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Abstract

The SWI/SNF chromatin remodeling complex, via nucleosome topology modulation, regulates 

transcription. The SMARCA4 (BRG1) subunit codes for the ATPase energy engine of the 

SWI/SNF complex. SMARCA4 is a tumor suppressor that is aberrant in ~5–7% of human 

malignancies. Class I SMARCA4 alterations (truncating mutations, fusions, and homozygous 

deletion) lead to loss of function while class II alterations (missense mutations) have a dominant 

negative/gain-of-function effect and/or loss-of function. SMARCA4 alterations typify the ultra-

rare small cell carcinomas of the ovary hypercalcemic type (SCCOHT) and SMARCA4-deficient 

thoracic and uterine sarcomas; they are also found in a subset of more common tumors, e.g., lung, 

colon, bladder, and breast carcinomas. Germline variants in the SMARCA4 gene lead to various 

hereditary conditions: rhabdoid tumor predisposition syndrome-2 (RTPS2), characterized by loss-

of-function alterations and aggressive rhabdoid tumors presenting in infants and young children; 

and Coffin-Siris syndrome, characterized by dominant negative/gain-of function alterations and 

developmental delays, microcephaly, unique facies, and hypoplastic nails of the fifth fingers or 

toes. A minority of rhabdoid tumors have a germline SMARCA4 variant as do >40% of women 

with SCCOHT. Importantly, immune checkpoint blockade has shown remarkable, albeit anecdotal, 

responses in SCCOHT. Additionally, there is ongoing research into BET, EZH2, HDAC, CDK4/6, 

and FGFR inhibitors, as well as agents that might induce synthetic lethality via DNA damage 

repair impairment (ATR inhibitors and platinum chemotherapy), or via the exploitation of 

mitochondrial oxidative phosphorylation inhibitors or AURKA inhibitors, in SMARCA4-aberrant 

cancers.
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INTRODUCTION

The switch/sucrose-non-fermenting (SWI/SNF) complex is an evolutionarily conserved 

ATP-dependent chromatin remodeling complex that plays important roles in DNA repair, 

transcriptional activation of genes normally repressed by chromatin, differentiation, and 

organ development.(1) The SWI/SNF complex specifically changes chromatin structure 

by altering DNA-nucleosome topology, with nucleosomes being a structural unit of 

chromosomes consisting of a length of DNA coiled around a core of histones (Figure 1)(2).

Each SWI/SNF complex is comprised of multiple subunits that have an ATP-dependent 

catalytic unit, either SMARCA4 (BRG1) or SMARCA2 (BRM), as well as a core regulatory 

subunit such as SMARCB1 (INI1, BAF47), and variable other subunits including ARID1A 

(Figure 1)(3,4). Recent studies show important tumor suppressor roles for the SWI/SNF 

complex, with ~20% of human malignancies bearing pathogenic alterations of its subunits.

(5–7)

SMARCA4 is also known as transcriptional activator BRG1. It can activate or repress 

transcription via its ATPase enzymatic role in the chromatin remodeling complex. This 

protein can also bind BRCA1 (8), as well as regulate the expression of the tumorigenic 

protein CD44 (a transmembrane glycoprotein implicated in the growth and metastasis of 

numerous tumors)(9).

Importantly, SMARCA4 is one of the most frequently aberrant chromatin remodeling 

ATPases in cancer; it is altered in approximately 5% to 7% of all human malignancies 

(Table 1) (7,10–25). Further, mutations of this gene are also the hallmark of certain cancers. 

For instance, inactivating mutations in SMARCA4 can be identified in the vast majority 

of small cell carcinomas of the ovary, hypercalcemic type (SCCOHT), and studies showed 

high utility of SMARCA4 immunohistochemical (IHC) loss in the diagnosis of this rare 

tumor that afflicts young women.(20,21,26–30) SMARCA4 deficiency is also a hallmark 

of thoracic sarcomatoid tumors(22,31) and of malignant rhabdoid cancers of the uterus 

(undifferentiated uterine sarcoma)(24). Germline SMARCA4 variants occur and cause 

Coffin–Siris syndrome (characterized by abnormalities of the craniofacial area, resulting 

in a coarse facial appearance, microcephaly, and developmental disabilities) and RTPS2 

(characterized by young onset of various poorly differentiated tumors) (32) (Table 2)(32–

37).

