (figs. S4 and S5). 
Furthermore, effects of HM-LSTM time scale surprisal were dis-
sociable from a simple measure of semantic incongruence between 
words in the story and their preceding context at five time scales 
logarithmically increasing in length (all P ≥ 0.5; product-moment 
correlation of target and average context embedding). This highlights 
the specificity of the observed gradient to prediction processes in 
general and word surprisal in particular.

To determine the contribution of predictiveness to overall en-
coding accuracy on held-out data, we z-scored accuracies relative to 
null distributions drawn from scrambled features of predictiveness 
while keeping additional (spectrotemporal) acoustic and linguistic 
nuisance regressors intact (for encoding accuracies of these other 
regressors, see fig. S6). The LSTM produced, in comparison to the 
HM-LSTM, better predictions in early auditory cortex and supra-
marginal gyrus (Pvertex and Pcluster < 0.05; cluster-based permutation 
paired-sample t test; Fig. 4C). On the other hand, predictions of the 
HM-LSTM seemed slightly more accurate than for the LSTM along 
the middle temporal gyrus, temporo-parieto-occipital junction, and 
angular gyrus, although not statistically significant. Taking into 
account the broad clusters found earlier specifically for surprisal at 
shorter (but not longer) LSTM time scales, this underscores the no-
tion that surprisal at continuously updated time scales takes full effect 
only in earlier processing stages, whereas the sparsely updating pro-
cessing hierarchy evolves to more posterior parietal regions.

Surprisal at sparsely updated time scales gates connectivity 
along the processing hierarchy
After establishing the temporoparietal processing hierarchy, we ex-
amined the modulatory effect of surprisal on connectivity between 
peak locations of time scales taken from the encoding analysis. 
Following the assumptions of predictive coding (16), the bottom-up 
information flow from a brain area representative of a shorter time 
scale to its immediately neighboring, longer time scale should increase 
when the prediction error at the shorter time scale is higher, thereby 
initiating updates to predictions at the longer time scale. In turn, 
higher time scale–specific surprisal should increase the top-down 
information flow to the immediately shorter time scale, thereby 
indicating the backward-pass of updated predictions. Such a surprisal- 
gated hierarchy is thought to allow for efficient mapping between 
time scales.

To this aim, we created psychophysiological interactions (PPIs) 
(52) between the BOLD response at the peak location of one time 
scale and word surprisal at the same time scale. The BOLD response 
at the peak location of each (target) time scale was regressed onto the 

PPIs of all other (predictor) time scales (Fig. 5A). A positive weight in-
dicates increased coupling between two peak locations when surpri-
sal at the predictor time scale is high.

We hypothesized that coupling between brain regions repre-
senting surprisal at two neighboring time scales increases when one 
time scale becomes unpredictive. Numerically, this can be expressed 
by setting the weights of neighboring time scales to 1 and all other 
predictor weights to −1 (Fig. 5B). This hypothesized pattern of 
weights was not matched by the weights observed for the LSTM 
(left: P = 0.83, d = 0.27; right: P = 0.348, d = 0.1; Euclidean distance 
compared to null distributions drawn from target BOLD activity 
shifted in time), which was expected given that surprisal at the con-
tinuously updated time scales was not organized along a gradient in 
the first place. Critically, for surprisal at sparsely updated time scales of 
the HM-LSTM, surprisal-modulated connectivity in the left hemi-
sphere not only matched our hypothesis (left: P = 0.032, d = 0.5; 
right: P = 0.853, d = 0.23) but also matched our hypothesis better 
than the LSTM (left: P = 0.001, d = 0.79; right: P = 0.902, d = 0.3).

To specify the overall directionality of information flow, we sepa-
rately averaged the weights of top-down modulations (i.e., predictor 
weights of surprisal at time scales longer than respective target time 
scales) and bottom-up modulations. We found no difference between 
the modulatory strength of these top-down and bottom-up connections 
(LSTM left: P = 0.184, d = 0.23; LSTM right: P = 0.839, d = 0.4; HM- 
LSTM left: P = 0.408, d = 0.4; HM-LSTM right: P = 0.367, d = 0.16).

DISCUSSION
How are the complex temporal dependencies underlying natural 
speech processed in the brain to inform predictions of upcoming 
speech? In the present study, we simulated these prediction pro-
cesses in two language models (LSTM versus HM-LSTM), which 
critically differed in how often semantic context representations are 
updated at multiple, hierarchically organized time scales.

Surprisal as derived from both language models modulated reading 
times in the behavioral reading task to a similar degree. However, hemo-
dynamic brain responses to surprisal during the listening task differed 
between models: In line with our initial hypothesis, temporoparietal 
regions hierarchically encoded the (sparsely updated) event-based 
surprisal provided by the layers of the HM-LSTM, with surprisal at 
longer time scales represented in inferior parietal regions. Moreover, 
higher time scale–specific surprisal based on the HM-LSTM increased 
connectivity from receptive windows of surprisal at a given time scale 
to their immediately neighboring (shorter or longer) time scales.

Together, these results provide evidence for the neurobiological 
parsimony of an event-based processing hierarchy. In the present data, 
this was expressed in the simultaneous neural representation of sur-
prisal at multiple time scales and in surprisal dynamically gating the 
connectivity between these time scale–specific receptive windows.

The event-based organization of context as a foundation for 
language prediction
The spatial organization of time scale–specific receptive windows of 
surprisal observed in the present study converges with previous 
results, where bilateral primary auditory cortex coded for relatively 
shorter time scales (e.g., words) and inferior parietal cortex coded 
for longer time scales (e.g., paragraphs) (27). Critically, this spatial 
overlap was found despite targeting different aspects of speech 
processing.
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In our study, neural responses were expressed as a function of 
time scale–specific word surprisal, a proxy tapping into prediction 
processes. In other studies, receptive windows were based on the 
(in-)consistency of neural activity across participants in response to 
speech input at varying time scales (53), which is typically linked to 
working memory formation. This implies that the same neural sys-
tem most likely fulfils distinct functions: Temporal receptive windows 
have been suggested to store time scale–specific context in working 
memory and, in parallel, exploit this context to process informa-
tion in the present (9). In line with this theoretical account, our 

results suggest that time scale–specific memory representations 
serve as the basis for the generative models shaping predictions of 
upcoming speech.

