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Abstract

Longitudinal information is important for monitoring the progression of neurodegenerative 

diseases, such as Huntington’s disease (HD). Specifically, longitudinal magnetic resonance 

imaging (MRI) studies may allow the discovery of subtle intra-subject changes over time that 

may otherwise go undetected because of inter-subject variability. For HD patients, the primary 

imaging-based marker of disease progression is the atrophy of subcortical structures, mainly 

the caudate and putamen. To better understand the course of subcortical atrophy in HD and its 

correlation with clinical outcome measures, highly accurate segmentation is important. In recent 

years, subcortical segmentation methods have moved towards deep learning, given the state-of-the-

art accuracy and computational efficiency provided by these models. However, these methods 

are not designed for longitudinal analysis, but rather treat each time point as an independent 

sample, discarding the longitudinal structure of the data. In this paper, we propose a deep learning 

based subcortical segmentation method that takes into account this longitudinal information. Our 

method takes a longitudinal pair of 3D MRIs as input, and jointly computes the corresponding 

segmentations. We use bi-directional convolutional long short-term memory (C-LSTM) blocks 

in our model to leverage the longitudinal information between scans. We test our method on 

the PREDICT-HD dataset and use the Dice coefficient, average surface distance and 95-percent 

Hausdorff distance as our evaluation metrics. Compared to cross-sectional segmentation, we 

improve the overall accuracy of segmentation, and our method has more consistent performance 

across time points. Furthermore, our method identifies a stronger correlation between subcortical 

volume loss and decline in the total motor score, an important clinical outcome measure for HD.
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1. INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder known 

to affect subcortical structures.1 Specifically, changes in caudate and putamen volume are 

the primary imaging-based markers of HD pathology even in the early stages of disease 

progression,2-4 whereas other structures such as the pallidum appear to be more mildly 

affected, and the thalamus is relatively preserved. Understanding the relationship between 

subcortical atrophy and clinical outcome measures such as the total motor score (TMS) is 

of interest for HD studies. Given the large inter-subject variability in brain anatomy and 

disease progression, longitudinal MRI studies are especially important in this context. While 

many large-scale studies indeed collect longitudinal MRI data, many segmentation methods 

treat each MRI scan as an independent sample even if they belong to the same subject, and 

only consider the longitudinal structure of the data in post-processing, i.e., in the statistical 

analysis stage. Such an approach limits the benefits of longitudinal datasets.

In recent years, deep learning based segmentation methods have dominated the field, and 

state-of-the-art deep learning based methods produced promising results for segmenting 

subcortical structures.5-8 Dolz et al.5 proposed a 3D fully convolutional neural network 

(FCNN) on subcortical segmentation, and they applied their method to a large-scale 

dataset to prove the model robustness and segmentation accuracy. Based on the work of 

Dolz et al.,5 Li et al.6 further improved segmentation results by exploring variants on 

augmentation strategies and network architecture. Wu et al.7 proposed a 2D + 3D framework 

for segmenting the subcortical structures, which demonstrated promising performance. In a 

concurrent submission, we propose8 a cascaded 3D framework and a 3D FCNN to segment 

subcortical structures, which provides more accurate segmentations than Dolz et al.,5 Li et 

al.6 and Wu et al.7 However, none of these methods are designed for longitudinal subcortical 

segmentation, and the development of such methods is an important need in the field.

In related previous studies, the convolutional long short-term memory (C-LSTM)9 approach 

has been used for joint segmentation of multiple images and produced promising results10-12 

by extracting and passing useful inter-image information. He et al.11 used C-LSTM to 

leverage inter-slice information and improved segmentation consistency in retinal OCT 

scans. Bai et al.12 achieved aortic image sequence segmentation by applying C-LSTM. In 

a closely related work, Gao et al.10 stacked C-LSTMs into an FCNN for joint 4D medical 

image segmentation. This allows the model to learn the overall trend and the correlations 

from MRIs at multiple time-points.

