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Abstract

A tool was developed to automatically segment several subcortical limbic structures (nucleus 

accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the 

mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet 

need as there are few, if any, publicly available tools to segment these clinically relevant structures. 

A U-Net with spatial, intensity, contrast, and noise augmentation was trained using 39 manually 

labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery rates, 

and manual-automatic volume correlation were very good relative to comparable tools for other 

structures. A diverse data set of 698 subjects were segmented using the tool; evaluation of the 

resulting labelings showed that the tool failed in less than 1% of cases. Test-retest reliability of 

the tool was excellent. The automatically segmented volume of all structures except mammillary 

bodies showed effectiveness at detecting either clinical AD effects, age effects, or both. This tool 

will be publicly released with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic). Together 

with the other cortical and subcortical limbic segmentations, this tool will allow FreeSurfer to 

provide a comprehensive view of the limbic system in an automated way.

Graphical Abstract

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author at: Radiology, Massachusetts General Hospital, 149 13th Street, Room 2301, Charlestown, Massachusetts 
02129, United States. dgreve@mgh.harvard.edu (D.N. Greve). 

CRediT authorship contribution statement
Douglas N. Greve: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Validation, 
Visualization, Writing - original draft, Supervision, Funding acquisition. Benjamin Billot: Software, Review, Methodology, 
Resources. Devani Cordero: Investigation, Data Curation, Review. Andrew Hoopes: Software. Malte Hoffmann: Data Curation, 
Review. Adrian Dalca: Software, Methodology, Review. Bruce Fischl: Conceptualization, Methodology, Review, Funding 
acquisition, Resources. Juan Eugenio Iglesias: Software, Methodology, Review. Jean C. Augustinack: Conceptualization, 
Investigation, Methodology, Validation, Review, Supervision, Writing.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 December 04.

Published in final edited form as:
Neuroimage. 2021 December 01; 244: 118610. doi:10.1016/j.neuroimage.2021.118610.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic
https://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

The limbic system is a set of brain structures that govern the interplay between subcortical 

regions and association cortices. The limbic system was originally defined by Maclean 

(MacLean, 1949), but its composition has evolved and been debated (Kotter and Stephan, 

1997; LeDoux, 2012). In cortex, the limbic lobe includes the olfactory cortex (paleocortex), 

hippocampus (allocortex), caudal orbitofrontal, medial frontal, temporopolar, anteroventral 

insular, cingulate, retrosplenial, and parahippocampal gyri. Subcortically, limbic structures 

include, but are not limited to, hypothalamus (including the mammillary bodies), amygdala, 

the extended amygdala, nucleus accumbens, ventral pallidum, association thalamic nuclei, 

basal forebrain, septal nuclei, cerebellum, fornix, and the reticular formation of the 

brainstem. The limbic system supports a wide variety of functions and behaviors, including 

autonomic regulation (heart rate, blood pressure, hunger thirst, sexual arousal circadian 

rhythm), cognitive/attentional/emotional processing, spatial memory, long term memory, 

fear, emotional memory, anxiety, aggression, reward, and addiction (Heimer and Van 

Hoesen, 2006; L. Heimer et al., 2008; Mesulam, 1985). Thus, understanding the role of 

the limbic system in health and disease is clinically relevant and significant.

Brain imaging (e.g., MRI and PET) can be used to enhance this understanding. However, 

scientists and clinicians who use neuroimaging often do not have the anatomical expertise 

to properly locate these anatomical structures. Further, it is a tedious, error prone, and 

time-consuming task to manually label structures in a whole brain image, especially in a 

large data set with many subjects. Accordingly, imaging scientists have developed methods 

that will automatically label structures of interest (Despotovic et al., 2015). Typically, this 

starts with an expert manually labeling a set of images; a tool is then trained using the expert 

labels as input; this tool is then applied to a novel image to automatically predict how an 

expert would have labeled the image. Performance of such methods vary depending upon the 

structure, method, and quality of the training and test images.

Many tools to automatically label the brain have already been developed using parametric 

methods, machine learning techniques, or by simply deforming label atlases to an 

individual via a nonlinear registration. Cortically, Fischl et al., 2004, developed a method 

to automatically segment cortical regions, including two limbic areas (cingulate and 

parahippocampal gyri), using a surface-based Bayesian method. With respect to the 

subcortical limbic system, several groups have created tools that include hippocampus, 

amygdala, thalamus, and nucleus accumbens (Billot et al., 2020b; Fischl et al., 2002; 

Henschel et al., 2020; Iglesias et al., 2015; Jog et al., 2019; Patenaude et al., 2011; Puonti et 

al., 2016; Saygin et al., 2017; Wenzel et al., 2018).
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For hypothalamus, Rodrigues et al., 2020 used a U-Net (Ronnenberger et al., 2015) to 

segment whole hypothalamus, and Billot et al., 2020a implemented a U-Net to segment 

the hypothalamic subunits. Even less has been done for fornix, septal nucleus, and basal 

forebrain. Butler et al., 2014 and Butler et al., 2012, created a (fixed, i.e., non-probabilistic) 

septal nuclei label in MNI space which is then simply mapped to an individual’s brain 

image after non-linear registration. Teipel et al., 2014 and Cavedo et al., 2017 used a similar 

method to segment basal forebrain. Jin et al., 2015 developed a segmentation tool for fornix, 

but it requires a diffusion MRI volume.

