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Abstract

Rationale—Microbiome studies of the lower airway based on bacterial 16S rRNA gene 

sequencing assess microbial community structure but can only infer functional characteristics. 

Microbial products, such as short chain fatty acids (SCFAs), in the lower airways have significant 
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impact on the host’s immune tone. Thus, functional approaches to the analyses of the microbiome 

are necessary.

Methods—Here we used upper and lower airway samples from a research bronchoscopy smoker 

cohort. In addition, we validated our results in an experimental mouse model.

Measurements—We extended our microbiota characterization beyond 16S rRNA gene 

sequencing with the use of whole genome (WGS) and RNA metatranscriptome sequencing. Short 

chain fatty acids (SCFA) were also measured in lower airway samples and correlated with each 

of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome 

sequencing were performed.

Main Results—Functional evaluations of the lower airway microbiota using inferred 

metagenome, WGS and metatranscriptome were dissimilar. Comparison with measured levels of 

SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly 

correlated, while better correlations were noted when SCFAs levels were compared with WGS 

and metatranscriptome. Modeling lower airway aspiration with oral commensals in a mouse model 

showed that the metatranscriptome most efficiently captures transient active microbial metabolism, 

which was overestimated by 16S rRNA gene sequencing.

Conclusions—Functional characterization of the lower airway microbiota through 

metatranscriptome identify metabolically active organisms capable of producing metabolites with 

immunomodulatory capacity such as SCFAs.

Introduction

Characterization of the lower airway microbiota by 16S rRNA gene sequencing has revealed 

that the lower airways are frequently enriched with oral commensals in healthy subjects 
1–7, most likely due to micro-aspiration. The presence of oral commensals in the lower 

airways has also been identified in multiple pulmonary diseases such as cystic fibrosis, 

bronchiectasis, chronic obstructive pulmonary disease and lung cancer 7–11. However, the 

viability of organisms identified in lower airway samples using targeted gene sequencing 

is uncertain and most investigations have been limited to just taxonomic description of the 

lower airway microbiota and its association with host phenotypes 1,2,7,12–14. Whole genome 

shotgun (WGS) and RNA metatranscriptome sequencing can directly capture gene content 

and active transcription, respectively. These techniques have the potential to provide a more 

precise functional assessment of the lower airway microbiome15–17. Due to the limited 

microbial biomass in the lower airways, these methods are challenging and have not yet 

been fully evaluated in comparison to standard microbial profiling and inferred functional 

content based on 16S rRNA gene sequencing.

Functionally active microbes can produce microbial products of relevance to the host and 

may modify host functions 13,14,18. For example, short chain fatty acids (SCFAs) cannot 

be produced by mammalian cells (with the exception of acetate) but are produced by 

facultative and obligate anaerobes in hypoxic conditions 19–24. SCFAs produced by the 

gut microbiota induce regulatory T cells that modify asthma, inflammatory bowel disease 

and cancer 19–24. These SCFAs have also been identified in the lower airways and, with 

16S rRNA gene sequencing, our group has shown that its presence is associated with 
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enrichment of the lower airway microbiota with oral commensals 13. To better characterize 

functional aspects of the lower airway microbiome, we explored the use of WGS and RNA 

metatranscriptome approaches to uncover active microbial metabolism of immunologically 

relevant metabolites, such as SCFAs.

Methods

Participants and samples

For this study samples were used from 21 participants, that were recruited for research 

bronchoscopy as part of our ongoing Chronic Obstructive Pulmonary Disease and Smoker 

Control cohort. All participants signed informed consent and the protocol was approved by 

the New York University and Bellevue Hospital Center (New York, NY) institutional review 

boards (IRB# S14–01546). Further details are in the Supplementary Methods.

Sample Processing

DNA was extracted from all samples using Qiagen DNA Mini Kit spin column protocol 

(Qiagen). RNA extraction was carried out with the miRNeasy Micro Kit (Qiagen). Bacterial 

burden was measured by Droplet Digital PCR. All samples had high-throughput sequencing 

of bacterial 16S rRNA gene amplicons, WGS and RNA metatranscriptome sequencing. 