Here, the observed temporoparietal gradient of surprisal at sparsely 
updated representations of context is specifically well in line with 
accounts of neural event segmentation (54, 55) and with the notion 
of hierarchical multiscale network architectures more generally 
(here, HM-LSTM). Taking a sentence from our listening task as an 
example, “The wild wine was called ink grapes” represents a brief 
event where the narrator describes how the bluish black of the grapes 

Fig. 5. Surprisal-dependent modulation of effective connectivity. (A) A sphere of 6 mm was centered on median peak locations of the time scales of surprisal as de-
fined in the encoding analysis (colored circles on temporoparietal maps), and BOLD responses were averaged within these time scale seeds. BOLD time series at one 
(target) time scale were regressed onto PPIs of all other (predictor) time scales (i.e., pointwise product of time scale–specific BOLD and surprisal time series). For each 
target seed, we added a column vector of time scale–specific predictor weights to a five-by-five matrix with an empty main diagonal. Matrices were created separately for 
each language model (top, LSTM; bottom, HM-LSTM) and hemisphere. The upper triangle of a matrix indicates top-down, and the lower triangle indicates bottom-up 
information flow. (B) A hypothesized matrix of PPIs was created, with positive weights on diagonals below and above the main diagonal (orange squares), indicating in-
creased connectivity between surprisal at neighboring time scales when surprisal is high. The Euclidean distance between observed and hypothesized matrices was 
compared to null distributions of distances drawn from target time scales shifted in time (LSTM, red density plot; HM-LSTM, blue) and between language models (LSTM 
versus HM-LSTM, level of significance shown in black), separately for each hemisphere; gray dots, distances of single participants; black circles, mean distances. *P < 0.05 
and ***P < 0.001. a.u., arbitrary units.
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in a backyard reminded her of the color of the night. At the same 
time, the sentence is preceded by a larger event of the author walking 
the streets on the way to her parents’ house. Both events can be com-
bined into an even larger event of the author visiting her Romanian 
hometown.

Notably, the events modeled by the HM-LSTM do not necessarily 
concur with human event annotations and are not fully indepen-
dent of previous events because of a leaky network architecture. 
Notwithstanding these limitations, we can draw an analogy between 
the HM-LSTM architecture and neural event segmentation in two 
decisive points. First, the boundary detector allows revealing an 
event structure of context, similar to an increase in neural activity 
indexing prediction errors at event boundaries (56, 57). Second, the 
sparse updates to higher processing stages at event boundaries allow 
retaining multiple, stable context representations in memory, similar 
to temporo-parieto-occipital receptive windows reflecting the hier-
archical event structure during movie watching (41). We directly tie 
in with this result by showing that this hierarchical, event-based 
context enables neural prediction processes.

What are the computational and mechanistic implications of 
this contextual architecture for the prediction of speech? Somewhat 
paradoxically, event models have been referred to as “an added bur-
den for an organism” (58). This argument is certainly plausible with 
regard to the size of the parameter space, which increases in an arti-
ficial or, likewise, biological neural network by introducing an 
additional boundary detector. At the expense of model parsimony, 
however, such an event-based network allows for fewer updates in 
comparison to continuously updating networks such as the LSTM, 
where each new input to the model elicits computationally complex 
updates to all time scales.

The trade-off between computational costs of boundary detector 
and update frequency is nicely illustrated by the fact that the sparse-
ly updating HM-LSTM is considerably faster in making predictions 
than the continuously updating LSTM (42). Thus, from a functional 
perspective, keeping layered representations of multiple events in 
memory allows to efficiently draw on diverse information to make 
predictions on upcoming speech.

Context-dependent surprisal as a gating mechanism for 
predictions and prediction errors
The hallmark of prediction processes in our data is the increase in 
reading times and neural activity observed in response to more sur-
prising input (21, 59). There are different computational ways in which 
this “expectation suppression” (60) can be realized, namely integra-
tion difficulty, neural sharpening, and predictive coding.

One take on expectation suppression is that surprising sensory 
input is more difficult to integrate into already existing representa-
tions of context because it conveys a relatively larger amount of new 
information (61). The architecture of the sparsely updating HM-
LSTM dictates that new information is integrated into time scale–
specific representations only at event boundaries, thereby suggesting 
that integration difficulty should arise primarily on an event-by-event 
basis. As surprisal varies on a word-by-word basis, it is less likely 
that integration difficulty accounts for our effects of event-based 
surprisal. However, accounts of integration difficulty and predictive 
processing are not mutually exclusive. The other two accounts both 
assume that expectation suppression is indicative of prediction pro-
cesses but differ in how these processes are thought to be imple-
mented in the brain.

Sharpening accounts argue that unexpected components of sensory 
input are suppressed via feedback predictions (62), while accounts 
of predictive coding (16, 63) suggest that the brain filters out (or 
“dampens”) expected components of sensory input. Both accounts 
assume that predictive processes lead to an overall decrease in neural 
activity to incoming stimuli. The similarity between hypothesized 
response patterns makes it notoriously hard to disentangle those 
accounts (32).

Notably, however, a distinguishing feature of predictive coding is 
the specificity of feedforward prediction error signals, which can be 
captured by modeling effective connectivity between receptive win-
dows of time scale–specific surprisal. In agreement with the hier-
archical information flow laid out in predictive coding (16), surprisal 
in our study modulated connectivity via bidirectional links between 
neighboring receptive windows of longer and shorter event- based 
time scales in the left hemisphere (Fig. 5).

Surprisal in the event-based artificial neural network was modeled 
as the amount of information an input word conveys that cannot be 
explained away by the context (or generative model) represented at 
a specific time scale. Therefore, the increase in feedforward connec-
tivity in response to higher surprisal precisely aligns with the con-
cept of prediction errors in predictive coding (63).

In addition, the increase in feedback connectivity in response to 
higher surprisal accords with an electrocorticography study in 
macaques by Chao and colleagues (24). The study showed that pre-
diction errors evoked in tone sequences trigger feedback signals 
from prefrontal to anterior temporal and early auditory cortex in 
alpha and beta frequency bands. Extending these previous results, 
our findings suggest that surprisal initiates bottom-up prediction 
errors, indicative of imprecise predictions, and top-down updates to 
predictions at processing stages of shorter events to facilitate percep-
tion of new words.