In this manuscript, we develop, test, and validate an easy-to-use tool to automatically 

segment several subcortical limbic structures from T1-weighted anatomical MRIs. These 

structures include hypothalamus1 (HTh), mammillary bodies (MB), basal forebrain (BF), 

septal nuclei (SepN), fornix (Fx), and nucleus accumbens (NA) (see Fig. 1). Despite the 

clinical significance of the limbic system, several of these structures (MB, BF, SepN, and 

Fx) have few, if any, publicly available automatic segmentation tools. Unique aspects of this 

tool include: MB segmentation (to our knowledge, there are no other tools to segment MB), 

Fx segmentation from T1-weighted images, probabilistic segmentation of BF and SepN, 

the combination of limbic regions, ease-to-use, self-contained (but easy integration with 

FreeSurfer), and extensive testing. We show the clinical utility of the tool by applying it 

to independent aging and Alzheimer’s disease (AD) data sets. The robustness of the tool 

was tested on a diverse set of 698 independent images from various scanners. This tool 

is publicly available with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic); these 

segmentations can be combined with other segmentations in FreeSurfer to provide a more 

complete representation of the limbic system using automated methods.

2. Methods

2.1. Data sets

Several data sets were used for manual labeling and network training and validation as well 

as for testing robustness and clinical validation. In all cases, images were resampled into a 

2563 1mm3 vol, and the intensities rescaled into an 8-bit range. These operations, known as 

“conforming”, are the first step in the FreeSurfer pipeline. Inputs to the tool must be 1mm3 

but do not need to be 2563 or 8-bit (the tool can reslice to 1mm3 if needed).

2.2. FreeSurfer maintenance (FSM)

MRI images were acquired on 29 subjects (M = 15, F = 14), mean age 44.8 years (+/− 

18.5, min = 19 max = 76). This study was approved by the Massachusetts General Hospital 

Internal Review Board for the protection of human subjects; all subjects gave written 

informed consent. Scanning was performed on a Siemens 3T Prisma with a 32-channel 

head coil. Two acquisitions were used for this study: a multiecho MPRAGE sequence (van 

der Kouwe et al., 2008) and a single echo MP2RAGE sequence (Marques et al., 2010). 

MPRAGE parameters were 1 mm isotropic voxel size, 256 × 256 × 176, inversion time 

1250 ms, TR 2530 ms, readout flip angle 7°, time between readout pulses 9.8 ms, GRAPPA 

1The hypothalamus label here excludes the mamillary bodies since we have a separate label for those.
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acceleration factor 2, bandwidth 650 Hz/Px, four echoes (1.69, 3.55, 5.41, and 7.27 ms). The 

four echoes were combined by computing the root-mean-square (RMS) of the four images 

yielding a single T1-weighted (T1w) volume. MP2RAGE parameters were 1 mm isotropic, 

256 × 256 × 176, 1st inversion time 700 ms, 2nd inversion time 2500 ms, TR 5000 ms, 

readout flip angle for 1st inversion 4°, readout flip angle for 2nd inversion 5°, time between 

readout pulses 7.1 ms, TE 2.98 ms, GRAPPA acceleration factor 3, bandwidth 240 Hz/Px. 

The MP2RAGE sequence automatically produces a quantitative T1 (qT1) map.

2.3. Alzheimer’s disease neuroimaging initiative (ADNI, Weiner et al., 2010)

T1w images from 110 ADNI subjects were used. Ten subjects (5 M/5F, mean age 77y) were 

manually labeled; all these subjects had an AD diagnosis. The remaining 100 subjects were 

used to evaluate the effect of AD on the volume of the limbic structures (50 healthy controls 

(HC), 22 M/28F, age mean/std/min/max 75.0/4.8/62/90y; 50 diagnosed with AD 28 M/22F, 

age mean/std/min/max 74.3/7.2/56/88y); we refer to this set as the ADNI100.

2.4. Harvard aging brain study (HABS, Mormino et al., 2014)

Ninety-nine subjects were drawn from HABS, which had approval from the Massachusetts 

General Hospital Internal Review Board; all subjects gave written informed consent. 

Subjects were healthy and aged from 66 to 87 years (mean 73.9y, s.d. 5.8y), 44 males and 

55 females. MPRAGEs were acquired on a Siemens 3T Trio. Greve et al., 2016 describes 

additional scanning parameter details of this cohort.

2.5. Minimal interval resonance imaging in Alzheimer’s disease (MIRIAD, Malone et al., 
2013)

In this data set, we analyzed 40 subjects (20 AD, 20 HC; 18 F, 22 M; mean age 68y; GE 

1.5T Signa scanner; partially defaced), each with two time points 14 days apart, to evaluate 

test-retest reliability. This data is publicly available from miriad.drc.ion.ucl.ac.uk.

2.6. Thousand Functional connectomes (FC1k)

We analyzed 499 cases from the FC1k data base (fcon_1000.projects.nitrc.org/fcpClassic/

FcpTable.html), a public collection of anonymized MRI data. While best known for fMRI, 

the 1000 Functional Connectomes also has T1-weighted anatomical MRI data from which 

we analyzed 499 subjects from three sites: Beijing (198 subjects), Cambridge (198 subjects), 

and Oulu (103 subjects), all 3T scanners. The subjects ranged in age from 18 to 30y; all 

images were defaced. The voxel size was Beijing: 1.3 × 1 × 1 mm, Cambridge: 1.2 × 1.2 

× 1.2 mm, Oulu: .94x.94 × 1 mm. We point out here that the Oulu data set was very noisy 

based on visual inspection.

