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Abstract Transcranial magnetic stimulation (TMS) is a

popular modulatory technique for the noninvasive diagno-

sis and therapy of neurological and psychiatric diseases.

Unfortunately, current modulation strategies are only

modestly effective. The literature provides strong evidence

that the modulatory effects of TMS vary depending on

device components and stimulation protocols. These dif-

ferential effects are important when designing precise

modulatory strategies for clinical or research applications.

Developments in TMS have been accompanied by

advances in combining TMS with neuroimaging tech-

niques, including electroencephalography, functional near-

infrared spectroscopy, functional magnetic resonance

imaging, and positron emission tomography. Such studies

appear particularly promising as they may not only allow

us to probe affected brain areas during TMS but also seem

to predict underlying research directions that may enable us

to precisely target and remodel impaired cortices or

circuits. However, few precise modulation strategies are

available, and the long-term safety and efficacy of these

strategies need to be confirmed. Here, we review the

literature on possible technologies for precise modulation

to highlight progress along with limitations with the goal of

suggesting future directions for this field.

Keywords Transcranial magnetic stimulation � Modula-

tion strategies � Precise stimulation target � Coil location �
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Introduction

In the last three decades, transcranial magnetic stimulation

(TMS) has developed as a popular modulatory technique

that allows for the noninvasive diagnosis and therapy of

neurological and psychiatric diseases [1–3]. Although

current modulation strategies are effective for some

patients, many others with similar clinical profiles receive

little benefit [4].

TMS is able to cause the rapid depolarization of neurons

and alter cortical excitability during (online) and after

(offline) the stimulation period [5]. However, the magni-

tude of current density falls sharply with distance from the

cortical surface under general stimulation intensities,

inducing cortical fields to a depth of * 2 cm and an area

of 100–200 mm2 [6]. Although the stimulation target is

commonly a single brain region, TMS effects can be

mediated via distributed networks [7, 8]. Local effects are

produced by action potentials induced in the targeted

regions, while remote effects occur when the action

potentials of the targeted region propagate to distant
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regions through polysynaptic connections. Since neurolog-

ical and psychiatric disorders can be conceptualized as

disorders of neural networks, not brain regions, the ability

of local effects to propagate to distant regions is important

for using TMS in diagnosis and therapy.

The potential value of connectivity-based targeting

methods for the TMS treatment of depression has been

demonstrated [9, 10], but it is difficult to identify the

optimal stimulation target and coil position to obtain the

best outcome, since the process is so complex. In addition,

there is little consensus about the therapeutic effects in

neurological and neuropsychiatric conditions other than

depression. One reason for this failure is that precise

modulation strategies of TMS have not been sufficiently

discussed. Thus, we need to consider possible precise

strategies to improve the therapeutic effects of targeted

brain modulation.

There are a few review articles on precise stimulation

with TMS with a variety of foci, including designing

geometric models of the TMS coil [11, 12], improving

navigation systems [13–15], optimizing the coil location

and orientation [15, 16], and providing new stimulation

targets [9, 10, 17–19]. However, investigation of the

network mechanisms of TMS and the precise localization

of targets, the two most important issues, have not been

thoroughly discussed. Moreover, considering all of these in

one review might lead to a better understanding than

considering any of them alone.

The present review considers the precise modulation for

TMS from several different perspectives. First, we focus on

the basic description of TMS, including devices, stimula-

tion protocols, and applications in diagnosis, therapy, and

exploration, all of which may be useful for optimizing

treatment and identifying precise stimulation targets. Then,

we review the neuroimaging methodologies that can be

integrated with TMS. These techniques may provide a

network perspective that could improve the therapeutic

effects of TMS and lead to individualized treatments.

Finally, we consider several questions for future studies

into precise modulation strategies for TMS.

Basic Description of TMS Devices, Stimulation
Protocols, and Applications

Components and Principles of TMS Devices

The first TMS device was developed by Barker and

colleagues in 1985 [20]. It was based on principles derived

from Faraday’s experiment showing that alternating cur-

rent in a primary circuit is capable of inducing the same

current in an isolated secondary circuit if the two circuits

are in close proximity. TMS devices consist of a main unit,

a group of capacitors, and a stimulation coil. The main unit

is used to set the amount of current and releases the current

pulse at a given time via specialized circuitry. The

capacitors accumulate high loads of electric charge, which

are drawn from power supply lines. During TMS, the

operator selects a monophasic or diphasic current pulse.

Then, the main unit activates an electrical switch and the

capacitors send the given amount of charge to the coil. The

coil placed above the scalp generates a time-varying

magnetic field in the air and head. In the cortex, this

magnetic field produces transitory currents to evoke

cortical activity.

According to the Biot–Savart–Laplace law, the area of

the evoked cortical activity depends on the magnetic field

strength and the coil geometry. The magnetic field strength

is reduced proportionate to the distance between the coil

and the targeted area. Thus, in most clinical TMS

treatments, the peak magnetic field strength underneath

the coil center is very strong ([ 1 Tesla).

Currently, different coils are designed for different

desired stimulation effects, including both the depth of

penetration and the distribution across the brain. For the

first TMS device, Barker and colleagues designed a circular

coil with high-density circular wire windings. The circular

coil, which is the simplest design, has a high penetration

power, which is useful for peripheral stimulation. How-

ever, the stimulation effect is not very focal, and the spatial

selectivity is[4 cm2 (Fig. 1A). Then, a figure-of-eight coil

made of two side-by-side round coils, each 25–70 mm in

diameter, was designed by Ueno and colleagues [21]. The

figure-of-eight coil induces a more localized electrical field

at the junction where the two round coils sum, allowing

more selective stimulation (1.5–2 cm2) than a circular coil

[22] (Fig. 1B).