Sequence data was filtered for bacteria only. Additionally, to identify active bacterial 

metabolism, SCFAs were measured by mass spectrometry. Further details on sample 

processing can be found in the Supplementary Methods.

Mouse Experiment

Three mice were inoculated with PBS while the remaining 17 mice were inoculated 

with a mixture of human oral commensals (MOC) consisting of Prevotella, Streptococcus 
and Veillonella. BAL samples were sent for 16S rRNA gene sequencing and RNA 

metatranscriptome sequencing. The NYU Institutional Animal Care & Use approved the 

animal studies (IACUC# s16–00032). Further details are in the Supplementary Methods.

Statistical Analysis

For association with discrete factors, we used non-parametric tests (Mann-Whitney or 

Kruskal-Wallis ANOVA). We used the vegan package in R to construct Principal Coordinate 

Analysis (PCoA) based on Bray-Curtis distances 25,26. To cluster microbiome communities 

into exclusive ‘metacommunities’ we used a Dirichlet Multinomial Mixture (DMM) 

Model27,28. To evaluate differences between groups within each sequence data type, we 

evaluated differential expression with DESeq2 29 with a false discover rate (FDR) <0.05 
30. All data is publicly available in Sequence Read Archive (SRA) under accession 

numbers PRJNA603592, PRJNA573853 and PRJNA603675. All codes utilized for the 

analysis included in this manuscript are available at: https://github.com/segalmicrobiomelab/

functional_microbiomics

Further details on statistical analysis are in the Supplementary Methods.
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Results

We recruited 21 smokers for this study; lower airway samples from two subjects did not 

yield an adequate cDNA library for metatranscriptome and were excluded from the analysis, 

leaving a study cohort of 19 subjects (Table 1). 16S rRNA gene sequencing characterized the 

microbiota present in background (BKG) controls, upper (UA) and lower [bronchoalveolar 

lavage (BAL)] airway samples. Hierarchical clustering of the most abundant taxa shows that 

the microbiota in UA and BKG samples are differentially contained within the two dominant 

clusters (Figure 1A). Some BAL samples were more similar to the UA, composed of taxa 

commonly identified as oral commensals such as Veillonella, Prevotella and Streptococcus, 
whereas other samples were more similar to BKG samples dominated by taxa such as 

Methylobacterium, Actinobacillus and Lactobacillus. We confirmed by DMM that BAL 

samples clustered into 2 distinct groups (Figure 1B). Samples that clustered with UA 

samples were enriched with Supraglottic Predominant Taxa (BAL.16S.SPT) while samples 

that clustered with BKG samples were enriched with Background Predominant Taxa 

(BAL.16S.BPT) 1,2. Significant differences between all sample types were determined by 

both α (Shannon Index, Figure 1C) and β diversity (Bray-Curtis distance, Figure 1D); these 

microbial community metrics further supported qualifying BAL.16S.SPT samples as more 

similar to UA samples. The median bacterial load, as determined by droplet digital (ddPCR), 

was ~1,000-fold higher for UA and 10-fold higher for BAL as compared to BKG samples 

(Figure 1E). However, three of the BAL samples clearly had higher bacterial burden, with 

levels similar to those found in UA samples; they were all identified as BAL.16S.SPT based 

on taxonomic composition (Figure 1E). To explore functional aspects using the 16S rRNA 

gene sequence data, we inferred metagenomic composition by PICRUSt31. Comparison of 

the inferred metagenome between BAL.16S.SPT and BAL.16S.BPT samples suggested that 

there should be several KEGGs and associated functional pathways differentially expressed 

between these two clusters (Figure 1F, Supplementary Data 1).