2.7. Manual labeling

The left and right sides of six structures (HTh, MB, BF, Fx, SepN, and NA; see Fig. 1) were 

manually labeled for a total of 12 distinct labels on the 29 FSM subjects and the 10 ADNI 

subjects. The manual labeling was overseen by an experienced neuroanatomist (JCA). Parts 

of the anterior commissure (AC) were labeled, but only to provide a reference for manually 

labeling the other structures. For the FSM, qT1 images were used for manual labeling as 
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they provided the best contrast for the boundaries of interest; T1w images were used for the 

ADNI subjects. A description of the anatomical labeling protocol is given in Appendix A.

2.8. U-Net architecture and training

We used the network described in Billot et al., 2020a. This is network is a simple 3D 

variant of the popular U-Net architecture (Ronnenberger et al., 2015). The training software 

(Neuron (Dalca et al., 2018) and Lab2Im (Billot et al., 2020a) Python packages) is publicly 

available at https://github.com/BBillot/hypothalamus_seg. Billot et al., 2020a extensively 

tuned the hyperparameters and showed that this network out-performed state-of-the-art 

multi-atlas segmentation (Artaechevarria et al., 2009). For this tool, the network architecture, 

augmentation, and training were identical to that of Billot et al., 2020a with the exception 

that we include intensity noise augmentation (i.e., the adding of white Gaussian noise to the 

image during training).

Briefly, the network has three resolution layers. Convolutions are performed with a 3 × 3 × 

3 kernel. The first convolution has 24 output feature maps followed by a batch normalization 

and a max pooling step; the number of features is doubled after each max pooling and 

halved after each up-convolution. All layers, except the last, use an Exponential Linear 

Unit (ELU) activation function. The last layer has a softmax activation function. The 

input is always a T1w MRI. Augmentation consisted of spatial transformations (left-right 

flipping, affine and nonlinear transforms) and intensity transforms (multiplication by a bias 

field, noise augmentation, rescaling with min-max normalization, and contrast augmentation 

with nonlinear gamma (power law) distortion). The network was trained by optimizing the 

“soft” Dice score between the manual labels and the predicted labels. The first 50 epochs 

were trained without noise augmentation followed by 50 epochs with noise augmentation. 

Each epoch consisted of 1000 batches with a batch size of 1. The network easily reached 

convergence in this time. A batch size of 1 was used due to GPU memory limitations; as 

pointed out by Billot et al., 2020a, this low batch size is compensated for by using a large 

number of voxels (1603) to compute the loss function and gradient. The network was trained 

with the ADAM optimizer (Kingma, 2015). In Experiment 1, the network was trained on a 

subset of the 39 subjects for cross validation purposes. In the rest of the experiments, the 

network was trained on all 39 subjects.

2.9. Experiment 1: Cross-validation

The 39 manually labeled subjects were divided into a training group (N = 21, 10 female, 6 

AD, 57y mean age) and a testing/validation group (N = 18, 11 female, 4 CE, 52y mean age). 

The network was trained on the training group and then applied to the (independent) test 

group. The manual and automatic labels were then compared in terms of Dice, correlation 

coefficient, true positive rate (TPR), and false discovery rate (FDR); a paired t-test was used 

to determine whether the manual and automatic volumes systematically differed.

2.10. Experiment 2: Robustness

The performance of machine learning tools is highly dependent on the training set and 

augmentation; if the tool sees an input that is somewhat different from the augmented 

training set, it may underlabel or fail to label at all. To evaluate the robustness of this 
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tool, we applied it to 698 data samples from five data sets (ADNI100, HABS, Beijing, 

Cambridge, and Oulu) that were neither in the training or test sets and represent a variety 

of scanners and populations. To avoid visually inspecting each case, we used reverse 

classification accuracy (RCA, Robinson et al., 2019; Valindria et al., 2017) to flag individual 

data sets for visual scrutiny. In RCA, the test image was nonlinearly registered using ANTs 

(Avants et al., 2011) to each of the 39 manual labeled subjects, the manual labels were then 

mapped into the test image space where Dice scores were computed for each subject and 

label. For a given label, the maximum Dice score across the 39 was used as the quality 

metric, where 0 was bad and 1 was perfect. The idea here is that if one of the manually 

labeled subjects is anatomically close to the test subject, and this procedure will produce 

a reasonably good overlap between the segmentations. For the purposes of non-linear 

registration, the images were skull stripped and bias field corrected using FreeSurfer (Fischl, 

2012); the segmentation was always applied to the raw data. Images that had a quality score 

of less than 0.5 on any label were flagged for manual inspection by two of the authors 

(DNG and DC); all labels were evaluated for a case regardless of which label was flagged. 

The criteria for passing were whether a given label was in about the right place with about 

the right shape and did not appear to be under- or over-labeled by more than 25%. The 

quality control reviewers were able to do this in about 2 min per case. These criteria were 

intentionally vague to avoid labor equivalent to the manual labeling of the flagged cases, 

which would have taken months or years. While a low RCA score could be an indication of 

a poor segmentation, it could also be the result of a poor nonlinear registration (and so not a 

problem with the tool per se).