Herein, we review the landscape of SMARCA4 abnormalities, their association with cancer, 

and the emerging treatment implications of these gene alterations suggesting sensitization to 

certain therapies, such as immune checkpoint inhibitors (ICIs).
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The SMARC family

The SWI/SNF-related, matrix-associated, actin-dependent regulators of chromatin 

(SMARC), also called BRG1-associated factors, are components of human SWI/SNF-like 

chromatin-remodeling protein complexes. SMARC family members include SMARCA4 
(BRG1), SMARCA2 (BRM), SMARCB1, SMARCC1, SMARCC2, SMARCD1, 
SMARCD2, SMARCD3, SMARCE1. SMARCA4 maps to chromosome 19p13.2 (https://

www.omim.org/entry/603254)

SMARCA4 structure and function

The SMARCA4 gene encodes a transcriptional activator protein, which has also been called 

BRG1 (Figures 2). The SMARCA4 protein features a bromodomain and helicase/ATPase 

activity (Figure 3). A bromodomain is an approximately 110 amino acid protein domain 

that recognizes acetylated lysine residues, such as those on the N-terminal tails of histones; 

these domains play a key role in regulating gene transcription. Helicases are enzymes that 

bind and can remodel nucleic acid or nucleic acid protein complexes. ATPases are enzymes 

that catalyze the hydrolysis of a phosphate bond in adenosine triphosphate (ATP) to form 

adenosine diphosphate (ADP); they harness the energy released from the breakdown of the 

phosphate bond and use it to execute other cellular reactions.

SMARCA4 (BRG1) forms one subunit of several different protein groupings designated 

SWI/SNF protein complexes. SWI/SNF complexes regulate gene activity/expression by the 

chromatin remodeling process. Chromatin is the arrangement of protein and DNA that 

packages DNA into chromosomes. The architecture of chromatin can be remodeled to adjust 

how tightly DNA is parceled. Chromatin remodeling is one of the critical manners in 

which gene expression is controlled during development. When DNA is tightly packed, gene 

expression is dampened as compared to when DNA is loosely packed. SMARCA4 uses ATP 

to provide energy for chromatin remodeling.

Through their ability to regulate gene activity, SWI/SNF complexes are involved in 

many cellular functions (Figures 1 and 2): replicating DNA; modulating the growth, 

division, and differentiation of cells; and repairing damaged DNA. Via these processes, 

the SMARCA4 protein acts as a tumor suppressor (Figure 2). Having functional SMARCA4 

is also important for development past the pre-implantation stage.(38) SMARCA4 plays 

a role in the growth of smooth muscle of the heart and gastrointestinal tract.(39) 

Additionally, SMARCA4 is required for Gli-mediated transcription activation in Sonic 

hedgehog (Shh) signaling.(40) Mutations of SMARCA4 correlate with context-dependent 

expression changes at MYC genes, indicating that the SMARCA4 and MYC proteins 

are functionally related.(41,42) Cell lines lacking SMARCA4 do not respond to retinoic 

acid or glucocorticoids, while restoration of SMARCA4 restores sensitivity.(42) Finally, 

as mentioned earlier, SMARCA4 binds BRCA1(8), and regulates the expression of the 

tumorigenic transmembrane glycoprotein CD44(9).

SMARCA4 alterations and cancer

The SWI/SNF ATPase SMARCA4 is one of the most frequently mutated chromatin 

remodeling ATPases in cancer.(43) Mutations are enriched at highly conserved ATPase 
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sequences, which reside on important functional surfaces such as the DNA-binding surface 

or the ATP pocket.(41) Overall, SMARCA4 is altered in about 5–7% of all malignancies. 