Evaluation of the lower airway metagenome and metatranscriptome

To further characterize functional aspects of the airway microbiota we profiled the 

metagenome by WGS and the metatranscriptome by RNA sequencing. For this analysis, 

all BAL and UA samples were used while only 2 BKG samples had RNA sequencing 

libraries that passed quality control. Importantly, rarefaction analysis for the WGS and RNA 

data showed plateauing of the curves at a lower depth than the one accomplished in this 

investigation (Supplementary Figure 2). Within the WGS and RNA sequence data, UA and 

BKG samples were significantly different from each other, based on α and β-diversity 

(Figures 1G/H and Supplementary Figures 1A/B), similar to the 16S rRNA gene sequence 

data, while BAL samples were either similar to the UA or BKG. Using each Bray-Curtis 

distance matrix for 16S rRNA gene sequence, WGS, and RNA metatranscriptome data we 

compared the paired distances between BAL and UA samples. The 16S rRNA gene data 

indicated a clear separation of what we identified as BAL.16S.SPT and BAL.16S.BPT but 

this distinction was lost in WGS and RNA metatranscriptome data (Figure 1I). Importantly, 

β diversity analyses on both WGS and RNA sequencing data showed that all BAL samples 

identified as BAL.16S.BPT remained similar to BKG samples. However, among BAL 

samples identified as BAL.16S.SPT, both WGS and RNA sequencing identified a subset 
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of samples that clearly showed greater similarity to UA samples while others showed greater 

similarity to BKG samples (Figures 1G-H). Interestingly, 2/3 BAL samples that had the 

greatest similarities with UA samples in WGS data also had the greatest similarities with UA 

samples in the RNA metatranscriptome data (Figure 1I).

Functional overlap and differences across sequencing data types

Using GSEA to compare the functional annotations across the sequencing data types, 

we identified significant overlap between the data obtained (>1000 overlapping KOs for 

each comparison, Figure 3A). In order to compare the differentially enriched pathways 

identified (with DESeq2) between BAL.16S.SPT and BAL.16S.BPT we overlapped the fold 

change of the functional pathways (summarized to Level 3 of annotation). We identified 

some concordance in the directionality of the fold change, most identified as enriched 

in BAL.16S.SPT (Figure 3B). For example, fatty acid biosynthesis, as well as purine 

and pyrimidine metabolism were significantly enriched in all three sequence datasets. 

However, the presence of statistical significance (identified in the figure by the presence 

of color) differed by the method used. Further, other functional pathways showed discordant 

directionality. For example, genes belonging to the fatty acid metabolism pathway appeared 

to be significantly depleted in BAL.16S.SPT samples by the inferred metagenome but 

significantly enriched in WGS and non-significantly enriched in RNA sequencing data 

(Figure 3B). Since several genes annotated to fatty acid biosynthesis and fatty acid 

metabolism are part of the production of SCFAs (end products of microbial metabolism 

associated with enrichment of the lower airway microbiota with oral anaerobes13) we 

measured the levels of these products directly using mass spectrometry.

Further differences in functional and taxonomic signatures between sequencing data types 

are discussed in the Supplementary Results.

SCFA levels are different in upper and lower airways

SCFA levels in ex vivo cultures is discussed in the Supplementary Results. We then 

evaluated SCFA levels in the 19 UA and BAL samples and 4 BKG samples. The levels 

of 4/7 SCFAs were significantly higher in UA samples when compared to BKG samples: 

acetate, propionate, isovalerate, and butyrate (Figure 4). However, the levels of 3 other 

SCFAs measured were similar when comparing UA with BKG samples: hexanoate, valerate 

and octanoate (data not shown). These data suggest that some SCFAs are produced by 

oral commensals or that their measurement lack a dynamic range above BKG. Among 

BAL samples, there were 3 SCFAs with levels statistically higher than BKG samples: 

acetate, propionate, and isovalerate—all of which were exponentially higher in UA samples. 

However, three BAL samples identified as BAL.16S.SPT had significantly higher levels 

of these 3 SCFAS (Figure 4). These concentrations are comparable to what we have 

previously published as measurable in the lower airways of a separate cohort and found 

to be correlated with a T-reg phenotype, blunted IL-17 and IFN gamma response.13 The 

remaining BAL samples had similar levels to BKG (regardless of their 16S.SPT/16S.BPT 

grouping). Importantly, the levels of these SCFAs in BAL samples did not correlate with 

levels in UA samples (p=ns for all comparisons, Supplementary Figure 7) suggesting that 
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microaspiration of upper airway secretions containing these metabolites was not the main 

source of SCFAs in the lung.