As an interim conclusion, our findings have two important im-
plications for frameworks of prediction and prediction error: First, 
we show that a multilayered hierarchy of predictive coding [e.g., (18)] 
applies well to temporoparietal language processing. Second, pre-
dictive coding remains a viable account of neural processing, also 
when put to test using complex temporal dependencies underlying 
real-life stimuli.

Implications for a larger network perspective on the  
event-based prediction hierarchy
Dual stream models of language propose that speech processing is 
organized along a ventral and a dorsal stream (64). In the present 
study, we found a hierarchy of speech prediction along the dorsal 
stream, which emanated from early auditory cortex and extended 
well into parietal cortex (Fig. 4B).

This result may seem at odds with other studies showing an 
additional mirror-symmetric ventral gradient, in which more com-
plex speech features are represented in more anterior temporal 
regions (65). The ventral stream has been proposed to chunk speech 
features into increasingly abstract concepts irrespective of their tem-
poral presentation order (66). In contrast, here, we modeled context 
representations by respecting the temporal order of words, that is, 
the HM-LSTM integrates incoming words into an event until a 
change in situational features of words indicates the end of an event 
and a new event is created. Hence, the ventral stream may contribute 
to hierarchical speech prediction by exploiting another, more nested 
facet of context.
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The inferior frontal gyrus (IFG), alongside premotor cortex, is 
deemed the apex of the dorsal stream (64), yet, here, we considered 
only the role of temporoparietal cortex in speech prediction. Previous 
studies showed that activity in IFG relies on longer time scales of 
speech being intact (27, 67), that connectivity between IFG and 
superior temporal gyrus is driven by expectations (68, 69), and that 
right IFG is sensitive to the violation of nonlocal regularities (70, 71). 
While this suggests an interplay between frontal and temporoparietal 
regions in hierarchical speech prediction, the precise anticipatory 
mechanisms that IFG exerts cognitive control over are just as 
unclear as how top-down cognitive control and bottom-up sensory 
input are balanced along the hierarchy.

Another open question is the cross-linguistic generalizability of 
the observed speech prediction hierarchy. The present study focused 
on German, which is—like to any other language—characterized by 
its unique linguistic structure shaping also neural computations. For 
example, alphabetic languages such as German versus tonal lan-
guages such as Chinese engage different neural systems for phono-
logical processing (72). On the other hand, higher-level linguistic 
processing in temporal and parietal cortex has been shown to be 
consistent across a diverse set of languages and language families (73). 
As the event structure of speech relies on these higher-level semantic 
representations, this opens up the possibility that event-based pre-
dictive processing along the temporoparietal pathway is a universal 
function of language comprehension.

Beyond short-term semantic context, long-term knowledge also 
facilitates speech prediction. In theory, both memory systems can be 
couched into the larger framework of the dual reference frame sys-
tem (74), where flexible sensory knowledge in parietal cortex inter-
acts with stable conceptual knowledge in hippocampus. Consistent 
with the key characteristics of the speech prediction hierarchy, 
hippocampus codes for boundaries in the environment (75), hierar-
chically organizes memories (76), and engages in predictive coding 
(77). As parietal cortex has been shown to interface with hippocampus 
at event boundaries of longer time scales during movie watching 
(41), we speculate that the hierarchy of speech prediction might ex-
tend from receptive windows in parietal cortex to hippocampus.

The event-based prediction hierarchy relies on a set of neural 
computations—i.e., event segmentation, temporal receptive windows, 
and predictive coding—available beyond the domain of language. 
For example, taking a walk through the city and then taking a break 
in the garden constitute two events that are distinguishable not 
only by the change of location when presented as a narrated story 
but also by the change of visual (sight of traffic lights versus trees) 
or olfactory features (smell of car exhausts versus flowers) when 
experienced in a natural environment. Our results thereby encour-
age future studies to probe the generalizability of the event-based 
prediction hierarchy to other species, sensory modalities, and cog-
nitive functions.

The present study bridges the gap between the hierarchical, tem-
porally structured organization of context in language comprehen-
sion on the one hand and the more general principles of hierarchical 
predictive processing in the cerebral cortex on the other hand. Com-
bining continuously narrated speech, artificial neural networks, and 
fMRI building on these networks’ output allowed us, first, to sample 
the natural dynamic range of word-to-word changes in predictive-
ness over a multilevel hierarchy. Second, we were able to systemati-
cally compare the neural effects of different contextual updating 
mechanisms.

Our data demonstrate that the prediction processes in language 
comprehension build on an event-based organization of semantic 
context along the temporoparietal pathway. Not least, we posit that 
such an event-based organization provides a blueprint for a contex-
tually diverse yet computationally efficient network architecture of 
anticipatory processing in complex naturalistic environments.

MATERIALS AND METHODS
Participants
Thirty-seven healthy, young students took part in the fMRI listening 
study. The final sample included N = 34 participants (18 to 32 
years; M = 24.65; 18 females), as data from 1 participant were ex-
cluded from all analyses because of strong head movement through-
out the recording [mean framewise displacement, >2 SD above 
group average (78)], and two experimental sessions were aborted 
because participants reported to not understand speech against noise. 
Another 26 students (19 to 32 years; M = 23.54; 17 females) took part 
in the behavioral self-paced reading study.

All participants were right-handed German native speakers who 
reported no neurological, psychiatric, or hearing disorders. Participants 
gave written informed consent and received an expense allowance of 
€10/hour of testing. The study was conducted in accordance with 
the Declaration of Helsinki and was approved by the local ethics 
committee of the University of Lübeck.

Stimulus materials
As a speech stimulus in the fMRI listening study, we used the first 
64 min of an audio recording featuring H. Müller, a Nobel laureate 
in literature, reminiscing about her childhood as part of the 
German-speaking minority in the Romanian Banat (“Die Nacht ist 
aus Tinte gemacht,” 2009). To emulate an acoustically challenging 
scenario in which listeners are likely to make use of the predictability 
of speech (79), this recording was energetically masked by a stream 
of concatenated 5-s sound textures at a signal-to-noise ratio of 
0 dB. Sound textures were synthesized from the spectrotemporal 
modulation content of 192 natural sounds [i.e., human and animal 
vocalizations, music, tools, and nature scenes (80)], so that the noise 
stream did not provide any semantic content potentially interfering 
with the prediction of upcoming speech. The order in which sound 
textures were arranged was randomized across participants. For 
more details on how sound textures in the present experiment were 
generated and how they were processed in auditory cortex, see (48).