Table 1 lists some of the tumors best explored in the context of SMARCA4 genomic 

alterations or loss of expression. Additional tumors in which SMARCA4 alterations have 

been identified include, but are not limited to, lung cancer, colon adenocarcinoma, bladder 

urothelial carcinoma, and invasive breast ductal carcinoma.(44)

There are two main categories of SMARCA4 alterations (18)

→ Class 1 mutations – truncating mutations, fusions, and homozygous deletion 

(loss of function usually associated with protein loss)

→ Class 2 mutations – missense mutations (postulated to have dominant negative 

or gain of function effects, but some reports suggest loss of function, especially 

in lung cancer)(25) Dominant-negative activity may be implicated in the context 

of a wild-type SMARCA4 allele (when present as heterozygous mutations) or 

dominant-negative activity with SMARCA2. Missense SMARCA4 mutations 

can also result in loss of accessibility and loss of chromatin remodeling activity.

(41,45)

Rhaboid tumors: Many of the SMARCA4-altered tumors have rhabdoid features defined 

by characteristic large cells with eccentrically located nuclei and abundant eosinophilic 

cytoplasm. Rhabdoid tumors are rare, highly aggressive cancers that emerge most frequently 

in the brain or in the kidneys; they affect primarily infants and young children between 

the ages of 1 and 3 years old, but have also been identified in adults. About one-third of 

rhabdoid tumors are linked to germline SWI/SNF variants, usually in SMARCB1 and less 

commonly in SMARCA4.(46)

Small cell carcinoma of the ovary, hypercalcemic type, (SCCOHT): SCCOHT is 

the most common undifferentiated ovarian cancer that afflicts women aged under 40 years of 

age. However, it is still very rare. The young women afflicted with SCCOHT usually present 

with symptoms related to a pelvic mass. The age range at diagnosis is quite wide (7 months 

to 56 years, with an average age of ~24 years). About 60% of patients with SCCOHT have 

hypercalcemia. SCCOHT is an aggressive cancer, with long-term survival rates of only~30% 

in early-stage cases.

SCCOHT is a monogenic illness, harboring somatic and germline SMARCA4 variants. It 

has morphological and molecular resemblance to malignant rhabdoid tumors, which are 

often triggered by variants in a related SWI/SNF gene--SMARCB1. Overall, inactivating 

mutations in the SMARCA4 gene are seen in 75 to 100% of SCCOHT cases and 

accompanied by SMARCA4 protein loss. In contrast, only about 0.4% (2/485) of other 

primary ovarian tumors have similar changes in SMARCA4.(21,47)

The incidence of SMARCA4 germline variants is high, causing ~43% of SCCOHTs. 

Women with germline deleterious variants in SMARCA4 likely have a clinically important 

risk of SCCOHT up to the age of ~60 years old, particularly in the context of a positive 

family history. Germline SMARCA4 genetic testing is recommended for all affected women 
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with SCCOHT. Additional cascade testing of at-risk family members upon identification of 

germline deleterious SMARCA4 variants should be performed.(48)

In light of the fact that surveillance is of unclear benefit, risk-reducing bilateral salpingo-

oophorectomy is indicated in unaffected adult women with germline pathogenic SMARCA4 
variants and a positive family history.(48) Responses to ICIs have been reported.(48,49)

SMARCA4-deficient thoracic sarcoma (SMARCA4-DTS) (22,23): SMARCA4-DTS 

is a recently described aggressive entity with specific genomic alterations in SMARCA4. It 
represents a distinct subset of thoracic sarcomas with undifferentiated rhabdoid morphology. 

These sarcomas usually occur in the 30- to 50-year-old age group, with male predominance 

and a smoking history. Tumors are generally large compressive masses located in the 

mediastinum, pleura, and/or lung. Median overall survival has been only ~6 months. 

Pathological diagnosis of this tumor is challenging because of the morphological features 

with poor differentiation that often mimic undifferentiated carcinoma or carcinoma of 

unknown primary.