The RNA metatranscriptome correlates with measured SCFAs in the lower airways

We then evaluated the associations between the 4 SCFAs found to be present at different 

levels across samples with the sequencing data. At a global compositional level (β-

diversity), the levels of these 4 SCFAs were not statistically significantly associated with 

the 16S rRNA gene sequencing data but ¾ were statistically significantly associated with 

the WGS and RNA metatranscriptome data (Figure 5A). This is likely to be driven by the 3 

BAL samples with high levels of measured SCFAs identified by mass spectrometry (Figure 

4), as this correlation is not seen with BAL.BPT samples. Furthermore, rarefying the three 

datasets lead to no significant change in the correlations.

Since DMM clustering on 16S rRNA gene sequencing data did not distinguish BAL samples 

with high and low SCFAs levels, we performed DMM analysis of the WGS and RNA 

metatranscriptome data (see Supplementary Results).

As validation, we focused on 3 KOs with direct SCFA annotation: K01738 for acetate, 

K00925 for propionate and K01034 for butyrate. KO enrichment differences could be 

identified between sample types with the RNA metatranscriptome but not with the 

inferred metagenome (16S rRNA data) or the WGS data (Figure 5B-D). KOs in the 

RNA metatranscriptome were significantly elevated in UA samples and at very low levels 

in BKG samples. Importantly, the BAL samples identified in DMM clustering as being 

compositionally similar to UA had significantly higher levels of these KOs when compared 

with the remaining BAL samples which clustered with BKG samples (p<0.03 for all 

comparisons, Figure 5D). We then evaluated the taxonomic annotation available for these 

3 KOs in the RNA metatranscriptome data and noted that the taxonomic source for these 

genes was predominantly oral commensals such as Streptococcus and Veillonella (Figure 

5E). Thus, the RNA metatranscriptome has better resolution (when compared to 16S rRNA 

gene sequencing) for the identification of enriched genes involved in the metabolism of 

SCFAs present in oral anaerobes and supports the presence of viable (RNA measurable) and 

metabolically active (metabolites elevated above BKG) bacteria in the lower airway airways.

To ensure that these microbial patterns were related to signals present in the lower airways, 

we identified potential contaminants (coming from DNA/RNA present in bronchoscope 

or added through sample processing) within each sequencing method using the decontam 
package.32 (Supplementary Results)

The RNA signature is lost earlier than the DNA signature in a mouse model of aspiration

It is possible that the improved resolution of RNA metatranscriptome in the identification 

of active microbial metabolism in the lower airways is due to differences in DNA and RNA 

clearance over time. To evaluate the stability and functional dynamics of aspirated oral 

commensals in the lower airways, we used a mouse model. For this, mice were inoculated 

with a mixture of human oral commensals (MOC) consisting of Prevotella melaninogenica, 

Streptococcus mitis and Veillonella parvula cohoused with a PBS control group. Mice 

were sacrificed at 1Hr, 4Hr, 1Day, 3Day and 7Day post-inoculation (Figure 6A), and BAL 
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samples were sent for 16S rRNA gene and RNA metatranscriptome sequencing. β diversity 

analysis on 16S rRNA gene sequencing data shows that BAL samples remain similar to 

MOC for at least 1 day and become more similar to PBS by day 3 with a concordant 

decrease in the relative abundance of oral commensals (Figure 6B-C-D). However, in the 

analysis based on RNA metatranscriptome, BAL samples remain similar to MOC until 

the 4-hour timepoint and become more similar to PBS by day 1 with a concordant rapid 

loss of the RNA signal from oral commensals (Figure 6E-F-G). These data support that 

discrepancies between these sequencing data can be time dependent and likely reflect the 

loss of viable (and metabolically active) microbes.