2.11. Experiment 3: Test-retest reliability

The two time points from the 40 MIRIAD subjects were used to evaluate test-retest 

reliability. Each subject/time point was segmented using the current method. The correlation 

coefficient and intraclass correlation (ICC, using the ICC(3,1) from Shrout and Fleiss, 

1979) of segmentation volumes across time and subject were then computed as the test-

retest measure. We also computed a paired-t to test whether the two time points were 

systematically different.

2.12. Experiment 4: Alzheimer’s disease and aging effects

To evaluate the effect of AD on the volume of the limbic structures, the network was applied 

to the ADNI100 data set. The volumes were then compared across diagnosis (AD-vs-HC) 

using a two-sample t-test. The volumes were corrected for estimated total intracranial 

volume (eTIV, Buckner et al., 2004) to account for differences in head size. To further assess 

clinical sensitivity, we performed an analysis quantifying the changes in the volume of these 

structures with age. While age itself is not a clinical condition, age does impose substantial 

changes on the brain similar to diseases. The T1w images of the HABS data set were 

segmented using the present method. The eTIV-corrected volumes of the structures were 

then regressed against age; the null hypothesis that there was no age effect was evaluated 

with a t-test.
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3. Results

Fig. 2 illustrates an example of the automatic segmentation for each of the structures in an 

individual subject withheld from the training; this subject was in the middle of the range of 

Dice scores. Green indicates that a voxel was in both the manual and automatic labels; from 

the standpoint of the automatic segmentation, these are true positives (TPs). Yellow indicates 

that the voxel was present in the manual label but not in the automatic segmentation (i.e., 

a false negative, FN); the full manual label consists of the green and yellow voxels. Red 

indicates that a voxel was in the automatic segmentation but not in the manual label (i.e., a 

false positive, FP). The full automatic label consists of green and red voxels.

3.1. Experiment 1: Cross-validation results

Table 1 shows the cross-validation performance of the automatic segmentation. None of 

the automatic segmentation volumes were significantly different than that of the manual 

segmentations (paired t-test) indicating no systematic bias in the volume measurement. 

Cross-subject volume variation was also comparable. The Dice scores range from 0.69 to 

0.82. Aside from MB, the correlation coefficient (CC) between the manual and automatic 

volumes is in the moderate to high range of 0.62 to 0.88; the MB has a relatively low CC.

The True Positive Rate (TPR, number of true positives detected by the automatic 

segmentation divided by the number of voxels in the manual segmentation) ranged from 

0.68 to 0.86. As illustrated in Fig. 2, this value represents the number of green voxels 

(true positives) divided by the sum of the green and yellow voxels (number of voxels in 

the manual label). The False Discovery Rate (FDR, number of false positives divided by 

the total number of voxels in the automatic segmentation) ranged from 0.18 to 0.28. As 

displayed in Fig. 2, this value represents the number of red voxels (false positives) divided 

by the sum of the green and red voxels (total number of voxels in the automatic label).

3.2. Experiment 2: Robustness results

In the robustness test, 124/698 cases were flagged by RCA for inspection. The two raters 

had very similar results, agreeing 94% of the time. Of the 124, the raters agreed that 91 

have no issues at all, suggesting that the RCA threshold of 0.5 was quite liberal. Issues 

with the 33 remaining cases all had to do with underlabeling to some degree. There were 

2 cases (0.3%) where a label was simply not present (NA-L in one case and MB-R in the 

other), both from Oulu. There were 31 other cases (4.3%) where at least one region was 

underlabeled; 15 of those were fornix. Of the 18 (2.6%) remaining from the 33, the SepN 

were suspect in 6 subjects because of an anatomical variant (an unclosed cavum septum 

pellucidum, width about 10 mm); to be clear, it was not evident that SepN segmentation 

failed because of this, we just do not have enough experience with this variant to know 

that it succeeded. For the remaining 12 cases (1.7%), various regions were underlabeled. 

Hypothalamus failed in 2 AD cases because the portion of fornix that goes through 

hypothalamus was not labeled; in these cases, there was simply no contrast between HTh 

and Fx. Table 2 shows the underlabeling rate for each label individually averaged across the 

two raters. Except for fornix, the rates are all less than 1%. Of the regions, fornix incurred 

the most failures, some on subjects with much atrophy but a portion on young subjects with 
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very small ventricles. One subject failed because of an extreme angle in the head position; 

after manual rotation, the segmentation passed. Of the 33 problematic cases, 17 came from 

Oulu.

3.3. Experiment 3: Test-retest reliability results

The test-retest reliability across scans of the 40 MIRIAD subjects is shown in Table 2 using 

both correlation coefficient (CC) and intraclass correlation (ICC). The values are distributed 

closely around 0.95. While MB-L is the lowest, it is still high at 0.90; at 0.94, MB-R is 

similar to that of other labels. The time points were not significantly different when tested 

with a paired t-test, also suggesting good reliability.

3.4. Experiment 4: Effects of Alzheimer’s disease and aging results

The results for the effects of AD and aging are shown in Table 3. The change in volume with 

AD and age was always negative, indicating a loss of tissue (i.e., atrophy). All structures, 

except MB, show significance in either AD or age or both.