SMARCA4-DTS has a unique biologic signature: co-loss of SMARCA4 and SMARCA2 

with overexpression of SOX2. SMARCA4 loss by IHC varies in studies from 30% to 100% 

of cases. Durable responses to the ICI pembrolizumab have been documented.(50) Patients 

do not generally have evidence of germline transmission.(31)

SMARCA4-deficient uterine sarcoma (24): SMARCA4-deficient uterine sarcomas 

(subset of malignant rhabdoid tumor of the uterus) are rare uterine malignant neoplasms 

with IHC, morphologic, and genomic similarities to SCCOHT. Sheets of large atypical 

epithelioid cells with prominent rhabdoid morphology, indistinguishable from the large cell 

variant of SCCOHT are observed. Median age of onset is about 51 years old. These cancers 

are aggressive, with a median survival of only ~7 months.

At the molecular level, the tumors have SMARCA4 loss by IHC due to SMARCA4 
gene mutations. Germline SMARCA4 variants have been reported in SMARCA4-deficient 

uterine sarcomas.(51)

Hereditary Syndromes with SMARCA4 alterations

Since the SWI/SNF complex plays a central role in gene expression, it is not surprising that 

there is an association between variants in the SWI/SNF complex, malignant neoplasms and 

developmental disorders. Germline variants in the SWI/SNF complex have now been shown 

to be a driving force for several types of cancers and other disorders.(52)

Germline variants in SMARCA4 have been found in RTPS2, and Coffin-Siris syndrome 

(Table 2)(32–37). Moreover, ~35% of rhabdoid tumors are associated with germline 

SWI/SNF variants (mostly in SMARCB1 and less commonly in SMARCA4), and almost 

half of women with SCCOHT have germline SMARCA4 variants.(46)

The cancer risk in individuals with germline SMARCA4 pathogenic variants remains 

unclear, but it is likely high. For instance, only one publication reports a female with a 
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SMARCA4 germline variant who remained cancer-free past her sixth decade(53); however, 

there is also a publication bias for cancer-positive cases that confounds risk assessment.

Most rhabdoid tumors have been associated with SMARCB1 loss-of-function mutations, 

but they can also be caused by SMARCA4 loss-of-function mutations (leading to non-

expression of their respective proteins). In general, prognosis is worse for patients with 

SMARCA4-related malignancies. To differentiate between the two variant types, rhabdoid-

neoplasm related hereditary disorders have been separated into two categories:

→ RTPS1, for patients who carry a germline variant in SMARCB1;

→ RTPS2, for patients who carry a germline variant in SMARCA4.

Germline carriers are more at risk of developing second primary tumors. Females that carry 

the SMARCA4 germline variant have a higher risk of developing SCCOHT. This has led to 

the suggestion that SCOOHT be considered part of the RTPS family of tumors.

Rhabdoid tumor predisposition syndrome 2 (RTPS2)(32,54,55): RTPS’s main 

feature is a high risk of developing rhabdoid tumors, which are lethal cancers presenting 

mostly in infants and preschool children. The diagnosis of RTPS2 is established by one or 

more features: (i) a germline heterozygous deleterious variant in SMARCA4; (ii) multiple 

SMARCA4-deficient malignancies; (iii) a proband with a rhabdoid tumor; and/or (iv) a 

family history of rhabdoid malignant neoplasm.

Rhabdoid tumors most commonly afflict the central nervous system (i.e., atypical teratoid/

rhabdoid tumor [AT/RT]), with more than half arising in the cerebellum. These cancers 

can also arise as extracranial extrarenal malignant rhabdoid tumors, such as rhabdoid 

tumors of the heart, bladder, liver, retroperitoneum, head and neck, paravertebral muscles, 

mediastinum, pelvis, rhabdoid tumor of the kidney, and SCCOHT (also known as malignant 

rhabdoid tumor of the ovary).

Because RTPS2 is ultra-rare, the standard of care for management is not firmly established. 

However, intensive surveillance from birth is needed. Most patients are treated with 

aggressive chemotherapy, surgery, and radiotherapy. Preventative bilateral ovary removal 

may be suggested, perhaps after childbearing or earlier.