Discussion

Functional characterization of the lower airway microbiota has been attempted in a limited 

number of studies. In most of these, the inferred metagenome was used 2,33. Few have 

attempted metagenomic analyses 15. The purpose of this study was to evaluate different 

sequence data types in the evaluation of the functional microbiome of the lower airways and 

to use the measurement of SCFAs as an independent biological outcome, a direct measure 

of bacterial metabolism. Our analysis showed that, among lower airway samples with 

dysbiosis, characterized by the enrichment with oral commensals determined by taxonomic 

assignment of 16S rRNA gene sequencing, the use of WGS or RNA metatranscriptomic 

sequencing provide a distinct representation of functional aspects of the lower airway 

microbiota. Importantly, by pairing our sequence data with SCFA measurement we showed 

that for samples with lower airway dysbiosis based on 16S rRNA gene sequencing, there 

is a subset with evidence of active microbial metabolism indicative of viability of the 

lower airway microbiota. This active microbial metabolism in the lower airways has been 

shown to influence lower airway immunity34. Further support for dissimilarity between 16S 

rRNA gene and RNA metatranscriptomic sequencing is provided with a mouse model of 

aspiration of oral commensal, demonstrating time dependent differences likely related to 

loss of metabolically active microbes as the lower airways clear them.

With the introduction of next generation sequencing we have discovered complex microbial 

communities within several different mucosae 35–38. For each of these environments, the 

microbial-host interplay has an impact on mucosal homeostasis in health and disease 
37–42. Within the lower airways, several studies have shown that complex microbial 

communities significantly impact the mucosal host immune tone 1,2,14,43,44. For example, 

we have previously shown that lower airway enrichment with oral commensals leads to 

an increased lower airway inflammatory tone, characterized by a Th-17-like inflammatory 

phenotype 2. Thus, it is increasingly important to describe these environments beyond 

just the presence/absence of bacteria but to look at the functional implications of these 

bacteria. A common technique used to evaluate bacterial function is to infer the metagenome 

from 16S rRNA gene sequencing data. Major concerns associated with this approach is 

the poor strain resolution of 16S rRNA gene sequencing and the dependence on existing 

reference databases of annotated microbes, which can bias the results. Direct measurement 

of microbial genes can be accomplished by WGS and RNA metatranscriptome sequencing. 

In this study, we used all three methods to evaluate taxonomic and functional signatures 

in the lower airways. As previously described, we identified a subset of subjects that had 
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a lower airway microbiota enriched with oral commensals such as Prevotella, Veillonella, 
and Streptococcus 2. Enrichment with oral commensals in a subset of samples that were 

identified as BAL.SPT based on 16S rRNA gene sequencing, were also found in WGS and 

RNA sequencing data but, importantly, not in all of them. This enrichment with supraglottic 

taxa in the lower airways and its impact on host immune tone also has implications in 

disease states, as we have previously shown2. Thus, the information we glean from each 

of these data types is variable and potentially important when combined in a multi-omic 

approach. In addition, we have shown performing multi-omic analysis on lower airways 

samples is a feasible approach that provides deeper insight into the lower airway micro-

environment.

As validation for such an approach we focused on SCFAs. Several papers have identified 

SCFAs as the products of bacterial metabolism45,46; the role these metabolites play in 

disease has been extensively studied in the gastrointestinal microbiota 20,21,23,24 and thought 

to be beneficial in inflammatory bowel disease and bowel cancer 47–50. Within the lower 

airways, we have described that levels of these metabolites are associated with oral 

commensal enrichment (as defined by 16S rRNA gene sequencing) and have significant 

immunomodulatory effects on T cells 13. In our prior investigation we also noted that not 

all subjects that had enrichment of the lower airway microbiota with oral commensals 

had elevated levels of SCFAs13. This suggests that functional characterization of the 

lower airway microbiota cannot be fully determined based solely on 16S rRNA gene 

sequencing data. We therefore integrated our WGS and RNA data with the measurement 

of SCFAs in UA, BAL and BKG samples. As expected, SCFAs were highest in UA samples 

consistent with the presence of oral anaerobes in these high biomass samples. Within BAL 

samples, a small subset of samples had detectable concentrations of acetate, propionate 

and isovalerate levels similar to the UA samples, identified as Supraglottic Predominant 