The monaural speech and noise streams were sampled to 44.1 kHz, 
and custom filters specific to the left and right channels of the earphones 
used in the fMRI experiment were applied for frequency response 
equalization. Last, speech-in-noise stimuli were divided into eight ex-
cerpts of 8 min, which served as independent runs in the experiment.

A trained human external agent literally transcribed the speech 
stream. The text transcript comprised 9446 words, which were used 
as stimuli in the self-paced reading task and as input to our language 
models. To automatically determine the onset and offset times of 
all spoken words and phonemes, we used the web service of the 
Bavarian Archive for Speech Signals (81): First, the text transcript 
was transformed to a canonical phonetic transcript encoded in SAM-PA 
by the G2P module. Second, the most likely pronunciation for the 
phonetic transcript was determined by a Markov model and aligned 
to the speech recording by the MAUS module. Fourteen part-of-
speech tags were assigned to the words in the text transcript using 
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the pretrained German language model de_core_news_sm (2.2.5) 
from spaCy (https://spacy.io/). On the basis of these tags, words were 
classified as content or function words. Word frequencies were de-
rived from the subtitle-based SUBTLEX-DE corpus (82) and trans-
formed to standardized Zipf values (83) operating on a logarithmic 
scale from about 1 (word with a frequency of 1 per 100 million words) 
to 7 (1 per 1000 words). The Zipf value of a word not observed in the 
corpus was 1.59 (i.e., the smallest possible value).

Experimental procedures
Behavioral self-paced reading task
While the transcribed story was presented word by word on a non-
cumulative display, participants had the task to read each word once 
at a comfortable pace and quickly press a button to reveal the next 
word as soon as they had finished reading. A timeout of 6 s was im-
plemented. The time interval between word appearance and button 
press was logged as the reading time. After each run, participants 
answered three four-option multiple-choice questions on the plot of 
the story (performance: Ra = 58.33 to 100% correct, M = 79.17%, 
and SD = 10.87%) and took a self-paced break. In total, each partic-
ipant completed four of eight runs, which were randomly selected 
and presented in chronological order. Throughout the reading task, 
we recorded movement and pupil dilation of the participants’ left 
eye at a sampling rate of 250 Hz in one continuous shot with an eye 
tracker (EyeLink 1000, SR Research). Eye tracking data were not 
analyzed in the present study.

The experiment was controlled via the Psychophysics Toolbox 
(84) in MATLAB (R2017b, MathWorks). All words were presented 
20% off from the left edge of the screen in white Arial font on a gray 
background with a visual angle of approximately 18°. Participants 
used a response pad (URP48, The Black Box ToolKit) to navigate the 
experiment with their right index finger. The experimental session 
took approximately 40 min.
fMRI listening task
We instructed participants to carefully listen to the story while ig-
noring the competing stream of sound textures and the MRI scanner 
noise in the background. Each of the eight runs was initialized by 10 
baseline MRI volumes, after which a white fixation cross appeared in 
the middle of a gray screen and playback of the 8-min audio recording 
started. MRI recording stopped with the end of playback, and partic-
ipants successively answered the same questions used in the self-paced 
reading task via a response pad with four buttons (HHSC-2x4-C, 
Current Designs). On average, participants answered 65.5% of the 
questions correctly (Ra = 38 to 100% and SD = 15.9%). There was a 
20-s break between consecutive runs.

The experiment was run in MATLAB (R2016b) using the Psycho-
physics Toolbox. Stimuli were presented at a subjectively comfortable 
sound pressure level via insert earphones (S14, SENSIMETRICS) 
covered with circumaural air cushions. The experimenters moni-
tored whether participants kept their eyes open throughout the ex-
periment via an eye tracker.
MRI data acquisition
MRI data were collected on a 3-T Siemens MAGNETOM Skyra scanner 
using a 64-channel head coil. During the listening task, continuous 
whole-brain fMRI data were acquired in eight separate runs using an 
echo-planar imaging sequence [repetition time (TR) = 947 ms, echo 
time (TE) = 28 ms, flip angle = 60°, voxel size = 2.5 mm by 2.5 mm 
by 2.5 mm, slice thickness = 2.5 mm, matrix size = 80 by 80, field of 
view = 200 mm by 200 mm, and simultaneous multislice factor = 4]. 

Fifty-two axial slices were scanned in interleaved order. For each 
run, 519 volumes were recorded.

Before each second run, field maps were acquired with a gradient 
echo sequence (TR = 610 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, flip angle = 
60°, voxel size = 2.5 mm by 2.5 mm by 2.75 mm, matrix size = 80 by 
80, axial slice number = 62, slice thickness = 2.5 mm, and slice 
gap = 10%). In the end of an experimental session, anatomical images 
were acquired using a T1-weighted magnetization-prepared rapid 
gradient-echo (MP-RAGE) sequence (TR = 2400 ms, TE = 3.16 ms, flip 
angle = 8°, voxel size = 1 mm by 1 mm by 1 mm, matrix size = 256 by 
256, and sagittal slice number = 176) and a T2-weighted sampling 
perfection with application-optimized contrasts using different flip 
angle evolution (SPACE) sequence (TR = 3200 ms, TE = 449 ms, 
flip angle = 120°, voxel size = 1 mm by 1 mm by 1 mm, matrix 
size = 256 by 256, and sagittal slice number = 176).

Modeling the predictiveness of context at multiple 
time scales
We trained two versions of LSTM networks with five layers to predict 
the next word in the story given a sequence of semantic context: a 
continuously updating LSTM where information is fed to a higher 
layer with each upcoming word and a competing sparsely updating 
HM-LSTM where information is fed to a higher layer only at the end 
of an event. The predictiveness of context at multiple time scales was 
read out from single layers of both language models for each word in 
the story presented to participants in experiments. Ultimately, we 
tested how closely these derivatives of different network architectures 
match the signatures of behavioral and neural prediction processes.
Representing words in vector space
In natural language processing, it is common to represent a word by 
its linguistic features in the form of high-dimensional vectors (or 
embeddings). As the German language is morphologically rich and 
flexibly combines words into new compounds, there are many rare 
words for which language models cannot learn good (if any) vector 
representations on the word level. Therefore, we mapped all texts 
used for training, validating, and testing our language models to 
pretrained subword vectors publicly available in the BPEmb collec-
tion (85). These embeddings allow for the representation of any word 
by a combination of 100-dimensional subwords from a finite vocabu-
lary of 100,000 subwords. We further reduced this vocabulary to those 
subwords that appeared at least once in any of our texts (i.e., number 
of subwords in vocabulary v = 91,645). See text S1 for a detailed de-
scription of the BPEmb vocabulary.