In this paper, we propose a longitudinal subcortical segmentation method, which uses 

two 3D MRIs acquired at different time points from a given subject as input and jointly 

computes the corresponding segmentations. Inspired by the work from Gao et al.,10 we use 

two different time-point MRIs for each subject and focus on the relationship between these 

inputs to improve the segmentation accuracy. Additionally, we use a network architecture 

specifically optimized for the subcortical segmentation task.8 With the bi-directional C-

LSTM blocks, our model is able to extract, pass and fuse useful longitudinal information 

to form segmentations. Thus, we leverage the inherent dependency between longitudinal 

scans instead of treating them as independent samples and discarding the useful contextual 
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information. We test our method on the PREDICT-HD dataset and evaluate our results 

against a cross-sectional variant.8 The Dice coefficient, average surface distance and 95-

percent Hausdorff distance are used as evaluation metrics. We also report the correlation of 

the volume loss with the decline in total motor score.

2. METHODS

2.1 Convolutional LSTM

The long short-term memory (LSTM)13 is a specific type of recurrent neural network (RNN) 

for increasing learning ability based on previous information. Furthermore, the LSTM 

minimizes the effect of the “gradient vanishing” problem in the training process. Based 

on fully connected LSTM,14 Shi et al. proposed the C-LSTM9 which can be incorporated 

in the fully convolutional neural network (FCNN) architecture and leverages spatiotemporal 

information due to the convolution operation. The C-LSTM can be described as:

it = σ(W xi ∗ xt + W ℎi ∗ ℎt − 1 + bi)
ft = σ(W xf ∗ xt + W ℎf ∗ ℎt − 1 + bf)
ot = σ(W xo ∗ xt + W ℎo ∗ ℎt − 1 + bo)
ct = ft ⊗ ct − 1 + it ⊗ tanh(W xc ∗ xt + W ℎc ∗ ℎt − 1 + bc)
ℎt = ot ⊗ tanh(ct)

(1)

where xt is the input, ct is the output cell state and ht is the hidden state. ct–1 and ht–1 are 

the output from previous hidden layer. it, ft and ot are the input, forget and output gates 

respectively. * denotes convolution operation, ⊗ denotes pixel-wise multiplication, and σ is 

the sigmoid function. Finally, the Ws contain the weights and the bs contain the bias.

For our work, to allow each input scan to leverage information from the other scan, we 

added a backward path to form a bi-directional C-LSTM, as shown in Fig. 1. Additionally, 

to reinforce current information, we used an addition before outputting. Along the training 

processes, C-LSTMs will extract, pass and fuse the useful longitudinal information between 

scans. Thus, our segmentations take into account the longitudinal context.

2.2 Network Architecture

Fig. 2 shows our framework for longitudinal subcortical segmentation. The framework 

contains 2 paths, such that each path receives the 3D image from one time-point as input 

and outputs the corresponding 3D segmentation. The output has the same size as the input 

volume but contains 9 channels (8 considered subcortical structures and 1 background). 

Similar to Gao et al.,10 in the encoder phase, the bi-directional C-LSTM blocks serve as 

the bridge between paths to achieve the extraction, transmission and fusion of longitudinal 

information. Thus, the feature maps containing both inter-scan and intra-scan information 

are forwarded to each decoder path separately to form segmentations. The encoder and 

decoder include 4 3D max-pooling and 3D nearest neighbor upsampling operations. Besides 

that, 8 residual blocks are stacked in encoder and decoder evenly, and 1 is used in bottleneck 

path. Residual blocks are modified from He et al.,15 and consist of a 3 × 3 × 3 convolution 

operation, batch normalization and ReLU activation. Like the 3D U-Net,16 there is a skip 

connection with an attention gate17 between encoder and decoder. An addition operation is 
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applied in the decoders before the final output. The detailed network architecture is shown 

as Fig. 3, which is same as the architecture of cross-sectional subcortical segmentation 

method.8

2.3 Experimental Setup

Dataset.—Our dataset is a subset of the multi-site PREDICT-HD database and contains 

40 healthy control subjects and 119 HD subjects. The HD subjects were classified into 

three groups based on their CAP scores, which is a marker of HD progression:18 high-CAP 

(n=39), medium-CAP (n=40) and low-CAP (n=40). Each subject has 2 T1-weighted MRIs 

with at least 2 years between the two scans. We randomly select 20 subjects in each category 

for training and 5 subjects for validation. The rest of the subjects were used for testing. The 

subcortical structures that are considered in our study are the left and right pairs of thalamus, 

caudate, pallidum and putamen.