Taxa (BAL.SPT) samples based on 16S rRNA gene sequencing. Other BAL samples also 

identified as BAL.SPT based on 16S rRNA gene sequencing had low/below the limit of 

detection SCFA levels that were comparable with BAL.BPT and BKG samples. In contrast, 

the RNA metatranscriptome showed better sample type differentiation concordant with 

detected levels of SCFAs. Importantly, taxonomic evaluation of these KOs identified that 

the bacteria expressing these genes were oral commensals such as Streptococcus, Prevotella 
and Veillonella. Thus, these data suggest that in these samples, although oral commensals 

might have reached the lower airways and left traces of their genomic DNA, these bacteria 

have been cleared and are neither transcriptionally active nor capable of producing SCFAs 

at the time of sampling. This is further supported with a preclinical model of aspiration, 

where mice were exposed to a mixture of human oral commensals and sacrificed at 

different time points post exposure showing rapid loss of an RNA metatranscriptome 

signal from these microbes and longer persistence of 16S rRNA gene signal. Considering 

the known immunomodulatory effects of SCFAs and other microbial metabolites, both 

possibly beneficial and detrimental depending on the different human conditions, improved 

understanding of the value of different sequencing methods will be key to gain functional 

insights of the lower airway microbiome.

There are several limitations to this study. Firstly, in our analysis we did not remove any 

potential contaminants, which we found as the predominant taxa identified in many of 
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the lower airway samples. Removing taxa identified as contaminant is frequently done 

in many microbiome studies hoping to remove contamination. However, there are many 

sources of noise that includes DNA contamination from the reagents/bronchoscope and 

stochastic sequencing noise 51,52. Further, in low biomass samples background removal can 

be quite variable within different sequencing datasets and its effect on the resulting new 

dataset is unclear. A recent guideline on lung microbiome research has not recommended 

background removal53 so our analysis was limited to just identifying possible contaminants. 

Importantly, none of the oral commensals associated with active microbial metabolism were 

identified as background contaminant. In addition, our sample size was small and further 

validation will require a larger cohort. We also recognize that this approach could impose 

a significant increase in sequencing cost compared with the traditional 16S rRNA gene 

sequencing. However, improved accuracy in identifying active microbial metabolism in the 

lower airways can potentially lead to novel mechanistic insights about microbial metabolites 

with significant potential effects on the host, such as SCFAs. Future investigations should 

focus on determining the value of this improved accuracy by evaluating the potential 

implications for the host immune tone, an undertake that should be designed with a larger 

cohort. Thus, we acknowledge that in the current investigation we did not attempt to 

evaluate host factors. Instead, we focused on functional evaluation of the lower airway 

microbiota using SCFAs as proof of concept. It is important to note that we are already 

facing an increase in literature suggesting that “near bedside” metagenomics is feasible 

(both technically and computationally) and have potential clinical implications in terms of 

rapid detection of pathogens when compared with culture-based approaches and ability to 

detect resistant genes 54,55. In this setting, our data supports that RNA sequencing could 

provide a better resolution of what microbial functions are active at a given time and may 

therefore contribute to the development of more targeted therapy. We also acknowledge 

that concentrations of acetate, which are not specific to microbes, can be influenced by 

the host and the environment, including water. For our assay, we used freshly opened 

HPLC-grade water which did not have detectable acetate above that in the BKG samples. 

Dilution of BAL can affect the levels of SCFAs but should not affect compositional data 

such as metagenome/metatranscriptome. Future investigation may consider estimating BAL 

dilution factors, noting that there is still controversy in the literature about the accuracy 

the best method for this56,57. Also, variability between sequence data type may be due to 

differences in measured targets (target amplicon vs. WGS vs. RNA) as well as technical 

differences. For example, it is expected that deeper sequence depth will be needed to 

characterize the whole genome than to characterize taxonomic composition based on 16S 

rRNA gene sequencing and infer the metagenome using that data. The low bacterial biomass 

of the lower airway environment represents a critical challenge for the evaluation of the 

lower airway microbiome, both taxonomically and functionally. It is likely that this is 

an exponentially bigger problem for the WGS metagenome and RNA metatranscriptome. 