Matching our texts to subwords and their respective embeddings 
in the BPEmb vocabulary yielded the embedded text t ∈ Rw×e, where 
w is the number of words and e = 100 is the number of vector 
dimensions. On average, a word in the story was represented by 
1.07 subwords (Ra = 1 to 6 and SD = 0.33). As single words were 
encoded by only one subword in 94.25% of cases, we will refer to 
subwords as words from here on.
Architecture of language models
When listening to a story, a fused representation of all spoken words 
{w1, w2, …, wp} is maintained in memory and used as context infor-
mation to make a prediction about the upcoming word wp+1. In nat-
ural language processing, this memory formation is implemented 
via recurrent connections between the states of adjacent neural net-
work cells. The hidden state hp−1 stores all relevant context and is 
sequentially passed to the next cell where it is updated with infor-
mation from word wp.

https://spacy.io/
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As such a simple recurrent neural network tends to memorize 
only the most recent past, the more complex LSTM (45) became a 
standard model in time series forecasting. In an LSTM cell, the state 
is split in two vectors: The cell state cp acts as long-term memory, 
whereas the hidden state hp incorporates information relevant to the 
cell output (i.e., the prediction of the next word). The integration of 
new information and the information flow between the two memory 
systems are controlled by three gating mechanisms.

When stacking multiple LSTM cells on top of each other, semantic 
context gets hierarchically organized in the model, with lower layers 
coding for short-term dependencies and higher layers coding for 
long-term dependencies between words. The bottom-up input to the 
first layer remains to be the embedded word wp. However, the lower 
layer’s hidden state   h p  l−1   becomes the input to a cell from the second 
layer on. The hidden state and cell state are updated at each layer 
with every new bottom-up input to the model.

A competing model that has been shown to slightly outperform 
the continuously updating (vanilla) LSTM in character-level language 
modeling is the HM-LSTM (42). This sparsely updating HM-LSTM 
uses a revised updating rule where information from the lower layer 
is only fed forward at the end of an event. The end of an event is 
marked by a boundary detector when situational features change. 
Here, we used the simplified version of the HM-LSTM (86) with no 
top-down connections. See text S2 for a detailed description of the 
model architecture including all relevant formulas.
Prediction of the next word
LSTM and HM-LSTM cells form the representations of information 
relevant to speech prediction, whereas the actual prediction of the 
next word takes place in the output module. Here, hidden states at 
word position p are combined across the different layers of the lan-
guage model. The combined hidden state   h p  r    is mapped to a fully 
connected dense layer of as many neurons as there are words in the 
vocabulary and squashed to values in the interval [0,1], which sum 
to 1 (i.e., softmax function). Each neuron in resulting vector dp in-
dexes one particular word in vocabulary v and denotes its probability 
of being the next word. Last, the word referring to the highest prob-
ability in the distribution is chosen as the predicted next word sp in a 
story. See text S3 for a detailed description of word prediction in-
cluding all relevant formulas.
Training and evaluation of language models
The objective of our language models was to minimize the difference 
between the “predicted” probability distribution dp (i.e., a vector of 
probabilities ranging from 0 to 1) and the “actual” probability dis-
tribution corresponding to the next word in a text (i.e., a vector of 
zeros with a one-hot encoded target word). To this end, we trained 
models on mini batches of 16 independent text sequences with 
500 words each and monitored model performance by means of cate-
gorical cross-entropy between the predicted and actual probability 
distribution of each word in a sequence. On the basis of model 
perform ance, trainable parameters were updated after each mini 
batch using the Adam algorithm for stochastic gradient optimi-
zation (87).

Our text corpus comprised more than 130 million words including 
4400 political speeches (88) and 1200 fictional and popular scientific 
books. All texts had at least 500 words; metadata, page numbers, ref-
erences, and punctuations (except for hyphenated compound words) 
were removed from documents. A held-out set of 10 randomly se-
lected documents was used for validation after each epoch of train-
ing (i.e., going through the complete training set once) and allowed 

us to detect overfitting on the training set. Training automatically 
stopped after model performance did not increase over two epochs 
for the validation dataset.

Using a context window of 500 words, we aimed at roughly model-
ing time scales of the length of common linguistic units in written 
language (i.e., words, phrases, sentences, and paragraphs). Therefore, 
we only used a small range of values from three to seven to find the 
number of layers—intended to represent distinct time scales—best 
suited to make good predictions. In addition, we tuned the number 
of units in LSTM and HM-LSTM cells of language models, using values 
from 50 to 500 in steps of 50. Hyperparameters were evaluated on a 
single epoch using grid search, and the best combination of hyperpa-
rameters was chosen on the basis of the performance on the validation 
set. Our final language models had five LSTM or HM-LSTM layers with 
300 units each and an output module. The LSTM model had 31,428,745 
and the HM-LSTM model had 31,431,570 trainable parameters. Models 
were trained and evaluated with custom scripts in TensorFlow 2.1. 
See text S4 for a detailed description of architectural choices.
Deriving the predictiveness of time scales by “masking” 
language models
We used each trained language model to determine the predictive-
ness of semantic context in the story presented to participants in the 
behavioral and fMRI experiment. First, predictiveness was read out 
from full models: We iteratively selected each word in the story as a 
target word and fed all 500 context words preceding the target word 
to our language models. Note that the context for target words in the 
very beginning of the story comprised less than 500 words. The pre-
dicted probability of each word in the vocabulary was extracted from 
distribution dp in the output module.

Second, predictiveness was read out from masked models, where 
we allowed information to freely flow through networks yet only 
considered semantic context represented at single layers to generate 
the predicted probability distribution. These time scale–resolved 
probabilities were created by setting the weight matrix   W r  

l    of pretrained 
models to zero for all layers of no interest, so that the hidden state of 
only one layer is passed to the softmax function and all other layers 
have no bearing on the final prediction. We iteratively set all but one 
layer to zero, with each layer being the only one influencing predic-
tions once, resulting in five masked outputs for each language model.