3.5. Tool usage

The tool and instructions are available from the FreeSurfer wiki at 

surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic (“ScLimbic” is meant to abbreviate 

“subcortical limbic”); a diagram of the software workflow is also shown in Fig. 3. In the 

basic usage, one creates a folder with the T1w volumes in (NIFTI or mgz format) one wants 

to segment, then runs the Python script

mri_sclimbic_seg --i inputfolder 

--o outputfolder --write_volumes 

The tool will find all the input images, segment them, and write out the segmentation images 

into the output folder; the segmentations will resemble Fig. 1. It will also create a CSV 

file where each row is a case, each column is a label, and each entry is the volume of that 

structure in mm3. On a single threaded CPU, the program takes about 40 s to run on a single 

case; with 3 threads (—threads 3), the time drops to about 15 s; using a GPU (—cuda) does 

not reduce this significantly as much of the time is spent loading and writing. The tool uses 

about 20GB of memory.

If the input volume is not 1mm3, then there is an option to reslice to this resolution 

(—conform); the reslicing is only internal – the output segmentation is resliced back to 

the original resolution. Note that changing the resolution may affect the quality. If one is 

planning to perform a volumetric group study, then one will need to normalize by ICV. If 

one does not have an estimate of the ICV, then the tool can compute it using the FreeSurfer 

method (—etiv, Buckner et al., 2004); the ICV will be included as a column in the CSV file. 

Computing the ICV will increase the processing time to about 5 min for each case. The CSV 

file can be imported into a statistical program like SPSS or R for further processing or it can 

be processed using FreeSurfer’s mri_glmfit, which includes automatic application of ICV 

correction if ICV is in the CSV.
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The user should visually inspect the segmentation output. To assist in quality control, the 

tool can output two additional CSV files (—write_qa_stats). One contains a z-score2 for the 

volume each structure based on the means and standard deviations of the manual labels. In 

the other, the “confidence” (mean posterior probability within the label) is reported. If the 

z-score is very high or the confidence is very low, then the case should be visually examined. 

The tool does not require knowledge of FreeSurfer; as long as FreeSurfer is installed, then 

the user need only understand and execute mri_sclimbic_seg.

4. Discussion

The goal of this study was to develop a deep learning segmentation tool for the 

following limbic structures: hypothalamus, mammillary bodies (part of hypothalamus), basal 

forebrain, septal nuclei, nucleus accumbens, and fornix. The tool was trained on manually 

labeled data and evaluated over 700 independent data sets; clinical efficacy was shown on 

AD and aging data sets.

4.1. Segmentation performance

The central goal of automatic segmentation is to replicate how an expert would have labeled 

a novel image. This capability was judged by comparing the automatic segmentation to the 

manual segmentation of images not included in the training. Average Dice scores ranged 

from 0.69 (SepN) to 0.82 (NA). This is well within the range of other studies. For example, 

Fischl et al., 2002 and Puonti et al., 2016 had Dice scores between 0.70 and 0.90 for much 

larger structures, which will generally perform better on Dice than smaller structures. For 

whole hypothalamus, Billot et al., 2020a had a Dice score of 0.84 and Rodrigues et al., 2020 

had 0.77; our tool is comparable at 0.81. Billot et al., 2020a also had a Dice score of 0.81 

for the posterior hypothalamus, the subunit closest to our definition of MB, which had a 

comparable Dice score of 0.78.

While the Dice score provides a good summary measure of overall accuracy, other metrics 

provide more meaningful evaluations in terms of how the segmentation will perform when 

applied for a particular purpose. The Pearson correlation coefficient (CC, Table 1) shows 

how the volume of the automatic segmentation scales with that of the manual label. Ideally, 

the volume would accurately reflect the true value; however, this is technically not necessary 

in studies that compare groups or correlate diagnostic parameters as long as the volume 

scales with the true value. This ability to scale is measured by the CC. In our study, the CCs 

were generally in the range of 0.62 to 0.88, except for MB, which was 0.37 and 0.50. The 

CC for SepN was 0.62–0.69, which exceeds the 0.34–0.66 obtained by Butler et al., 2014. 

The low CC score for MB indicates that the MB volume might not be a sensitive marker 

of cross-subject differences. Indeed, while other labels were significant in both the AD and 

aging studies, MB was not significant in either. The Dice for MB was a relatively high 0.78; 

this shows a shortcoming of the Dice score as a performance metric, which is why we tested 

additional metrics in this report.

2The z-score should only be used for quality control. It should not be interpreted as a deviation from a normal population because the 
subjects used for manual labeling were not chosen with this in mind.
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4.2. Appropriateness for multimodal integration

We report the True Positive Rate (TPR) and False Discovery Rate (FDR) for each structure 

(Table 1 and Fig. 2). These measures are pertinent to multimodal integration studies (e.g., 

fMRI, dMRI, PET). For example, in a task fMRI study, the amplitude of the hemodynamic 

response might be averaged over the label; in a diffusion study, the label may be used as 

a seed region for tractography. Errors in the cross-modal analysis may result if the label 

does not significantly overlap the true structure or if a significant number of voxels from 

a neighboring structure were included. TPR measures the overlap with the true structure 

(sensitivity), and FDR measures the contamination for neighboring structures (specificity). 