The strength of the initial current passing through the

coil contributes to the strength of the currents induced in

the cortical layers. In general, the penetration of the coils is

limited since the induced currents are negligible less than a

few centimeters from the cortical surface [6]. To penetrate

deeper into the cortex, a number of coil models, such as the

H-shaped coil, have been designed [23, 24]. A recent study

evaluated the clinical outcome of two TMS protocols

delivered by an H-shaped coil and a figure-of-eight coil in

major depressive disorder [25] and found that the H-shaped

coil group had a better response rate and greater reduction

in depression severity than the figure-of-eight coil group.

However, the superficial cortical layers under an H-shaped

coil are exposed to the strongest field [12, 23, 26–28].

Thus, the figure-of-eight coil is still most common for

clinical and academic uses.
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Modulation Effects of Stimulation Protocols

The initial current through TMS coils can be delivered as a

single pulse, paired pulses, or a train of pulses (Fig. 2A).

Single-pulse TMS (spTMS) produces transitory currents in

the cortex and transiently depolarizes neurons. By using the

stimulus intensity needed to elicit a change in a patient

when the coil is focused on the motor [29] or visual

[30, 31] systems as the standard, spTMS has become a

standard protocol for selecting the appropriate stimulation

intensity required to elicit a change in other brain areas

[32].

Paired pulse TMS (ppTMS) is commonly applied to

assess the excitability of intracortical circuits by stimulat-

ing the primary motor cortex (M1) [33]. This approach can

result in a decrease or increase in the amplitude of the

conditioned motor evoked potentials (MEPs) by changing

the interstimulus intervals between the conditioning stim-

ulus and the test stimulus (Fig. 2C) [34–36]. The increase

or decrease in the amplitude of the MEP is termed

intracortical facilitation or intracortical inhibition,

respectively.

Repetitive TMS (rTMS) delivers a train of pulses at

equal interstimulus intervals. In addition, trains of rTMS

pulses can be applied at different frequencies. rTMS with

specific frequencies can induce a persistent modulation of

cortical excitability [37–40]. The induced online (during

stimulation) and offline (after stimulation) neuromodula-

tory effects of rTMS have provided insight into the role of

specific brain regions in terms of their plasticity and

behavior. The conventional finding has been that low-

frequency (B 1 Hz) rTMS inhibits cortical excitability

whereas high-frequency (5–20 Hz) rTMS facilitates corti-

cal excitability [37, 39–43].

rTMS is a family of widely-used neuromodulation

techniques. However, the effects induced during or after

the period of stimulation are still limited. Several alterna-

tive patterned modulation protocols have been used to try

to induce plastic changes in the human cortex and have

shown differences in their relevance to modulatory effects.

Emerging patterned modulation protocols include theta-

burst stimulation (TBS), quadripulse TMS (QPS), and

paired associative stimulation (PAS) (Fig. 2A). Generally,

these protocols have more complex stimulation patterns

and induced effects (Fig. 3). TBS and QPS protocols have

complex timings and produce longer-lasting effects on

specific brain regions. PAS combines TMS with other

modulation techniques such as peripheral nerve stimulation

and produces facilitatory or inhibitory effects on specific

excitatory pathways between two connected brain regions.

The TBS pattern, which consists of a burst of three

50-Hz pulses in trains repeated every 200 ms (Fig. 2D), is

designed to mimic theta rhythms [44]. TBS can be

delivered in a continuous, intermediate, or intermittent

manner. TBS protocols are able to induce longer-lasting

effects than conventional high- or low-frequency rTMS

paradigms [45–50]. In addition, continuous TBS takes only

20–40 s to apply and decreases cortical excitability,

whereas intermittent TBS takes only 3 min total and

facilitates cortical excitability.

QPS consists of repeated trains of four monophasic TMS

pulses, which are separated by interstimulus intervals of

1.5–1250 ms (Fig. 2E) [51]. Studies have shown that QPS

protocols are able to induce longer-lasting effects than

conventional rTMS protocols [52]. For example, QPS at

short intervals (e.g., 5 ms) facilitate MEPs for[ 75 min,

whereas QPS at long intervals (e.g., 50 ms) inhibit MEPs

for[ 75 min.

PAS consists of repetitive low-frequency pairings of

electrical stimulation of a peripheral nerve with TMS over

the contralateral M1 (Fig. 2F). PAS can be applied to

increase or decrease corticospinal excitability by spike-

timing-dependent, plasticity-like mechanisms [53]. The

change in corticospinal excitability depends on the relative

timing of the interaction between the pair of stimuli [54].

PAS increases excitability when the intervals between the

Fig. 1 The modulatory effects of circular and figure-of-eight coils in

TMS. A The modulation effect of a circular coil has high penetration

power, but the activated brain area is not focal. B The modulation

effect of a figure-of-eight coil is more focal but has limited

penetration. C TMS effects may result from active initiation of

action potentials in stimulated neurons or alterations in brain

networks.
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stimuli are equal or when an interval is a few milliseconds

longer than the N20 latency, which refers to the 20-ms

negative response after a median nerve somatosensory-

evoked potential. In contrast, PAS suppresses excitability

when the stimulus interval is shorter than the N20 latency.