Individuals diagnosed with SMARCA4-related RTPS2 generally inherited a deleterious 

variant from an unaffected parent. Since RTPS2 can be passed on in an autosomal dominant 

fashion, each offspring of an individual with a germline SMARCA4 pathogenic variant 

has a 50% chance of inheriting the pathogenic variant.(32) Even so, penetrance appears 

to be incomplete, and the RTPS-related tumors can differ even within the same family. 

Pre-implantation genetic testing/prenatal screening are feasible if the deleterious family 

variant has been identified.

Coffin–Siris syndrome (CSS): Coffin-Siris is an ultra-rare and clinically heterogeneous 

congenital disorder with the main characteristics being developmental disability, 

microcephaly, hypoplastic nails of the fifth fingers or toes, and distinct facial features.
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It is caused by germline variants in different subunits of the ATP-dependent SWI/SNF 

chromatin remodeling complex--ARID1A, ARID1B, SMARCA4, SMARCA2, SMARCB1 
or SMARCE1 as well as SOX11.(33–36) SMARCA4 is mutated in ~7–11% of patients. 

Most SMARCA4 germline alterations that have been reported in Coffin-Siris syndrome 

patients are non-truncating (either missense or small in-frame deletions) clustered within 

the highly conserved ATPase/helicase domain, thus suggesting dominant-negative or gain-

of-function effects. In contrast, most SCCOHTs are due to biallelic germline and/or somatic 

inactivating (nonsense or frameshift) alterations causing complete loss of SMARCA4 

expression. A case report of a patient with mild Coffin-Siris syndrome who developed 

SCCOHT as a teenager showed an inactivating SMARCA4 variant, which is, as mentioned, 

non-traditional for this syndrome.(33)

Coffin-Siris syndrome appears to follow an autosomal dominant pattern of inheritance. 

However, the condition is not usually inherited from an affected parent, but rather occurs 

from de novo mutations that likely take place during the embryonic period.

Potential Therapeutic Targeting

Because tumor suppressor loss is not directly druggable, investigators have pursued 

therapeutic vulnerabilities that exploit concomitant changes in gene expression and 

signaling pathways. In the case of SMARCA4-alterated cancers, immunotherapy with ICIs 

has emerged as a promising treatment modality (Table 3)(18,48–50,56–61). SMARCA4 
alterations result in abnormal SWI/SNF complexes; such aberrant chromatin remodeling 

complexes can influence the transcription of interferon-stimulated genes important for 

immune responsiveness, as well as the differentiation, activation and recruitment of several 

immune cell types.(62) Multiple other signals have also been investigated for potential 

pharmacologic intervention.

Immunotherapy: Although the low mutation burden of SCCOHT would not predict 

responsiveness to ICI responsiveness, programmed cell death protein [ligand] 1 (PD-[L]1) 

inhibitors such as pembrolizumab have shown exceptional and durable responses in 

patients with relapsed SCCOHT.(48,49) Case reports of remarkable responses in aggressive 

SMARCA4-deficient thoracic sarcoma and in SMARCA4-altered NSCLC have also been 

published.(50,56,57) Although the number of patients reported above is small, it should be 

noted that the hallmark of the above cancers is SMARCA4 alterations. Furthermore, ICI 

treatment correlated with significantly improved outcomes overall in SMARCA4-aberrant 

NSCLC.(18) Some of these ICI responses were seen in patients with high tumor mutation 

burden (TMB) and/or high PDL1 expression by IHC, each of which are markers for 

immunotherapy response, but other patients had low TMB and were PD-L1 negative 

and still responded (Table 3)(63–67). Unfortunately, SMARCA4-deficient small-cell lung 

carcinoma has been reported to have had a negative outcome on ICI, as reflected by 

hyperprogressive disease (accelerated progression, which is sometimes observed in patients 

treated with immunotherapy).(58–61)