In this study, the TPRs were in the range of 0.68–0.86, meaning that a large fraction of the 

true structure will fall within the automatically segmented label. The FDRs were in the range 

of 0.18–0.28, meaning that a relatively small fraction of automatically segmented voxels fall 

outside of the true structure. Our findings indicate that all these structures, including MB, 

are appropriate for cross-modal applications. We have not been able to find other automatic 

segmentation studies that report TPR or FDR, so there is no reference for comparison.

4.3. Robustness

we evaluated the robustness of the segmentation on 698 cases. Reverse classification 

accuracy (RCA, Valindria et al., 2017) liberally flagged 124 cases for visual inspection. 

“Failures,” as indicated by noticeable underlabeling, were found in only 33 cases. For 

individual labels, the failure rate was quite low (Table 2), less than 1% for all structures, 

except for fornix, which was 3%. While this performance is quite good, it is important to 

evaluate where and how the underlabeling occurs. We observed several failure modes. Six 

cases had large (> 10 mm) unclosed cavum septum pellucidum (CSP). A CSP is a space 

between the left and right septa in the lateral ventricles, very close to the septal nuclei and 

fornix (Born et al., 2004). The septa usually fuse shortly after birth, but closure does not 

occur in roughly 1–5% of the population (Chen et al., 2014). This structural irregularity can 

cause errors in the SepN and Fx segmentations since these structures are closely bound to 

the septa.

With 14 of the 32 failures, Fx was the most error prone of all the limbic labels; Fx 

had several failure modes. The first was the CSP cases mentioned above. The second 

was advanced atrophy in some cases (i.e., AD). The Fx is a white matter strand that 

connects HTh and hippocampus. In healthy subjects, it is clearly visible but still only a 

few millimeters in diameter. With aging and disease, it becomes thinner and darker, and 

the crus of the fornix becomes barely visible as it passes through the atrium of the lateral 

ventricle. This can cause the automatic segmentation to be hit-or-miss in this region. We 

emphasize that this was observed in only a handful of cases; the vast majority of atrophic 

cases had good Fx segmentations. The third Fx failure mode was in young subjects with 

very small ventricles in MRI with poor contrast. In such cases, the Fx tail was in near or 

direct contact with the corpus callosum and became indistinguishable; all of these cases 

were in the Oulu data set. Finally, in a two ADNI cases, the body of the Fx, which is 

completely surrounded by the HTh, was not segmented because there was no visible gray/

white contrast; presumably, this is just part of the disease process, but we counted it as an 

error for both Fx and HTh.
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We emphasize here that these circumstances of underlabeling mentioned above occurred in 

a very small fraction of cases. This robustness test probably represents a worst-case scenario 

as the data sets (deliberately) included low-quality data (Oulu) or data collected many years 

ago (ADNI). On high-quality data such as FSM, HABS, Beijing, and Cambridge datasets, 

virtually no errors occurred.

4.4. Test-Retest reliability

The test-retest performance of the tool was evaluated using 40 (20 AD and 20 HC) subjects 

scanned two weeks apart. This duration is probably too short for much true anatomical 

change to have occurred, so any differences are attributed to either scanning or inaccuracies 

of the tool. The CCs and ICCs were around 0.94, which is excellent. While the MB 

manual-automatic volume correlations were poor, the CC and ICC for MBs were very high 

(0.90 and 0.94) in test-retest. This indicates that all the structures, including MB, can be 

sensitive to longitudinal changes.

4.5. Clinical significance

The limbic system is especially vulnerable to Alzheimer’s disease (Mesulam, 1996; Braak 

and Braak, 1997; Braak and Del Tredici, 2012; Hyman et al., 1984; Terry and Katzman, 

1983; Hopper and Vogel, 1976). The SepN and HTh are strongly connected to the 

hippocampus via the Fx, so hippocampal atrophy has substantial downstream effects on 

Fx, SepN and HTh. The hippocampus is a seminal structure in the staging of Alzheimer’s 

disease pathology (Braak and Braak, 1991, 1997) and a neuroimaging biomarker benchmark 

(Braskie and Thompson, 2014; Weiner et al., 2017). Our SepN label includes medial septal 

nuclei, while our basal forebrain label includes vertical limb (Ch2) and the horizontal limb 

(Ch3) of the diagonal band of Broca, and the nucleus basalis of Meynert (Ch4). The latter 

making up the main portion of acetylcholine input for the cerebral cortex. Acetylcholine 

has a large neurochemical impact on Alzheimer’s disease pathology (Ballinger et al., 2016; 

Geula and Mesulam, 1996; Hampel et al., 2019).

In line with this thesis, we found that BF, SepN, HTh, and Fx showed atrophy when 

comparing ADs to age-matched controls (Table 3). These results corroborate other studies 

such as Teipel et al., 2014 (BF), Butler et al., 2018 (SepN), Billot et al., 2020a (HTh), and 

Copenhaver et al., 2006 (Fx). NA and MB did not show an effect despite being found in 

other studies (Nie et al., 2017 and Copenhaver et al., 2006 respectively); NA would have 

been significant in this study without corrections for multiple comparisons.

While advanced age is not a clinical condition in and of itself, the aging brain undergoes 

many changes that are similar to clinical conditions (Salat et al., 2004). We demonstrated 

significant changes with age in NA, BF, HTh, and Fx, thus providing additional evidence of 

clinical utility.