In conclusion, modulatory effects are characterized by

important differences in terms of stimulation protocols

(Fig. 3), including the frequency indicated by the TMS

stimuli per second, intensity determined as a percentage of

maximum stimulator output, and the time course of events

when TMS occurs with respect to a trigger signal.

However, studies evaluating modulatory effects on brain

functions and their refractoriness to treatment are few in

number. These findings of modulatory effects bring into

Fig. 2 Stimulation protocols for TMS. A The initial current through

TMS coils can be delivered as a single pulse, paired pulses, or a train

of pulses (modified from ref. [164]). B A diphasic current pulse. C In

ppTMS, the interstimulus intervals (ISIs) between the test stimulus

(TS) and the conditioning stimulus (CS) can be changed to allow

different stimulation effects. D The TBS pattern consists of a burst of

three 50-Hz pulses in trains repeated every 200 ms. E QPS consists of

repeated trains of four monophasic TMS pulses, and the ISIs can be

changed. F PAS consists of repetitive low-frequency pairings of

electrical stimulation of a peripheral nerve with TMS over the

contralateral M1.

Fig. 3 Temporal and spatial resolution for modulatory effects of

TMS patterns and neuroimaging techniques, which are helpful for

evaluating the online and offline responses to TMS modulation.
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question whether the therapeutic effect of TMS may be

enhanced by changing the stimulation protocols.

Current TMS Applications

Because of its ability to facilitate or inhibit cortical

excitation at local or distant sites, TMS has become a

diagnostic and therapeutic technique in neurological and

psychiatric disorders. In addition, TMS is an exploratory

tool in the field of brain functioning.

Use of TMS as a Diagnostic Tool

TMS is particularly useful for studying movement disor-

ders because it is able to probe motor cortical physiology

by eliciting MEPs [55]. Thus, it has been used to estimate

the degree of intra- and inter-hemispheric and corticospinal

connectivity following brain lesions. Several parameters,

such as central motor conduction time (CMCT), resting

motor threshold, active motor threshold, and the amplitude

of the MEPs obtained using high stimulator intensities,

have been used to increase the diagnostic sensitivity

[56–58]. These parameters seem to have the highest

reliability compared with other parameters, such as silent

period, short-interval intracortical inhibition, intracortical

facilitation, short-latency afferent inhibition or facilitation,

and MEP recruitment, which are less reliable

[56, 57, 59–62].

CMCT is used to estimate the conduction time of

corticospinal fibers from M1. It is generally measured when

a target muscle is activated in a healthy individual, in this

way obtaining a measure of the shortest latency from the

cortex to the muscle. Since the spinal motor neuron pool is

near the firing threshold, the earliest descending corti-

cospinal volley is the most likely to cause a discharge. In

disease states, the CMCT is likely to be prolonged because

of the loss of large descending fibers or the demyelination

of central motor pathways, leading to impaired summation

of the descending volleys at the motor neuron [63].

Studies have concluded that a prolonged CMCT is

strong evidence for a clinical diagnosis of Parkinson’s

disease (PD), or atypical parkinsonism, such as multiple

system atrophy or progressive supranuclear palsy

[55, 64, 65]. The corticospinal tract is damaged in these

diseases, so the CMCT is prolonged. In addition, resting

motor threshold, active motor threshold, and MEPs are

frequently used to measure motor cortex excitability in PD

[66].

A short silent period [67–69] and reduced short-interval

intracortical inhibition [70, 71] are frequently reported in

dystonia. However, some studies found that discrepancies

in the silent period [72, 73] and short-interval intracortical

inhibition [74, 75] between patients with dystonia and

healthy individuals are within the normal range due to great

inter-individual variability. In addition, the MEP ampli-

tudes after PAS in dystonia can also be either normal or

reduced [76, 77].

TMS has been widely used to diagnose disorders in the

motor cortex because it supplies valid and reliable metrics,

but it has rarely been used in sensory areas because the

metrics are variable and qualitatively different. However,

recent studies have shown that ppTMS-induced phos-

phenes may be used to identify disease severity or

prognosis based on cortical excitability and inhibition at

either the local or network level in the visual system [35].

In addition to its use for movement disorders, TMS has

been reported to be useful along with routine assessment in

patients with Alzheimer’s disease and holds great promise

in diagnosis and in increasing diagnostic confidence [78] to

a degree that is comparable to the well-established

amyloidosis biomarkers [79].

Consequently, neurophysiological measures with high

reliability can be used as biomarkers for early diagnosis

and disease monitoring. However, at least for now, TMS

cannot be used to determine the nature or cause of a lesion.

Use of TMS as a Therapeutic Tool

The greatest area of application for TMS currently is in

therapy for neuropsychiatric disorders. An evidence-based

guideline on the therapeutic use of TMS for conditions

such as depression, pain, stroke, movement disorders, and

schizophrenia has been established by a group of European

experts [3]. The antidepressant effect of high-frequency

(HF) rTMS of the left dorsolateral pre-frontal cortex

(DLPFC) and its analgesic effect on the M1 contralateral to

the painful side are recommended as level A, which means

definite efficacy. The antidepressant effect of three TMS

protocols, low-frequency (LF) rTMS of the right DLPFC,

LF-rTMS of the contralesional M1 in chronic motor stroke,

and HF-rTMS of the left DLPFC for the negative

symptoms of schizophrenia, are recommended as level B

(probable efficacy).