Pre-processing.—We employed the BRAINSAutoWorkup pipeline to pre-process19,20 

the images. This process includes: (1) non-local mean filter denoising, (2) rigid intra-subject 

and inter-subject registration, and resampling to 1 × 1 × 1mm3 resolution, (3) bias field 

correction and intensity normalization (4) multi-atlas label fusion method21 for segmenting 

subcortical structures. The segmentations produced by the multi-atlas method were visually 

quality controlled and used as “ground truth” for training and testing our models. In 

addition, skull-stripping was applied, and histogram matching was performed to alleviate 

the variability of tissue contrast produced by different scanners and acquisition sequences 

between study sites.

Data Augmentation.—Random affine transformation, random elastic deformation, and 

the combination of random affine transformation and random elastic deformation were used 

as our augmentation strategy. The same type of transformation was applied to both time-

points of a given subject. Using these augmentations helps reduce overfitting. Additionally, 

our augmentations could improve model robustness and help bi-directional C-LSTM block 

to extract useful longitudinal information.

Implementation Details.—During training, we used the Dice Loss22 as our loss function, 

with weight = 1 for all foreground labels and weight = 0.1 for background. We used an 

Adam optimizer with β1 =0.9, β2 = 0.999, and weight decay = 10−5. We set the initial 

learning rate to 0.01 and decayed by a factor of 0.5 every 50 epochs. The weights of 

bi-directional C-LSTM blocks and C-LSTM cells are not shared. With a batch size of 2, 

the whole training process took around 450 epochs with early stop. However, we set the 

maximum epoch number to 1000, in case the early stop condition is not triggered. We 

randomly switched the input order in each iteration to increase the model robustness and 

boost the ability of the bi-directional C-LSTM for extracting useful information. Due to 

GPU memory limitation, we applied the method described in8 to automatically crop input 

images to a region of 96 × 96 × 48mm3 which includes the subcortical area. The model is 

implemented using PyTorch and trained with a NVIDIA Titan RTX.
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Evaluation methods.—We compare the results of our longitudinal subcortical 

segmentation method to its cross-sectional counterpart.8 We note that this cross-sectional 

method8 outperforms previous state-of-the-art methods such as those presented in.5-7 All 

pre-processing and data augmentation pipelines as well as train/validation/test splits of the 

data were the same between the cross-sectional and longitudinal methods, with the only 

difference being the introduction of a second path in the longitudinal network as well as 

the bi-directional C-LSTM blocks connecting the two paths. For evaluation, we use the 

Dice coefficient, the average surface distance and the 95-percent Hausdorff distance as our 

metrics. Statistical significance was determined using a 2-tail, paired t-test with significance 

threshold p < 0.05. We also report the Pearson’s correlation coefficient between the change 

in total motor score (TMS) between the two visits and the volume loss between these two 

time-points.

3. RESULTS

The Dice results for all subjects (control and HD) are shown in Tab. 1. The top panel 

shows that the Dice score of our longitudinal approach was significantly higher than the 

cross-sectional analysis for all 8 structures. To assess the consistency of the performance, we 

report the absolute value of the difference between the Dice scores of the two time-points, 

averaged over all subjects. These results are shown in the bottom panel of Tab. 1, where we 

observe that the longitudinal approach was more consistent for 6 out of 8 structures.

It is well known that the Dice score cannot capture small features that do not contribute 

substantially to overall volume, such as the thin tail of the caudate. For this reason, we 

also report the surface distances in Tab. 2, specifically, the average surface distance and the 

95-percent Hausdorff distance. Both metrics are improved in the longitudinal segmentation 

for all 8 structures, with the difference reaching statistical significance for 10 out of the 16 

comparisons.

Fig. 4 shows the breakdown of Dice scores across the 3 disease stages (low-, med-, high-

CAP) as well as controls. We note that the longitudinal accuracy is consistently superior to 

cross-sectional segmentation, and it is more robust to increased amounts of atrophy known 

to be present in later disease stages.

The qualitative results are shown in Fig. 5. From axial and sagittal slices, we can see the 

clear improvements of pallidum (blue zoomed-in panels, orange arrows). The yellow and 

pink panels highlight improvements in the putamen segmentation accuracy (red arrows), 

where the most noticeable changes visible in sagittal slices. Furthermore, axial slices show 

our method delivered more plausible thalamus segmentations, since the boundary between 

the left and right thalamus should follow the mid-sagittal plane.

