Table 3.
Models | AUC | F1-Score | Accuracy | Precision | Sensitivity | Specificity |
---|---|---|---|---|---|---|
XGBoost | 0.777 | 0.788 | 0.716 | 0.839 | 0.755 | 0.617 |
DT | 0.738 | 0.822 | 0.745 | 0.820 | 0.834 | 0.516 |
RF | 0.802 | 0.857 | 0.784 | 0.819 | 0.904 | 0.480 |
kNN | 0.741 | 0.823 | 0.733 | 0.783 | 0.874 | 0.373 |
SVM | 0.787 | 0.754 | 0.691 | 0.868 | 0.681 | 0.714 |
FCN | 0.791 | 0.849 | 0.774 | 0.817 | 0.892 | 0.474 |
Abbreviations: AUC, area under curve; DT, decision tree; FCN, fully convolutional networks; kNN, k-nearest neighbor; RF, random forest; SVM, support vector machine.