Treatments for several additional conditions have been

recommended as level C (possible efficacy): HF rTMS of

the bilateral M1 areas on the motor symptoms of PD,

continuous TBS of the contralesional left posterior parietal

cortex in hemispatial neglect, LF rTMS of the epileptic

focus in epilepsy, HF rTMS of the right DLPFC in post-

traumatic stress disorder, and HF rTMS of the left DLPFC

in cigarette smoking.

A repair model and an interactive model have been

proposed to explain the therapeutic effect of TMS [80, 81].

The repair model posits that TMS reshapes the dysfunction

caused by disease, but there is no evidence. The interactive

model proposes that TMS helps the brain to restore itself
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and thus promotes natural adaptations to injury or chronic

disease. Indeed, the long-term potentiation-like and long-

term depression-like effects of offline TMS protocols

strengthen and weaken plasticity phenomena respectively

by interacting with the brain network [82–84]. Unfortu-

nately, these studies were conducted on a small scale or

performed at a single center, so the results are difficult to

evaluate.

The therapeutic efficacy of TMS has been tested against

a wide range of psychiatric conditions, predominantly

depression. Specifically, the efficacy and safety of rTMS in

depression has been confirmed by massive-scale multicen-

ter trials and meta-analyses over the last 20 years

[45, 85–87]. Neuroimaging evidence has shown that

activity in the left DLPFC is reduced in patients with

depression [4]. Thus, HF-rTMS is applied in several daily

sessions to enhance the activity of the left DLPFC and

prolong the offline effects [45]. Recent studies have

reported that changes in functional connectivity may

predict the clinical outcome of treatment for major

depressive disorder and may help to define precise

strategies for stimulation [17, 88]. TMS has also been

applied to other psychiatric conditions, such as post-

traumatic stress disorder [89], addiction disorders [90],

obsessive-compulsive disorder [91], and the negative

symptoms of schizophrenia [92].

The therapeutic efficacy of TMS has also been tested

against neurological conditions, such as migraine headache

and other forms of neuropathic pain as well as post-stroke

deficits. Studies have shown that spTMS is effective and

safe as a treatment for migraine [93]. Thus, the US FDA

approved an spTMS device to relieve the pain caused by

migraine with aura in 2017. To reduce neuropathic pain,

HF-rTMS is applied to the M1 contralateral to the painful

side [94]. In addition, prolonged continuous TBS has been

showed to have more analgesic effects and a shorter

treatment duration than classical HF-rTMS [46], a finding

that has considerable clinical potential. Another study has

shown that two rTMS protocols, HF-rTMS of the ipsile-

sional M1 to increase excitability and LF-rTMS of the

contralesional M1 to decrease excitability, may be used to

improve motor abilities in stroke patients [95]. However,

these modalities of stimulation must be considered with

caution because the real impact of rTMS in daily practice

remains unknown.

A robust series of studies has demonstrated that TMS

has significant therapeutic benefit in the therapy of

neuropsychiatric disorders. Furthermore, TMS can be

applied in other neurological situations [10], such as

spasticity, PD, epilepsy, and attention-deficit/hyperactivity

disorder. TMS has also been applied to monitor intraop-

erative neurophysiology during tumor resections [96].

While the breadth of indications for TMS therapy expands,

stimulation parameters in routine clinical practice remain

to be established and optimized.

Use of TMS as an Exploratory Tool

As an exploratory tool, TMS can been used to map and

elucidate cortical function in a variety of neuropathological

states because it can directly manipulate cortical sites to

establish causal relationships. When TMS is applied to

stimulate some brain areas, the output shows a clear

signature. For example, TMS over the motor cortex

[29, 97] and the visual cortex [35] causes a twitch and

induces phosphenes, respectively. The stimulation effects

on the motor cortex can be assessed by the resulting muscle

responses, which can be recorded by electromyography. In

addition, TMS effects in the visual cortex have been

assessed by average phosphene sizes in a recent study [35];

this may provide a valid and reliable method for measuring

cortical excitability and inhibition in the visual cortex.

However, many regions, such as the prefrontal cortex,

the occipital face area, and the inferior frontal gyrus, are

behaviorally silent after TMS and do not produce an

immediately observable response. Electrophysiological

and neuroimaging techniques [98–101] have been used

to evaluate the online and offline responses to TMS

modulation. Thus, TMS can be coupled with electro-

physiological and neuroimaging techniques to probe the

anatomical and functional interactions causally. A recent

study explored the feedback from the secondary visual

cortex (V2) to V1 during contextual modulation by

testing participants and using offline TMS-fMRI and

showed that the feedback was mostly inhibitory [102], a

finding that corroborates recent reports on monkey

electrophysiology [103].

Although the above TMS applications have made great

progress, the TMS technique still has low clinical treatment

efficacy [104] and undesirable covariates in experimental

situations due to the failure to provide consistent stimula-

tion, which can reduce the statistical effectiveness of

scientific findings. However, there is potential to improve

its efficacy further if more precise TMS strategies can be

designed and studied. Moreover, combining neuroimaging

techniques is the way to reveal the modulatory effects of

TMS, and this is important for designing precise modula-

tory strategies for clinical or research applications.

Combining Neuroimaging Techniques to Reveal

the Modulatory Effects of Precise TMS

Suprathreshold stimulation of M1 with spTMS elicits

MEPs. While studies have benefited from knowing about

cortical excitability quantified by the amplitude of MEPs,

measuring the physiological response of many regions of
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therapeutic and psychiatric interest other than M1 has not

been easy. In these regions, neuroimaging techniques are

helpful for evaluating the online and offline responses to

TMS stimulation [105]. Thus, these techniques not only

provide a practical solution for closing the loop between

locating the appropriate brain regions and choosing the

optimal modulation systems but also potentially enable the

identification of optimal treatment paradigms by examining

individual responses [106].