We derived three measures of predictiveness from probability 
distributions. Our primary measure was the degree of surprisal asso-
ciated with the occurrence of a word given its context. Word surprisal is 
the negative logarithm of the probability assigned to the actual next 
word in a story.

Secondary measures of predictiveness were used to explore the 
specificity of the processing hierarchy to only some aspects of the 
prediction processes. Entropy reflects the amount of uncertainty across 
the whole probability distribution of candidate words, which is the 
negative sum of probabilities multiplied by their natural logarithm. 
When high probabilities are assigned to only one or few words in the 
vocabulary, entropy is low. On the other hand, entropy is high when 
semantic context is not informative enough to narrow predictions 
down to a limited set of words, resulting in similar probabilities for all 
candidate words. As all information necessary to determine the en-
tropy of a word is already available to participants before word pre-
sentation, entropy of word wp was ascribed to the previous word 
wp−1. Whereas entropy quantifies the overall difficulty of making 
any definite prediction, surprisal quantifies the availability of in-
formation about the actual next word.
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Another secondary measure of predictiveness was the relatedness 
of the predicted next word to the actual next word. This word dis-
similarity is expressed as 1 minus the correlation of respective word 
embeddings. A high positive product-moment correlation indicates 
that the prediction is linguistically close to the target word, although 
the model prediction might have been incorrect.

All three measures were calculated for each word in the story, 
separately for full models and five masked models. This yielded an 
18-dimensional feature space of predictiveness for the LSTM and 
the HM-LSTM model, which was linked to BOLD activity and read-
ing times in our analysis.

In addition, we created a metric to dissociate the neural effects of 
predictiveness from more low-level effects of semantic incongruence 
between target words and their preceding context. To this end, we 
correlated the embedding of each function word in the story with 
the average embedding of a context window and subtracted the re-
sulting product-moment correlation coefficients from 1 (89). This 
measure of contextual incongruence was calculated at five time 
scales corresponding to a logarithmic increase in context length (i.e., 
2, 4, 8, 16, and 32 words).

To determine the temporal integration windows of layers, we 
scrambled input to the language models at nine levels of granularity 
corresponding to a binary logarithmic increase in the length of in-
tact context (i.e., context windows of 1 to 256 words). For each layer, 
we fit linear functions to word surprisal across context windows and 
extracted slope parameters indicating how much a layer benefits 
from longer context being available when predicting the next word. 
On the second level, we fit linear functions to these layer-specific inte-
gration windows to determine the context benefit of higher layers 
over shorter layers. Resulting model-specific slopes were compared 
to a null distribution of slopes computed by shuffling the integration 
windows across layers (n = 10,000). In addition, slopes were com-
pared between language models by means of a Monte Carlo approxi-
mated permutation test (n = 10,000) on the difference of means.
Convolving features with the HRF
We used three classes of features to model brain responses: 18 features of 
predictiveness (i.e., surprisal, entropy, and dissimilarity for the full 
model and for the five masked models), 3 linguistic features, and 9 
acoustic features. While we were primarily interested in modeling the 
effects of predictiveness, linguistic and acoustic features were used 
as nuisance regressors potentially covarying with predictiveness. 
Linguistic features included information about when words were pre-
sented (coded as 1), whether they were content or function words 
(coded as 1 and −1), and which frequency they had. In (48), we 
decomposed the speech-in-noise stimuli into a 288-dimensional 
acoustic space of spectral, temporal, and spectrotemporal modula-
tions, which was derived from a filter bank modeling auditory pro-
cessing (90). Here, we reduced the number of acoustic features to 
the first nine principal components, which explained more than 
80% of variance in the original acoustic space. All features were z-
scored per run.

A set of 500 scrambled features of predictiveness was generated, 
which was used to estimate null distributions of predictive processing. 
We applied the fast Fourier transform to single features, randomly 
shifted the phase of frequency components, and inverted the trans-
form to project the data back into the time domain. This preserved 
the power spectra of features but disrupted the temporal alignment 
of frequencies. See text S5 for a detailed description of convolving 
features with the HRF.

Data analysis
See text S6 for a detailed description of structural and functional 
MRI data preprocessing.
Selection of ROIs
We hypothesized that the speech prediction hierarchy is represented 
as a gradient along a temporoparietal pathway. This rather coarse 
ROI was further refined to only include regions implicated in speech 
processing. To this end, we used intersubject correlation (49) as a 
measure of neural activity consistently evoked across participants 
listening to speech in noise. As we were primarily interested in 
shared responses to the speech stream, this approach allowed us to 
leverage the inconsistency of the noise stream across participants. 
The presentation of sound textures in different order likely evoked 
more heterogeneous neural responses, leading to a diminished shared 
representation of the noise stream. Therefore, we inferred that the 
shared neural responses we observed were largely driven by the 
speech stream, which was the same for all participants.

At the first level, hyperaligned functional time series of each par-
ticipant (see text S6) were concatenated across experimental runs 
and correlated with every other participant on a vertex-by-vertex 
basis, resulting in pairwise maps of intersubject product-moment 
correlations. A group map was created by calculating the median 
correlation coefficient across pairs of participants for each vertex. At 
the second level, median correlation coefficients were chosen as a 
nonparametric test statistic to account for inflated false-positive 
rates, and a bootstrap hypothesis test with 10,000 iterations was 
applied. To create the null distribution, we iteratively resampled 
participants with replacement and derived median group maps from 
their pairwise correlation maps. When the same participant was 
sampled more than once in a bootstrap iteration, the pairwise cor-
relation map of that participant with herself was not included in the 
computation of the group map. The actual median intersubject cor-
relation was ranked against the normalized null distribution to obtain 
a P value for each vertex. Intersubject correlations were computed 
with the Python package BrainIAK (91) following the recommenda-
tions of Nastase and colleagues (49).