Bromodomain/BET inhibitors: BET inhibitors are a class of drugs that reversibly bind 

the bromodomains of Bromodomain and Extra-Terminal motif (BET) proteins BRD2–4, 
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and thwart protein-protein interaction between BET proteins and acetylated histones and 

transcription factors. BET inhibitors have been investigated in SCCOHT models, based on 

the reliance of SMARCA4-mutant esophageal cancer models for BET protein BRD4 and 

the co-regulation of an oncogenic network by BRD4 and SMARCA4. SCCOHT cells in 

orthotopic xenograft models showed sensitivity to BET inhibitors.(68)

EZH2 inhibitors: A potential therapeutic target for SMARCA4 aberrations comes from 

studies demonstrating that SWI/SNF loss leads to elevated PRC2.(48) Indeed, SMARCA4-

deficient cancer cells display sensitivity to suppression of the methyltransferase known as 

enhancer of zeste homolog 2 (EZH2), which serves as the catalytic subunit of PRC2. In 

SCCOHT cells, EZH2 inhibitors potently suppress growth of SCCOHT cell line xenografts. 

The only trial (NCT02601950) to include patients with SCCOHT investigated the EZH2 

inhibitor tazemetostat, and early results were reported for 10 patients with SCCOHT, one of 

whom achieved a partial response (PR).(69)

Histone deacetylase inhibitors (HDAC): Targeting histone modification complexes has 

also shown promise for treatment of patients with SCCOHT. HDAC inhibitors in SCCOHT 

result in re-expression of SMARCA2, which strongly suppresses proliferation of SCCOHT 

cells including in in vivo xenograft models of SCCOHT cells, which were responsive to the 

HDAC inhibitor, quisinostat.(70) However, a single clinical case report did not find efficacy 

with this approach.(71)

Cyclin inhibitors: SCCOHT cells are also sensitive to cyclin-dependent kinase 4/6 

(CDK4/6) inhibition. SMARCA4 loss causes downregulation of cyclin D1, limiting CDK4/6 

kinase activity in SCCOHT cells and leading to in vitro and in vivo susceptibility to CDK4/6 

inhibitors.(72) A similar synthetic lethal interaction between SMARCA4-loss and CDK4/6 

inhibition was noted in SMARCA4-deficient NSCLC. (73)

Kinase inhibitors: Exploiting an arrayed kinome-focused siRNA screen, Lang and 

colleagues showed sensitivity of SCCOHT cell lines in culture and in xenograft models 

to the multi-targeted tyrosine kinase inhibitor ponatinib (approved in the USA for BCR-
ABL-positive leukemia treatment).(74) A reliance upon FGFR signaling as the primary 

mechanism for this sensitivity was implicated (keeping in mind that ponatinib is a potent 

FGFR inhibitor (in addition to a BCR-ABL kinase inhibitor)). These results are in 

agreement with observations in rhabdoid tumors where re-expression of SMARCB1 resulted 

in decreased expression of FGFR1 and FGFR2, as well as the relative in vitro and in 
vivo sensitivity of rhabdoid tumor cell lines ponatinib.(75,76) Ponatinib warrants further 

investigation in SCCOHT and other rhabdoid tumors.

DNA repair: SMARCA4 binds BRCA1(8), a gene product key to DNA damage repair. 

Furthermore, preclinical data suggests that SMARCA4-deficient lung cancer cells showed 

enhanced replication stress. Exposure to ATR inhibitors (which impair DNA repair) resulted 

in replication catastrophe in these cells.(77) Similarly, low expression of SMARCA4 

is significantly associated with platinum-based chemotherapy responsiveness in NSCLC, 

probably because platinum induces extensive DNA damage.(78)
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Other therapeutic targets: In the preclinical setting, Wang et al(79) have demonstrated 

killing of SMARCA4-deficient tumors of gynecologic origin with mitochondrial oxidative 

phosphorylation inhibitors. These agents may be effective because SMARCA4 loss 

attenuates glucose transport leading to decreased glycolysis and increased dependence on 

mitochondria respiration. This type of synthetic lethality has also been reported for lung 

cancer cell lines.(80)