Integrating TMS with neuroimaging methodologies has

revealed different spatial or temporal effects of TMS

(Fig. 3). These methodologies include the EEG, positron

emission tomography (PET), functional magnetic reso-

nance imaging (fMRI), and functional near-infrared spec-

troscopy (fNIRS).

Combining TMS with EEG

Combining TMS with EEG can track the temporal

dynamics of brain activity and thus be used to evaluate

the effective time-resolved connectivity. This technique

has a high temporal resolution of a few milliseconds. In

addition, a large number of scalp sites can be sampled by

using EEG.

EEG signals may be applied to record a linear projection

of the postsynaptic currents that are indirectly induced by

TMS with high temporal resolution and can thus be used to

evaluate local cortical excitability and effective connectiv-

ity in the nervous system during TMS [98]. TMS–EEG is

able to convey precise temporal information about the

order in which connected cortical areas are activated,

thereby enabling the defining of the causal interactions

between two brain areas within functional networks and

identifying whether the interactions are excitatory or

inhibitory [107]. In addition, combining TMS–EEG with

structural neuroimaging provides an opportunity to activate

cortical regions at a more precise spatial resolution.

However, the strong magnetic field produced by TMS

induces an electric field in the EEG electrodes, nearby skin,

muscles, or other conductors and thereby activates muscle

and nerve [108]. These factors can generate large-ampli-

tude artifacts in the EEG signals. A tapping sensation or a

loud click during TMS can generate sensory-evoked

potentials or auditory-evoked potentials, which can also

generate artifacts.

Recently, some technologies, such as dedicated TMS-

compatible EEG equipment, online or offline noise

removal techniques, and a number of control conditions,

have been provided to minimize such noise [109]. Taking

the above points into account, TMS–EEG allows the

evaluation of the spatio-temporal pattern of neural activity

from the cortical neurons (but not from deep-brain

structures), although it mainly provides measures of

effective connectivity in the time domain.

Combining TMS with fMRI

fMRI and TMS are increasingly popular techniques that

can be used to non-invasively measure brain connectivity

in human subjects. Collecting fMRI data during TMS

experiments provides a high spatial resolution and a

reduced temporal resolution of a few seconds or minutes.

fMRI is an important method for the in vivo investiga-

tion of cognitive processes in the human brain by detecting

changes associated with blood flow and oxygenation and

relies on the fact that blood flow and neural activity are

coupled. fMRI uses the blood-oxygen-level dependent

(BOLD) contrast to map neural activity in the brain. The

basis for BOLD contrast is that paramagnetic deoxyhe-

moglobin possesses a strong magnetic moment, which can

be compared with diamagnetic oxyhemoglobin. The pres-

ence of deoxyhemoglobin in a capillary causes a suscep-

tibility difference in and around blood vessels and

surrounding tissue. This difference can be measured by

appropriate MR imaging sequences.

In addition to detecting BOLD responses in response to

specific stimuli, there are two kinds of fMRI: task-related

and resting-state fMRI. Task-related fMRI is applied to

detect BOLD changes when subjects are performing a task

if the brain is experiencing a perturbation, such as that

caused by TMS. This method can identify the cortical areas

that are activated by the event, thus revealing the functional

anatomy [98]. Resting-state fMRI is applied to detect low-

frequency fluctuations in the BOLD signal (usually\0.1

Hz) and is generally applied while the subject is relaxing.

This method is able to identify the synchronization

between different brain regions, thus revealing the func-

tional connectivity and networks.

TMS can be delivered during the process of acquiring

fMRI data (online TMS–fMRI) or before/after fMRI

(offline TMS–fMRI). Earlier research demonstrated that

the online TMS–fMRI method can greatly advance our

understanding of the immediate and rapid TMS-induced

changes in cortical networks [110]. Although the feasibility

of this method has also been demonstrated [100, 111], there

are challenges. The most crucial challenge in online TMS–

fMRI experiments is that they are significantly affected by

the signal-to-noise ratio due to adverse interactions

between the strong magnetic field of the TMS and that of

fMRI. fMRI and MRI use the same scanner, which

generates a strong magnetic field and radio waves to

produce an image of the blood flow in the brain. The large

magnets and gradients of an MRI scanner can induce a

reverse current in the TMS coils, which makes the entire

process quite uncontrolled. Therefore, to achieve a proper
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combination process, several methods have been proposed,

such as using special TMS coils constructed from non-

magnetic materials [100] or using specialized TMS coils

with a thin dispersion of weakly-ferromagnetic stainless-

steel foil attached to the back [112]. In contrast, the offline

TMS–fMRI method is easily applied because the TMS and

fMRI are separated in time and space. Moreover, offline

fMRI is generally used to guide the target cortical areas.

For example, a virtual lesion is often used to navigate the

fMRI-identified brain regions [113].

Combining TMS with fNIRS

Combining TMS with fNIRS enables the measurement of

changes in cortical hemoglobin concentrations based on the

optical properties of the investigated medium. Its temporal

resolution is lower than EEG and higher than PET and

fMRI. However, TMS–fNIRS enables researchers to easily

study both the online and offline effects of TMS because

optically-measured fNIRS signals are not intrinsically

subject to electromagnetic interference.