Although we aimed to achieve more sequence depth for our WGS metagenome and RNA 

metatranscriptome data, it is not surprising that differences may be more difficult to assess 

and that there is a greater level of background intrusion in these samples using these 

methods. However, the correlation of these data with SCFA levels suggest a more accurate 

functional evaluation can be achieved with WGS metagenome and RNA metatranscriptome 

data than with 16S rRNA gene sequencing data. Finally, the analyses presented here focused 
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on fatty acid metabolism as a surrogate for bacterial activity. The highest level of precision 

and differential functional expression for lower airway samples identified by using RNA 

metatranscriptome data suggest that this might be a preferable functional method. However, 

it is likely that other microbial functional pathways may be important to study in health 

and disease and future investigations should focus on experimental approaches to expand the 

observations made as proof of concept here.

In summary, the evaluation of the lower airway microbiome with 16S rRNA gene 

sequencing is limited in assessing bacterial function and therefore in assessing the potential 

impact on disease/host. The use of functional microbiome approaches that measure bacterial 

genes (WGS) and bacterial transcripts (RNA metatranscriptome) provide evidence of viable 

and active bacterial metabolism in the lower airways and will likely define subgroups of 

lower airway microbiota with different implications for the host.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 16S rRNA gene, Whole genome (WGS) and RNA sequencing:
Background (BKG), Upper Airway (UA) and Bronchoalveolar (BAL) samples were 

collected via bronchoscopy; 16S rRNA gene, Whole genome and RNA sequencing was 

performed. (A) A heatmap based on Bray-Curtis distance for the 16S rRNA gene 

sequencing, illustrates the top taxa for all samples. Hierarchical clustering showed two 

clear clusters, one with BKG samples and BAL samples similar to BKG (Background 

Predominant Taxa) and another with UA samples and BAL samples similar to UA 

(Supraglottic Predominant Taxa). (B) Dirichlet Multinomial Modelling (DMM) showed 2 
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clusters had the best model fit for the 16S rRNA gene sequencing. (C) α Diversity, measured 

by Shannon Index, showed significant (Wilcoxon) difference between all samples and lowest 

diversity in UA and among BAL samples that clustered to BAL.16S.SPT by DMM. (D) Beta 

Diversity, measured by Bray-Curtis, also indicates a significant (PERMANOVA) difference 

between all samples for 16S rRNA gene sequencing. (E) Bacterial load, measured by 

ddPCR showed highest levels in UA samples (Kruskal-Wallis). BAL Samples also had 

higher levels when compared to BKG samples. (F) The inferred metagenome was assessed 

using PICRUST highlighting several significantly enriched pathways (colored in red). (G) 

β Diversity for WGS, measured by Bray-Curtis, showed a significant (PERMANOVA) 

difference between all samples, with UA samples separate from BKG and BAL.BPT 

samples. Three BAL.SPT samples clustered with UA Samples. (H) β Diversity for RNA, 

measured by Bray-Curtis, showed a significant (PERMANOVA) difference between all 

sample types. Two BAL.SPT samples clustered with UA samples. (I) Z Transformed 
Bray-Curtis Distance between BAL samples and paired UA samples showed clear separation 

of BAL.16S.BPT and BAL.16S.SPT samples in 16S rRNA gene sequencing. This separation 

was not as clear in WGS and RNA.
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Figure 2: Taxonomic annotation of all three sequencing data types.
DESEQ2 analysis of taxonomic annotation (at the genus level) between BAL.16S.SPT 

versus BAL. 16S.BPT samples (FDR <0.05) was performed on 16S rRNA gene sequencing 

data (A), WGS data (C) and RNA metatranscriptome data (E). Circle size is representative 

of relative abundance. Gene Set Enrichment Analysis (GSEA) was used to compare the 

taxonomic signatures identified as distinctly enriched in BAL.16S.SPT vs. BAL. 16S.BPT 

samples across the different sequencing platforms (B, D, F).
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Figure 3: Functional annotation of all 3 sequencing data types.
(A) Gene Set Enrichment Analysis (GSEA) comparing functional signatures identified 

across the different sequence data types as distinctly enriched in BAL.16S.SPT vs. BAL. 