AURKA activity has also been identified as essential for survival and proliferation in 

NSCLC cells lacking SMARCA4. In these cells, RNAi-mediated depletion or chemical 

inhibition of AURKA using VX-680 induces cell death in vitro and in xenograft murine 

models. This effect may be because AURKA-dependent, centrosome-independent mitotic 

spindle assembly, is vital for the survival of SMARCA4-mutant but not of SMARCA4 
wild-type cells. Therefore, AURKA inhibitors may exploit a synthetic lethal vulnerability 

for NSCLCs carrying SMARCA4-inactivating alterations.(81)

CONCLUSIONS

The protein encoded by SMARCA4 is an ATPase member of the SWI/SNF chromatin 

remodeling protein family. It provides the energy machinery for remodeling nucleosomes 

and thereby regulating the transcriptional activation of genes normally repressed by 

chromatin. Approximately 5–7% of cancers have aberrations in SMARCA4. SMARCA4 
anomalies are the molecular hallmark of several ultra-rare aggressive cancers (Table 

1): SCCOHT and SMARCA4-deficient thoracic and uterine sarcomas. SMARCA4 
abnormalities are also discerned in a small subgroup of more common tumors including, 

but not limited to lung, colon, bladder, and breast carcinomas. Germline variants in 

the SMARCA4 gene lead to various hereditary conditions (Table 2): RTPS2 due to 

loss-of-function SMARCA4 abnormalities, and presenting with lethal rhabdoid tumors 

in infants and young children; and Coffin-Siris syndrome, a subset of which is due to 

dominant negative/gain-of function SMARCA4 alterations, and presenting with craniofacial 

differences, short fifth fingers and toes with underdeveloped or absent nails, feeding 

difficulties, hypotonia, and intellectual disability.

A small subset of patients with rhabdoid tumors and ~43% of women with SCCOHT have 

a germline SMARCA4 alteration. Emerging literature suggests that, despite its role as a 

tumor suppressor, SMARCA4 alterations, especially those that result in loss of function, are 

actionable, with immune checkpoint blockade demonstrating responses in a small number 

of published patients with SCCOHT or SMARCA-4 deficient thoracic or uterine sarcomas, 

as well as in SMARCA4-altered NSCLC (Table 3). Targeted therapies with BET, EZH2, 

HDAC, CDK4/6, FGFR inhibitors, and inhibitors of DNA damage repair are mechanistically 

sound as they have shown activity in preclinical models and/or have reasonable biologic 

rationale. Whether or not some of these compounds could also alleviate the congenital 

manifestations of disease (aside from the cancer itself) may merit investigation.(82) More 

trials with a biomarker-driven approach are needed for patients whose malignancies harbor 

SMARCA4-alterations.(83,84)
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Figure 1: The SWI/SNF chromatin remodeling complex:
The SWI/SNF complex is a multi-subunit chromatin-remodeling complex that has been 

implicated in cancer development. The complex interacts with transcription factors to 

modulate gene expression that contributes to cell differentiation and development. It 

includes the subunit SMARCA4, which has been shown to function as a tumor suppressor 

(2). Figure created with biorender.com
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Figure 2: SMARCA4 is a multifunctional tumor suppressor.
Its cancer-relevant functions include, but are not limited to, binding BRCA1, modulating 

MYC and sonic hedgehog expression, and regulating transcription via its role in the 

SWI/SNF chromatin remodeling complex. However, SMARCA4 has pleiotropic functional 

effects and regulates multiple additional transcriptional pathways and biologies. Figure 

created with biorender.com
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Figure 3: SMARCA4 is the core catalytic subunit (ATPase) of the SWI/SNF chromatin 
remodeling complex.
The ATPase utilizes ATP to generate energy that is critical for the nucleosome remodeling 

function of the complex. SMARCA4 has a bromodomain, which is a domain that recognizes 

acetylated lysine residues, such as those on the N-terminal tails of histones; these domains 

regulate gene transcription. It also has a helicase, which is an enzyme that binds and can 

remodel nucleic acid or nucleic acid protein complexes. Figure created with biorender.com
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Table 1.