The fNIRS technique takes advantage of the optical

window to provide a non-invasive measurement. The term

optical window refers to the natural transparency of tissue

to near-infrared light (650–900 nm). Because of the ability

of cortical hemoglobin to absorb light, the chromophore

concentration can be estimated by changes in light

intensity. Thus, neural activity during or after TMS can

be measured by fNIRS through hemodynamic changes due

to their relatively tight coupling with neural activation

[106].

Although the fNIRS technique is not susceptible to

electromagnetic interference, care should be taken to

ensure that individual fNIRS systems are noise-free during

the TMS operation and properly shielded to prevent

hardware damage from electromagnetic interference [101].

Combining TMS with PET

PET is a nuclear imaging technique that uses radioactive

tracers and gamma ray detection to visualize and measure

the tissue concentrations of molecules of interest. This

technique has allowed researchers to measure changes in

neurotransmitters and synaptic activity in the stimulated

region or remote areas (anatomically and functionally

connected areas) [98]. In particular, PET radiotracers that

bond to dopamine receptors have been studied and widely

used to study DA release [114].

Based on the concurrent use of PET, TMS can be used

to directly assess the connectivity of cortical-subcortical

neural networks [115]. Combining TMS with PET enables

the localization of TMS-related changes in cerebral blood

flow with high sensitivity and to detect such changes

equally well in cortical and subcortical structures, which

reveals the connectivity of cortical-subcortical neural

networks. Thus, PET imaging can enhance our understand-

ing of the underlying neural mechanisms of TMS and brain

connectivity [99].

PET has been used to investigate the exact regions of

TMS activation [116–118], a process that is helpful for

gaining a better understanding of the factors that result in

TMS effects. These studies have provided evidence that the

orientation of the cortical columns in the sulcal banks in

relationship to the direction of the TMS-induced electric

field vector is a significant factor. By using this evidence,

we may design more precise coil placement methods that

can be used for most TMS applications.

Summary and Future Directions for Improving
Precise TMS Strategies

In the previous section, we analyzed possible strategies for

improving the precision of TMS, all of which have made

distinct contributions. Technological and methodological

advances in TMS allow for a greater stimulation effect.

Furthermore, the integration of TMS with neuroimaging

methodologies can reveal the spatial and temporal effects

of TMS.

However, the existing TMS procedures are still limited in

the precision of their spatial and temporal targeting. Repro-

ducibility in identifying brain stimulation targets, identify-

ing coil locations, and locating the TMS coil is also a major

issue. These unaddressed issues for precise stimulation

require future study. The factors that most need to be further

investigated can be divided into identifying brain stimulation

targets, identifying coil locations, locating the TMS coil,

individualizing the TMS treatment paradigm, and recording

intra-individual responses (Fig. 4).

Fig. 4 Flow diagram for identifying potential precise TMS strategies.
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Identifying Currently Unknown Optimal Stimula-

tion Sites May Facilitate More Precise Targets

for Brain Stimulation

The therapeutic efficacy of rTMS against psychiatric and

neurological conditions, such as depression [85] and

migraine [93], has been tested in many studies. Studies have

reported an association between lesions in the left DLPFC

and depression [119, 120]. Thus, protocols for applying

rTMS to the left DLPFC have received USFDA approval for

therapeutic clinical use in depression. However, the views

about treatment targets based on focal brain lesions differ

[17, 19]. The network connectivity and neurophysiological

and network-relatedmechanisms of TMS effectsmay help to

decide new and more precise brain stimulation targets.

Identifying currently unknownoptimal stimulation sitesmay

facilitate more precise stimulation.

Network Connectivity May Help to Identify New Brain

Stimulation Targets

Many studies have investigated whether network connec-

tivity helps in identifying accurate stimulation targets

[10, 121–124]. Whether rTMS produces both local and

distant network effects has been discussed. To evoke

changes at a distance, the effects must be conveyed through

anatomical and functional network connectivity that links

different regions of the same cerebral circuit

[99, 125–128]. The location of the distant activated areas

may be predicted by information about connectivity

between the initial stimulation target and distant brain

regions [129]. Thus, information about network connec-

tivity may improve our knowledge of the regions that will

be activated under rTMS and thus suggest potential targets

for stimulation. For example, rTMS may relieve depression

by modulating functional connectivity in cortical networks,

so new targets may be recognized based on knowledge of

functional connectivity. More precise atlases of network

connectivity, such as the human Brainnetome atlas [130],

should provide more accurate targets. Recent studies have

demonstrated that lesion locations associated with depres-

sion can be mapped to a specific circuit [131–133].

Moreover, stimulation sites aligned with brain lesions

mapped to the depression circuit are effective for improv-

ing post-stroke depression. This depression circuit may

help identify stimulation targets that map to the depression

circuit rather than to a single region.

Neurophysiological Mechanisms of TMS Effects May Help

to Decide More Precise Targets for Brain Stimulation

TMS techniques are used to activate neuronal firing

temporarily and reversibly in a targeted brain region or in

distant regions connected with the targeted region

[134, 135] (Fig. 1C). TMS generally interferes with brain

function, creating a virtual lesion, but it may augment

cortical activity in some situations. Animal studies have

provided several mechanisms to explain the modulation

effects, including that TMS actively initiates action poten-

tials, modifies membrane resting potentials and thresholds,

changes synaptic connectivity, affects timing dynamics of

cellular gating components, and influences channel prop-

erties leading to subsequent alterations in spontaneous

activity [136, 137]. While each of these perspectives has

provided a unique contribution, they converge in several

important aspects.