Last, we used a multimodal parcellation (51) to select those lateral 
temporal and parietal parcels of which at least 80% of the vertices 
had a significant intersubject correlation in one hemisphere [P < 0.01, 
adjusted for false discovery rate (FDR) (92)]. The following parcels 
were included in the ROI: early auditory cortex, auditory association 
cortex, lateral temporal cortex, temporo-parieto-occipital junction, 
inferior parietal cortex, and superior parietal cortex. As the temporal 
middle temporal (MT)+ complex is thought to be mainly involved 
in visual processing, this region was not considered an appropriate 
candidate parcel. All further analyses including MRI data were limited 
to the temporoparietal ROI, which was organized along the anterior- 
posterior (left, 124 mm; right, 167 mm) and inferior-superior 
axis (left, 234 mm; right, 212 mm).
Functional data analysis
The starting point of our analyses was the question whether the time 
scales of speech prediction organize along a temporoparietal process-
ing hierarchy. In a forward model, we encoded the predictiveness of 
time scales into univariate neural activity and fit a gradient along the 
peak locations sensitive to surprisal at specific time scales. Next, we 
compared the explanatory power of both language models in a sup-
plementary backward model, which decoded surprisal at different 
time scales from multivariate patterns of neural activity in tem-
poroparietal parcels. Last, we modeled functional connectivity 
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between peak locations to test whether the time scales of surprisal 
gate the information flow along the gradient.

Encoding model. The encoding approach [similar to, e.g., (93)] 
allowed us to quantify for each temporoparietal vertex, which fea-
tures of predictiveness it preferentially represents. Two separate 
encoding models were estimated for each vertex in the ROI of single 
participants, one for each language model. Besides the features of 
predictiveness specific to language models, both models included 
the same linguistic and acoustic features as nuisance regressors. We 
modeled neural activity as a function of the HRF-convolved features 
characterizing speech and noise stimuli by

  a = Sw + ϵ  

where asamples × 1 is the activity vector (or BOLD time course) correspond-
ing to a vertex, Ssamples × features is the stimulus matrix of features, 
wfeatures × 1 is a vector of estimated model weights, and ϵsamples × 1 is a 
vector of random noise.

All models were estimated using ridge regression with fourfold 
cross-validation. We paired odd-numbered functional runs with 
their subsequent even-numbered run, resulting in four data splits 
per participant. Each of the four data splits was selected as a testing 
set once; all other data splits were used as a training set. Within each 
fold, generalized cross-validation (94) was carried out on the train-
ing set to find an optimal estimate of regularization parameter  from 
the data, searching 100 values evenly spaced on a logarithmic scale 
from 10−5 to 108. Weights of predictiveness were extracted from the 
model fit with the optimal regularization parameter and averaged 
across cross-validation folds to obtain stable weights.

To evaluate the performance of encoding models and their ability 
to generalize to new data, we applied the weights estimated on the 
training set to the features of the held-out testing set in each 
cross-validation fold. The predicted BOLD time series was correlated 
with the actual BOLD time series. The resulting product-moment 
correlation coefficient is the encoding accuracy, which was averaged 
across cross-validation folds and Fisher z-transformed.

In addition, we created null distributions of weights and encoding 
accuracies by estimating forward models on the scrambled features 
of predictiveness [similar to, e.g., (95)]. We set up 500 separate models, 
which included scrambled features of predictiveness but intact lin-
guistic and acoustic features. Models were estimated largely following 
the cross-validation scheme outlined for observed data. However, 
we reused the optimal regularization parameters from nonscrambled 
models of corresponding folds. All ridge regression models were 
implemented using the RidgeCV function in the Python package 
scikit-learn (96).

Peak selection. For both language models, we derived five tem-
poroparietal maps in the left and right hemispheres of single partic-
ipants: one weight map for each time scale of word surprisal. Maps 
represented the sensitivity of brain regions to time scale surprisal; 
positive weights indicate increasing BOLD activity to more surpris-
ing words.

To illustrate the location and extent of brain regions modulated 
by time scale surprisal, we performed an analysis similar to cluster-based 
permutation tests in Fieldtrip (97). For each time scale, vertex-wise 
weights observed across participants were tested against zero by 
means of a one-sample t test. We combined a vertex into a cluster 
with its adjacent vertices if it was significant at an alpha level of 0.05 
and had at least two significant neighbors. We clustered vertices 

with negative t values separately from vertices with positive t values. 
The summed t value of an observed cluster served as the cluster-level 
statistic and was compared with a Monte Carlo approximated null 
distribution of summed t values. This null distribution was created 
by performing clustering on the scrambled partitions of time scale–
specific weight maps and selecting the largest summed t value for 
each partition. An observed cluster was considered significant if its 
summed t value was exceeded by no more than 2.5% of the summed 
t values from scrambled partitions.

Beyond this rather coarse mapping of temporoparietal brain 
regions onto the time scales of surprisal, our main analysis focused 
on how time scale–specific peak locations distribute along the 
inferior-superior axis only. Notably, we hypothesized that a hierarchy 
of speech prediction evolves from temporal to parietal areas, which 
correspond to the inferior-superior axis of our ROI. A window with 
a height of 2 mm was shifted along the inferior-superior axis of the 
temporoparietal ROI in steps of 1 mm. All weights of a time scale 
falling into the window were averaged, thereby collapsing across the 
anterior-posterior axis. The resulting one-dimensional weight pro-
file of time scale surprisal spanned inferior to superior locations and 
was smoothed using robust linear regression over a window of 
70 mm. For each unilateral weight profile of single participants, local 
maxima (i.e., a sample larger than its two neighboring samples) 
were determined.

We applied two different approaches to selecting one peak location 
for each time scale from these local maxima. In the unconstrained 
approach of peak selection, the local maximum with the highest 
positive value was defined as a peak. As this approach makes it hard 
to find a consistent order of time scales when surprisal is processed 
not only along the dorsal but also along the ventral processing 
stream, we also applied a constrained peak selection approach ex-
plicitly targeting the dorsal stream. Here, the peak of surprisal at the 
first time scale had to be in the inferior half of the axis (i.e., temporal 
regions), and peaks of surprisal at longer time scales had to be superior 
to the peak of the first time scale. Whenever no time scale peak 
could be defined, the largest positive value was selected. Both peak 
selection approaches yielded five time scale–specific coordinates on 
the inferior-superior axis for each participant, hemisphere, and 
language model.