Examples of tumors with somatic SMARCA4 alterations and/or loss of SMARCA4 expression by IHC*

Tumors with 
Altered SMARCA4

Tumor Type Total, N N % Comments References

Undifferentiated/rhabdoid 
gastrointestinal tract 
carcinomas

13 2 15.4%

12/13 cases (92%) showed loss of at least one SWI/SNF 
component Loss of SMARCB1 (5/13), SMARCA2 (10/13), 
SMARCA4 (2/13), and ARID1A (2/13) by IHC was 
observed either in combination or isolated.

(10)

Gastric cancer 1199 27 2%

Exhibited complete loss (N=6 of 27 patients), reduced 
(N=9), and heterogeneous (N=12) SMARCA4 patterns by 
IHC; SMARCA4-altered gastric cancer had divergent, often 
undifferentiated histomorphology

(11)

Lung Cancer

146 8 5.5% Lung adenocarcinoma (SMARCA4 loss by IHC)
(12)

115 6 5.2% Lung SCCs (SMARCA4 loss by IHC)

122 46 37%
Primary lung tumors: SMARCA4 negative by IHC 
(confirmed to be due to inactivating and biallelic mutations 
by ultra-deep sequencing)

(13)

60 6 10% SMARCA4 loss of protein expression (60 tumors includes 
41 adenocarcinomas and 19 squamous cancers (14)

37 13 35% SMARCA4 mutations in NSCLC cell lines
(15)

19 1 5% SMARCA4 mutations in SCLC cell lines

103 16 15.5% SMARCA4 loss by IHC in NSCLC (16)

93 11 12% SMARCA4 loss by IHC in lung adenocarcinomas (17)

4813 407 8%

Two types of SMARCA4 mutations in NSCLC: class 1 
(truncating mutations, fusions, and homozygous deletion) 
and class 2 (missense mutations). Protein loss in class 1 
mutations (81% vs. 0%, P < 0.001). SMARCA4 alterations 
correlated with shorter OS, with class 1 alterations associated 
with shortest OS (P<0.001).
ICIs correlated with better outcomes in patients with 
SMARCA4-mutant tumors (P = 0.01); class 1 mutations had 
the best response (P = 0.027).

(18)

Ovarian Cancer

360 15 4% Clear cell carcinoma (SMARCA4 loss by IHC) (19)

SCCOHT (19–21)

46
12
17

42
12
14

91%
100%
82%

Primary tumors, SMARCA4 loss by IHC
SMARCA4 biallelic inactivating mutations
14/17 (82%), SMARCA4 loss (IHC); 9/12, SMARCA4 
inactivating mutation

285 2 0.4% Primary ovarian cancers other than SCCOHT (21)

SMARCA4-deficient 
thoracic sarcoma 
(SMARCA4-DTS)

30 30 100%
SMARCA4 and SMARCA2 loss with overexpression of 
SOX2 by IHC; poorly differentiated tumors with rhabdoid 
features

(22)

12 40 30% Rhabdoid thoracic sarcomas had SMARCA4 loss by IHC (23)

Endometrial stromal 
sarcomas (uterine) 52 4 8% Endometrial stromal sarcomas (SMARCA4 loss by IHC) (19)

SMARCA4-deficient 
undifferentiated uterine 
sarcoma (malignant 
uterine rhabdoid tumor)

4 4 100% SMARCA4 loss by IHC. Uterine tumors with morphologic, 
IHC, and genetic similarities to SCCOHT (24)

*
A complete list of tumor types with altered SMARCA4 can be found in work by Fernando and colleagues(25)
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Abbreviations: ICI = immune checkpoint inhibitor; IHC = immunohistochemistry; NSCLC = non-small cell lung cancer; OS = overall survival; 
SCC = squamous cell carcinoma; SCCOHT=small cell carcinoma of the ovary hypercalcemic type; SCLC=small cell lung cancer; SMARCA4-
DTS = SMARCA4-deficient thoracic sarcoma
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