In general, online TMS effects are thought to result from

an active initiation of action potentials in the stimulated

neurons [138] and networks [135, 139]. However, offline

TMS effects may result from either cortical facilitation or

cortical inhibition. TMS protocols are thought to alter the

long-term excitability of stimulated cells and networks

following stimulation [6, 140, 141]. The long-term effects

are often described as long-term potentiation-like or long-

term depression-like, with increased or decreased synaptic

strength lasting minutes or more [82–84]. However, there is

still significant debate as to the mechanisms by which

offline TMS alters activity [27, 142–145]. An appealing

hypothesis is that these long-term effects originate from

changes in synaptic plasticity [146]. Synaptic plasticity is

the ability of a synapse to modulate its synaptic strength in

response to changes in neuronal activity, an important

neurochemical foundation of learning and memory

[147, 148]. The expression of long-term potentiation and

long-term depression either respectively strengthens or

weakens the strength of synaptic tranmisssion [9, 27, 149].

Indeed, many studies have shown that rTMS induces long-

term changes in glutamatergic neurotransmission to prin-

cipal neurons [145, 150]. The pivotal role of post-synaptic

Ca2? in determining whether a glutamatergic synapse is

potentiated or depressed has also been investigated

[146, 151–153]. Although TMS-induced plasticity shares

certain properties reminiscent of N-methyl-D-aspartate

glutamatergic plasticity, this association must be taken

with caution since direct demonstrations of the physiolog-

ical mechanisms in humans have not been made.

It is increasingly recognized that alterations in brain

networks may play the same role in neural and psychiatric

disease as alterations in brain region and may be the reason

for many of the behavioral manifestations of such diseases

[154]. In general, human brain connectivity can be divided

into anatomical connectivity and functional network con-

nectivity. Characterizing anatomical network connectivity

predominantly relies on diffusion tensor imaging (DTI), a

neuroimaging technique that enables the measurement of

the restricted diffusion of water molecules along white
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matter fiber tracks. Functional network connectivity is

predominantly obtained using EEG, PET, fMRI, or fNIRS.

TMS can be used to perturb human brain connectivity, and

these neuroimaging techniques can, then, be used to reveal

the spatial and temporal effects of TMS. These types of

human neuroimaging studies have revealed that TMS

effects may change the plasticity of networks in the brain,

both their synaptic plasticity and their network plasticity.

Synaptic plasticity may improve the functioning of the

brain at the synaptic level. Similar to synaptic plasticity,

network plasticity could result from remodeling other

levels of brain organization. Such plastic changes may

improve the functioning of the brain by modifying its

structure and altering the connection between functional

networks [155, 156].

Structural modifications are similar to the macroscopic

changes that have been induced in training experiments

[157, 158], in that they reflect the rapid adjustment of

neuronal systems at the cellular level. Several neuroimag-

ing studies have suggested that TMS relieve neurological

or psychiatric disorders by modulating abnormal structural

and functional connectivity in cortical networks

[39, 128, 159–162]. It is thought that TMS modulates

synaptic strength in both the local region and functionally

connected regions [38, 163–165]. Thus, these studies

suggest that structural and functional networks can be

alternative targets that can activate the targeted brain

region.

In summary, human neuroimaging studies have pro-

vided strong evidence that structural and functional net-

works can be modulated by TMS and may provide new

stimulation targets. However, the neurophysiological

mechanisms of the modulatory effects have not yet been

demonstrated, and more direct evidence from human

studies is lacking.

The Optimal Position for the Coil Still Needs to Be

Determined by Future Studies

Various strategies have been implemented to determine the

coil location. These methods include following: the

original 5–cm rule [166], using 10–20 EEG positioning

coordinates [167], and applying image-guided navigation

systems [168]. The premise of these strategies is that the

region directly underneath the center of the TMS coil is the

most likely to be activated and induce action potentials.

Hence, the TMS coil is typically positioned on the area of

the scalp nearest to the brain target. However, the activated

area is not necessarily underneath the center of the TMS

coil [169]. A method for projecting the center of gravity

has also been used to predict the activated areas. Critical

principles related to tissue-specific conductance and

boundary effects should also be considered [170].

Many studies have estimated the distribution of the

TMS-induced electrical fields using individual electromag-

netic models to guide coil positioning [97, 171, 172].

However, these methods cannot define the exact stimula-

tion coil location and orientation, so researchers can only

choose a coarse coil position in which the induced electric

field at the stimulation target seems to be maximal. A

recent study investigated the electrical field strength and

optimal TMS coil orientation and used them to generate an

atlas [173] that is useful for obtaining effective stimulation.

This computational study confirmed that the electromag-

netic model is useful for identifying an accurate coil

position. However, the optimal positioning of the coil still

needs to be developed in future studies.

Studies have proposed that the brain region with the

maximum induced current is most likely to be maximally

activated [174, 175]. Specifically, currents have their

maximum impact at the axonal boundaries or bends in

the fibers of individual neurons, such as the axon–soma and

axon–bouton boundaries, which result in geometric dis-

continuities. The location of the maximum current density

may be predicted via mathematical modeling, depth

electrode recordings, phantom studies, imaging studies,

and electromagnetic modeling [9, 137, 176–180]. To date,

electromagnetic modeling has been the primary method for

predicting cortical locations with current density maxima

obtained by solving Maxwell’s equations. Using this

approach, investigators may be able to find a relationship

between the cortical locations and the optimal coil location

and orientation in future work. If treatment targets of rTMS

do prove their worth, it will be important to develop an

optimization algorithm based on the coil location and

orientation. Therefore, optimizing the coil location and

orientation may be a new strategy for improving the

therapeutic effectiveness of rTMS.