Gradient fitting. We fit linear functions to coordinates of single 
participants across the time scales of surprisal. Models included an 
intercept term, and the slope parameter was extracted from each fit. 
A positive slope indicates a gradient of time scale surprisal, where 
surprisal at shorter time scales is represented in more (inferior) 
temporal regions than longer time scales, which are represented in 
more (superior) parietal regions. We tested grand-average slope pa-
rameters against a null distribution of slopes with 10,000 partitions, 
which was created by randomly shuffling the coordinates of single 
participants across the time scales of surprisal and recalculating their 
slopes. As the first time scale was preset to have the most inferior 
coordinate in the constrained peak selection approach, this specific 
coordinate was not shuffled when calculating the null distribution for 
this approach. To compare slope parameters between language mod-
els, we performed a Monte Carlo approximated permutation test 
with 10,000 iterations, using the difference of means as a test statistic.

As secondary analyses, gradients of predictive processing were 
also calculated for the time scales of word entropy and dissimilarity. 
In a control analysis, a gradient was fit to time scale peaks following 
the same procedure described above but replacing the features 
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of predictiveness by contextual incongruence when estimating 
forward models.

In addition, we applied unconstrained peak selection to weight 
maps, which were rotated around the full circle in steps of 5° before 
collapsing across the first dimension. After deriving test statistics for 
slope parameters at each rotation as described for nonrotated slope 
parameters, cluster-based permutation tests were calculated following a 
similar procedure as described for time scale–specific maps of re-
gression weights before but, this time, performing clustering in the 
rotation domain.

To round off the encoding analysis, we compared temporoparietal 
encoding accuracies between both language models. As we were in-
terested in effects specific to the predictiveness of speech, encoding 
accuracies were z-scored to the null distribution of accuracies from 
the scrambled features of predictiveness. A cluster-based permuta-
tion paired-sample t test was calculated (n  =  1000; vertex-specific 
alpha level, 0.05; cluster-specific alpha level, 0.05). In comparison to 
the cluster test described above for the weight maps, here, we created 
a null distribution of summed t values by contrasting the accuracies 
of language models whose labels had been randomly shuffled in 
single participants.

Functional connectivity. To model the information flow between 
brain regions sensitive to surprisal at the different time scales, we 
identified five unique seeds for both language models in each tem-
poroparietal hemisphere. On the inferior-superior axis, we reused 
the grand-median coordinate of each time scale as localized in the 
constrained peak selection approach. The corresponding coordinate 
on the anterior-posterior axis was localized by shifting a moving 
average with a window centered on the inferior-superior coordinate 
along the anterior-posterior axis (width, 2 mm; height, 5 mm) and 
determining peak locations on smoothed weight profiles of single 
participants. Next, we placed a sphere with a radius of 5 mm on peak 
coordinates from both axes and averaged the BOLD time courses of 
vertices falling within this sphere, yielding the time scale–specific 
neural activity of seeds.

We expected increased information flow between seeds of adja-
cent time scales when one time scale becomes uninformative for the 
prediction of upcoming speech. This modulatory influence of sur-
prisal on connectivity was modeled along the lines of a PPI (52). In a 
standard PPI analysis, the neural time series of one brain region is 
regressed onto the pointwise product of an experimental stimulus 
and the neural time series of another brain region. Here, we extended 
this approach by creating time scale–specific interactions: BOLD 
time series of seeds were multiplied by their corresponding HRF- 
convolved surprisal time series but not any of the surprisal time 
series at another time scale.

Functional connectivity was calculated for both language models 
in each participant and hemisphere. We set up five regression models, 
with every seed being selected as a target once. The physiological 
(BOLD) time series of the target seed was mapped onto the physio-
logical, psychological (time scale–specific surprisal), and psycho-
physiological time series from all other (predictor) seeds. Models 
were estimated within the same cross-validation scheme outlined 
for the encoding model. We extracted all four weights from PPI 
terms of each target seed and arranged weights in a five-by-five 
matrix, with target seeds on the main diagonal and predictor seeds 
off the diagonal. This matrix of observed PPIs was compared to a 
matrix with hypothesized interaction weights: The diagonals below 
and above the main diagonal were set to 1 (indicating increased coupling 

when surprisal at a neighboring time scale is high), and all other items 
were set to −1. We calculated the Euclidean distance of single- 
participant matrices to this hypothesized matrix. The mean of ob-
served Euclidean distances was compared to a null distribution of 
10,000 mean Euclidean distances calculated on BOLD time se-
ries of target seeds randomly shifted in time by the number of samples 
in one to seven functional runs. Euclidean distances were compared be-
tween language models in each hemisphere by means of a Monte Carlo 
approximated permutation test (n  =  10,000) on the difference 
of means.
Behavioral data analysis
Reading times were used to test the behavioral relevance of the pre-
dictiveness determined by our language models. Trials with reading 
times shorter than 0.001 s or longer than 6 s were considered invalid 
and excluded. Furthermore, we inverted reading times into speed 
and excluded trials exceeding 3 SD within a run and participant 
from all further analyses. On average, 1.31% of trials (Ra = 0.32 to 
6.15% and SD = 1.12%) were removed. Participants performed the 
task at a mean response speed of 4.96 s−1 (Ra = 1.71 to 10.13 s−1 and 
SD  =  2.08 s−1), with speed increasing over the four experimental 
runs (P < 0.001, d = 1.06; compared to a null distribution of slopes 
drawn from linear functions fit to the shuffled mean speed of runs). 
Last, reading speed was z-scored within runs.

For each participant, we predicted reading speed in a forward 
model, adopting the same cross-validated ridge regression scheme 
used for the analysis of fMRI data. Our feature space included the 
predictiveness of words and a set of nuisance regressors, namely, 
word frequency, word length (number of letters), content versus 
function words, and trial number. To account for spill-over effects 
from previous words on reading times (98), we added time-lagged 
versions of features to the model. As previous studies controlled for 
the spill-over effect on up to three words following (99), we shifted 
features by −2 to 5 word positions to illustrate the effect also return-
ing to zero. There were no lagged versions of the predictor coding 
for trial number added to the model.

To investigate whether predictiveness had an effect on reading 
speed beyond the effect of nuisance regressors, we compared the pre-
dictive accuracy of forward models in single participants to a null 
distribution of accuracies from models with scrambled features of 
predictiveness. The performance of language models was compared 
by z-scoring the observed encoding accuracies to the null distribu-
tion and running a Monte Carlo approximated permutation test 
(n = 10,000) on the difference of means. This analysis was also car-
ried out for the time scales of contextual dissimilarity.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi6070
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