Skip to main content
. 2021 Nov 30;8:1473–1484. doi: 10.2147/JHC.S334674

Table 3.

Prediction Efficiency of Each Machine Learning Models

Models AUC F1-Score Accuracy Precision Sensitivity Specificity
XGBoost 0.777 0.788 0.716 0.839 0.755 0.617
DT 0.738 0.822 0.745 0.820 0.834 0.516
RF 0.802 0.857 0.784 0.819 0.904 0.480
kNN 0.741 0.823 0.733 0.783 0.874 0.373
SVM 0.787 0.754 0.691 0.868 0.681 0.714
FCN 0.791 0.849 0.774 0.817 0.892 0.474

Abbreviations: AUC, area under curve; DT, decision tree; FCN, fully convolutional networks; kNN, k-nearest neighbor; RF, random forest; SVM, support vector machine.