However, the technical limitations of precise stimulation

include the quality of the MRI and fMRI, the way the MRI/

fMRI are combined with TMS, and the accuracy of the

electrical field modeling [181–183]. With the development

of imaging technologies, image-processing algorithms, and

numerical methods [170, 184, 185], several groups have

calculated the induced electrical field in an anatomically

realistic head model obtained from MRI and DTI data

[13, 186–188]. MRI data are used to rebuild a tailored finite

element head model and DTI data are used to map

anisotropic conductivity information [189]. This technique

offers the opportunity to track axonal fibers to further

improve neuro-navigational procedures. It should be noted,

however, that although complex models offer the possibil-

ity of increasing coil targeting, it comes at a significant

computational cost. Recently, deep neural network models

[190] and a realistic five-compartment head model [191]

have been applied to estimate the induced electrical field;
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these may be useful for real-time, high-precision

navigation.

The Precision of Coil Location Positioning by Nav-

igation Systems Still Needs to Be Improved

Navigation systems have been developed to facilitate the

use of rTMS, in order to ensure that the stimulating coil

targets the correct anatomical or functional landmarks

[181]. An infrared camera in the navigation system is used

to detect trackers placed on the stimulating coil and on a

headband worn by the subject, ensuring the consistency of

coil placement [192, 193]. In addition, navigation systems

guide the positioning of the TMS coil by working in

cooperation with a computational model and neuroimaging

data to identify the brain stimulation target and coil

location [194]. Although precision has been improved

substantially by using navigated rTMS, the coil targeting

accuracy is still limited to *6 mm.

Currently, few industrial robots are applied in naviga-

tion systems to guarantee precise coil placement and to

achieve repeatable stimulation results. Robotized position-

ing of the coil offers some advantages over conventional

navigation systems (function-guided, stereotactic-guided,

or image-guided) in that it is tightly controlled based on the

surface reconstruction of the individual brain and shows

high intra-individual reproducibility. Because of its high

degree of automatization, it is also investigator-

independent.

Individual TMS Treatment Paradigms Should Be

Determined

In recent years, there has been increased emphasis on

individualized treatment because intrinsic factors, includ-

ing genetics, gender, age, brain morphology, and brain

connectivity, may contribute to individual variability. As a

result, individual outcomes of rTMS treatment may be

variable. If new rTMS protocols (stimulation target, coil

location, and locating coil) do prove their worth, it will

become important to individualize the rTMS treatment

paradigm.

However, designing patient-specific treatment para-

digms is a monumental task. Approaches to accomplishing

this task vary mainly in the information sources used for

brain target and coil localization and the methods for

integrating the information. Broadly speaking, the infor-

mation sources fall into three categories. First, recent

studies have suggested that neuroimaging [195, 196], a

model of neurocircuit dysfunction [168], and clinical

symptom scales [197] predict the outcomes of rTMS

treatment. Therefore, individual brain targets may be

refined in the future based on neuroimaging and symptom

biomarkers. The effective stimulation target, such as

cortical regions connecting to subcortical nuclei, may be

determined by performing tractography on an individual’s

DTI data. Furthermore, it is important to use an individual

3-D model to simulate the induced electrical field, using

patients’ MRI or DTI data to build it. Using such

techniques can improve individual coil target localization.

Real-time Intra-individual Responses Should Be

Recorded to Provide More Accurate Stimulation

Procedures

There is a small but certain degree of intra-individual

variability that is reflected in within-person changes during

repeated measurements. Thus, a neuroscientist must be

aware of real-time individual responses to accurately plan

the stimulation procedures. Electrophysiology, neuroimag-

ing methods, and new simultaneous recording methods

may help neuroscientists to solve this problem.

Electrophysiological and neuroimaging methods have

been used to study the interactions between intracortical,

cortico-cortical, and cortico-subcortical regions during

TMS modulation. However, these methods may generate

artifacts, so they usually cannot be used to simultaneously

record individual responses, as discussed in the above

section. A recent in vivo study recorded the single-neuron

activity of alert non-human primates within 1 ms after the

TMS pulse [198]. A TMS coil was designed that enabled

direct acquisition of neuronal signals in awake monkeys.

Application of these tools may facilitate the refinement of

experimental and treatment protocols. Furthermore, tech-

niques that can simultaneously record individual responses

provide a practical solution for closing the loop between

locating the appropriate brain regions and choosing the

optimal modulation systems and can thus potentially

enable clinicians to identify optimal treatment paradigms

using intra-individual responses.

Conclusions

Precise TMS modulation is an intensive area of ongoing

neuromodulation application aimed at identifying precise

brain targets and identifying TMS coil locations, locating

the TMS coil precisely, and providing individual and intra-

individual TMS treatment paradigms. The authors hope

that the studies discussed above will provide insights that

merit consideration in designing and carrying out precise

TMS modulation. Further research is required to determine

the effects of different modulation strategies on the safety

and efficacy of precise stimulation. However, although the

characteristics of the human brain pose challenges for the

design and execution of precise TMS strategies, the unique
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opportunity these modalities offer for achieving exact

special and temporal effects is unmatched.
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