16S.BPT samples based on KEGG Orthology (KO) annotation (differential enrichment 

performed based on DESEQ2 analysis). (B) KOs were summarized to associated pathways 

and differential expression between BAL.16S.SPT and BAL.16S.BPT are displayed as 

circles for 16S rRNA gene sequencing, diamonds for WGS and squares for RNA. Coloring 

indicates statistical significance (DESeq2 p<0.05) for each sequence data type and size is 
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relative to the amount of KOs contributing to that pathway. Two pathways highlighted in 

red include Fatty Acid Biosynthesis, which shows concordance of directionality between the 

three sequence data types and Fatty Acid Metabolism, which shows discordance.
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Figure 4: Concentrations of Short Chain Fatty Acid (SCFA) in bronchoscopy samples:
A panel of SCFAs were measured and compared (Kruskal-Wallis) in Background (BKG), 

Upper Airway (UA) and Bronchoalveolar (BAL) samples by GC-MS. SCFA were derived 

from the linear phase of the standard curve leading to the following cutoffs values (dotted 

line): (A) 1μM for Acetate, (B) 0.6 μM for Propionate (C) 0.01 μM for Isovalerate and (D) 

1μM for Butyrate.
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Figure 5: Diversity correlations with SCFA measurements:
(A) Levels of SCFAs with Acetate, Propionate, Isovalerate and Butyrate were tested 

(PERMANOVA) against Beta Diversity distribution of data from all three sequencing 

techniques in BAL samples. Relative abundance of three KOs with direct annotation 

to measured SCFAs were compared across sample types: K01738 (Acetate), K00925 

(Propionate) and K01034 (Butyrate) with (B) 16S rRNA gene sequencing, (C) 

Whole Genome Sequencing and (D) RNA metatranscriptome sequencing. (E) RNA 

metatranscriptome taxonomic annotation for these three SCFAs-associated KOs in UA, 

Sulaiman et al. Page 20

Eur Respir J. Author manuscript; available in PMC 2021 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BAL.RNA.SPT, BAL.RNA.BPT and BKG samples are represented here. Each circle 

represents a different sample type and colors indicate a different taxonomic annotation.
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Figure 6: Mouse experiment with 16S rRNA gene and RNA metatranscriptome sequencing:
(A) Visual schematic of the experiment, mice (n=17) were inoculated with a mixture of 

Prevotella, Streptococcus and Veillonella (MOC) and sacrificed at specific time intervals: 

1 Hour, 4 Hours, 1 Day, 3 Days, 7 Days. BAL samples were analyzed by 16S rRNA 

gene sequencing (B-D) and RNA metatranscriptome sequencing (E-G): Principle coordinate 

analysis was performed with Bray-Curtis Distances by time point (B, E). Mean inter-group 

distance between sample time point and PBS was calculated (C, F). Relative abundance for 

taxa annotated to Prevotella, Streptococcus and Veillonella were calculated for each time 

point (D, G)
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TABLE 1:

Baseline characteristics of study population

Cohort

n 19

Age 53.0 [49.5–58.0]

Female (%) 5 (26.3)

BMI 28.4 [22.1–31.6]

PFT

 FVC Percent Predicted 95 [86–104]

 FEV1 Percent Predicted 89 [79–102]

 FEV1/FVC 79 [69–83]

Smoking Status

 Former Smoker (%) 17 (89)

 Current Smoker (%) 2(11)

Pack Years 20 [11–28]

Data expressed as Median[IQR] or counts(%)
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