4.6. An easy-to-use tool

the tool that performed the automatic labeling in this study is freely available via FreeSurfer 

along with extensive documentation for how to use it on individual and group data (see 

surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic; for source code see github.com/freesurfer). It 

Greve et al. Page 11

Neuroimage. Author manuscript; available in PMC 2021 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic
https://www.github.com/freesurfer


is self-contained and easy to use, including computing and applying corrections for ICV, if 

needed. The segmentation of a single case can be done on a CPU or GPU and finishes in a 

few minutes. The images, labels, and training code are available, so researchers can retrain 

the network with their own manually labeled data if desired. While we have emphasized 

a specific tool built on the U-Net architecture of Billot et al., 2020a, this work shows 

that the manual labels that we have developed are sufficient for accurately labeling these 

structures in the human brain, and new algorithms and architectures (e.g., Billot et al., 

2020b; Isensee et al., 2021) could be employed to create new tools with even better, more 

robust performance.

5. Conclusion

A tool was developed to automatically segment several subcortical limbic structures (nucleus 

accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the 

mammillary bodies, and fornix) from a T1-weighted MRI. This tool fills an unmet need 

as there are few, if any, tools to segment these clinically relevant structures. A U-Net 

with spatial, intensity, contrast, and noise augmentation was trained using 39 manually 

labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery 

rates, and manual-automatic volume correlation were very good relative to comparable 

tools for other structures. A diverse data set of 698 subjects were segmented using the 

tool; evaluation of the resulting labelings showed that the tool failed in less than 1% 

of cases. Test-retest reliability of the tool was excellent. The automatically segmented 

volume of all structures except mammillary bodies showed effectiveness at detecting 

either clinical AD effects, age effects, or both. This tool will be publicly released with 

FreeSurfer (surfer.nmr.mgh.harvard.edu). Together with the other cortical and subcortical 

limbic segmentations, this tool will allow FreeSurfer to provide a comprehensive view of the 

limbic system in an automated way.
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from the corresponding author, subject to a data use agreement. Data from the 1000 

Functional Connectomes data base is publicly available from fcon_1000.projects.nitrc.org/

fcpClassic/FcpTable.html. Alzheimer’s Disease Neuroimaging Initiative (ADNI) data 

available from adni.loni.usc.edu. Data from the Harvard Aging Brain Study (HABS) can 

be requested from habs.mgh.harvard.edu/researchers/request-data.

Appendix A: Manual Labeling Methods

The quantitative T1 (qT1) image was used to determine the anatomical boundaries of each 

structure for the FSM data set and the T1w image for the ADNI data. All structures 

undertaken in this report – fornix, basal forebrain, hypothalamus, mammillary bodies, 

nucleus accumbens, septal nuclei, anterior commissure – were labeled in the coronal plane 

while the axial and sagittal planes served as three-dimensional checkpoints for evaluation of 

missing or inaccurate voxels.

Neuroanatomy structures:

We used several neuroanatomical publications and references to guide our anatomical 

delineation (L. Heimer, 2008; Mai et al., 2004; Ding et al., 2016; Edlow et al., 2018; 

Haines, 2007). Tissue slabs in educational atlases often show oblique slices, which is 

different than our description based on orthogonal planes. This differential – between 

orthogonal in MRI and oblique planes in histological references – sometimes presents as 

a challenge for identification. Nonetheless, the anterior, posterior, medial, lateral, superior, 

and inferior limits of each structure were identified based on distinct contrast and/or using 

the neighboring anatomical structures and manually labeled. Each structure is detailed in the 

following paragraphs.

Hypothalamus- The anterior slices of the hypothalamus appear when that ventral tissue 

connects with the optic chiasm. Continuing from anterior to posterior, the midline of 

the anterior commissure comes into view and to the columns of the fornix materialize 

just posterior to the anterior commissure. The hypothalamus occurs in the same slice 

with the septal nuclei or after immediately posterior to the septal nuclei (e.g., one or 

two millimeters), but this arrangement depends on individual case. We have observed 

both concurrence and adjacent slices. The posterior boundary of the hypothalamus is the 

posterior limit of the mammillary bodies. The superior boundary depends on the anterior-

posterior slice. The midline of the anterior commissure limits hypothalamus anteriorly while 

the columns of the fornix pass through the hypothalamus at mid-level, and the dorsal 

thalamus marks the superior boundary at posterior most levels. The inferior boundary of the 

hypothalamus extends into the infundibular stalk that gives rise to the pituitary gland. The 

lateral boundary is the basal forebrain area, which house the cholinergic bands of Broca and 

the nucleus basal of Meynert or the sublenticular extended amygdala (included in our basal 

forebrain label). The third ventricle demarcated the medial boundary of the hypothalamus.

Nucleus Accumbens- The anterior boundary of the nucleus accumbens presented at the same 

plane coronally as the adjacent structures: posterior orbitofrontal cortex, subcallosal area, 

olfactory tract, and the temporal pole. The nucleus accumbens represents the ventral portion 
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of the striatum. The midway point of the nucleus accumbens typically shows the optic tract 

inferior the accumbens nucleus, the olfactory tract nears its end, and temporal cortices have 

arrived in coronal plane (i.e., five gyri appear in temporal lobe), albeit small. Together the 

putamen, caudate and nucleus accumbens appear as a U-shaped structure in the coronal 

plane and show similar contrast in MRI. The posterior limit of the nucleus accumbens arises 

at same rostrocaudal level as the optic chiasm, which is located inferiorly to it.

Fornix and Anterior Commissure- the fornix and anterior commissure showed different 

contrast relative to neighboring gray matter contrast given they are both white matter 

structures. The fornix begins posteriorly, coming off the posterior hippocampus, continuing 

dorsally as crus of the fornix, the body of the fornix and finally descending into the basal 

forebrain region as the columns of the fornix. The anterior commissure appears at the 

midline anteriorly then arches posteriorly and laterally. Scrolling through coronal view, the 

anterior commissure gives the impression that it is fragmented but it is one continuous 

structure with each small section hitting the plane at a different slice. Image contrast and 

relative location provided excellent guidance to neighboring structural boundaries. Note that 

we only labeled the anterior commissure to aid in the labeling of the other structures.

Basal forebrain and septal nuclei- the septal nuclei occupy the region immediately inferior 

to the lateral ventricles at the midline. The anterior-posterior levels and the appearance of 

the septal nuclei depends on the particular case; it may be at the similar level as the nucleus 

accumbens or just posterior to it at the similar level to the hypothalamus and midline anterior 

commissure. The septal nuclei represent a small territory along the midline. In this work, 

the basal forebrain label contains the following structures: the vertical and horizontal limb of 

the diagonal band of Broca, ventral pallidum, some posterior remnants of ventral striatum, 

the extended amygdala, and the nucleus basalis of Meynert. The basal forebrain becomes 

evident slightly posterior to the anterior most anterior commissure. The superior boundary of 

the basal forebrain is either the anterior commissure or the globus pallidus while the inferior 

boundary goes to the ventral edge (of the brain tissue), anterior to the cerebrospinal fluid 

in the interpeduncular cistern. The hypothalamus bounds the basal forebrain medially. The 

lateral boundary of the basal forebrain is more difficult because it appears continuous (from 

a contrast perspective) with the medial amygdala. A fiducial marker, a fixed line, was drawn 

at the medial edge of the putamen, inferiorly to the tissue edge to delimit the lateral most 

boundary of basal forebrain. Approximately four 1 mm coronal slices were labeled per basal 

forebrain and each slice became smaller posteriorly.
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Fig. 1. 
Example manual segmentations of the labels used in this study. The hypothalamus 

label excludes mamillary bodies, which were included as a separate label. The anterior 

commissure (AC) was labeled only to provide a reference for manually labeling the other 

structures. The upper images are sagittal slices; the bottom images are coronal slices.

Greve et al. Page 19

Neuroimage. Author manuscript; available in PMC 2021 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Performance of automatic segmentation on a single test subject as compared to the manual 

segmentation for each of the structures. Green indicates that the voxel was in both the 

manual and automatic segmentations (a true positive, TP). Yellow means that the voxel was 

only in the manual (a false negative, FN). Red means the voxel was only in the automatic (a 

false positive, FP). The mean Dice score for this subject was 0.78, the middle of the range 

for the test subjects. (A) NA, (B) BF, (C) SepN, (D) HTh, (E) MB, (F), Left Fx.
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Fig. 3. 
Diagram of the tool workflow showing various options and outputs. Green arrows indicate 

output from other subjects.
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Table 2

Robustness and test-retest reliability. Underlabeling rate (UR) is the percent of the 698 subjects that had some 

mislabeling based on visual inspection. CC is Pearson correlation coefficient and ICC is intraclass correlation.

Structure UR CC ICC

NA-L 0.72% 0.94 0.94

NA-R 0.29% 0.97 0.97

BF-L 0.29% 0.96 0.96

BF-R 0.29% 0.94 0.94

SepN-L 0.86% 0.91 0.91

SepN-R 0.86% 0.93 0.92

HTh-L 0.57% 0.94 0.94

HTh-R 0.43% 0.95 0.94

MB-L 0.57% 0.90 0.90

MB-R 0.72% 0.94 0.94

Fx-L 3.01% 0.94 0.94

Fx-R 3.01% 0.94 0.94
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Table 3

Effect of AD and age on the volume of the given structure. Change and Slope show the change in volume 

in thousandths of percent of intracranial volume. Slope is per decade. A negative Change value indicates loss 

of volume in AD relative to HC. A negative Slope indicates a loss in volume with age. The p-values have 

been corrected for 12 comparisons; those with p < 0.05 are marked with an asterisk. See Table 1 for structure 

abbreviations.

Structure AD Change p Age Slope p

NA-L −2.82 0.051142 −2.93 0.000951 *

NA-R −2.36 0.117383 −3.15 0.000084 *

BF-L −2.39 0.000641 * −1.54 0.003073 *

BF-R −2.38 0.000138 * −1.03 0.032481 *

SepN-L −0.47 0.289839 −0.09 0.999968

SepN-R −0.58 0.007340 * −0.05 1.000000

HTh-L −1.95 0.023953 * −2.36 0.000181 *

HTh-R −2.09 0.001621 * −2.04 0.000771 *

MB-L −0.20 0.874555 −0.10 0.974076

MB-R −0.30 0.238399 −0.09 0.998295

Fx-L −3.13 0.007580 * −2.87 0.000475 *

Fx-R −2.84 0.025472 * −2.81 0.010283 *
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