In Tab. 3, we report the Pearson’s correlation coefficient between the change in TMS 

between the two visits and the volume loss between these two time points. The volumes 

were normalized by the total brain volume prior to this analysis. We expect to see strong 

correlations for the caudate and putamen which are known to be affected in HD, and an 

increase in correlation strength in later disease stages. We note that the findings in Tab. 3 
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are preliminary, since the number of test subjects in each group was limited, and several 

subjects had to be excluded due to missing TMS scores. Nevertheless, we note that the 

longitudinal segmentation method produced stronger correlations between volume loss and 

TMS decline for most of the comparisons in the caudate and putamen, the most affected 

structures. Interestingly, we also find robust correlations in the pallidum, which suggests 

that our methods might be more sensitive to HD changes in the pallidum than previously 

reported HD studies2-4 that relied on an older generation of segmentation algorithms such 

as multi-atlas methods. In line with the literature,2-4 the thalamus does not appear to be 

strongly associated with the HD pathology, although the correlation in the high-CAP group 

suggests that this structure may become affected in later disease stages. Replicating these 

preliminary findings in a larger dataset remains as future work.

4. DISCUSSION AND CONCLUSIONS

In this work, we proposed a 3D subcortical segmentation method leveraging longitudinal 

information. We used two 3D scans of a given subject as inputs and took advantage of 

the longitudinal context by using the bi-directional C-LSTM, such that information from 

both time points were learned by our model jointly. With the longitudinal information, 

the model learns the relationship between the scans and achieves superior segmentation 

performance with higher accuracy and better consistency for the considered subcortical 

structures. Additionally, our segmentations better correlate with TMS decline in a limited 

dataset. We note that our bi-directional C-LSTM blocks and C-LSTM cells are not using 

shared weights in our experiments. However, the shared weights blocks and cells produced 

nearly identical results to those reported in this paper. Extending our framework to allow 

more than 2 time-points per subject remains as future work; an important step towards this 

goal will be to optimize the network architecture to avoid GPU memory limitation issues. 

Another potential extension might be a multi-task network that handles the registration of 

the two time-points along with the longitudinal segmentation.
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Figure 1. 
The bi-directional convolutional long short-term memory (C-LSTM) block. hf, cf and hb, cb 

are the output cell and hidden state in forward and backward path. t denotes the time-point.
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Figure 2. 
The longitudinal subcortical segmentation framework. The dashed square shows the 

connection between blocks. Is are the input 3D MRIs and Ss are the corresponding 

segmentations. t represents the time-point.
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Figure 3. 
The network architecture. The feature maps are represented by rectangular boxes. The green 

boxes at each level contain 32, 64, 128, 256, 512 channels respectively. For all levels, light 

blue boxes have 9 channels (8 subcortical structures and background).
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Figure 4. 
Comparison of segmentation performance. In HD subjects, many subcortical structures 

are increasingly atrophied in higher CAP groups. (L)eft and (R)ight pairs of (th)lamus, 

(ca)daute, (pa)llidum and (pu)tamen are considered. Compared to the cross-sectional 

method,8 our proposed longitudinal method obtained consistently superior Dice scores.
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Figure 5. 
Qualitative results. Red, blue and green lines represent “ground truth”, cross-sectional8 

and proposed longitudinal segmentations respectively. Yellow, blue, orange and red arrows 

highlight the improvements of thalamus, caudate, pallidum and putamen, respectively.
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Table 1.

(Top) Segmentation Dice scores. Statistically significant improvements (2-tailed paired t-test, p < 0.05) over 

the cross-sectional method8 are denoted in bold. (Bottom) The performance consistency, computed as the 

absolute difference of Dice score between two time-points of a subject. Underlined entries highlight better 

performance consistency. For both tables, results are presented as mean ± std. dev.

Dice score

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 0.979±0.005 0.980±0.004 0.975±0.008 0.974±0.007 0.967±0.011 0.965±0.014 0.980±0.005 0.980±0.006

Longitudinal 0.980±0.004 0.980±0.004 0.976±0.007 0.975±0.007 0.969±0.009 0.968±0.011 0.981±0.004 0.981±0.006

Absolute difference of Dice score between time points (×10−1)

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 0.021±0.020 0.029±0.024 0.040±0.036 0.048±0.046 0.067±0.052 0.069±0.059 0.033±0.026 0.036±0.029

Longitudinal 0.023±0.016 0.028±0.025 0.036±0.040 0.035±0.034 0.061±0.050 0.068±0.063 0.036±0.027 0.034±0.027
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Table 2.

(Top) Average surface distance. (Bottom) 95-percent Hausdorff distance. For both tables, results are presented 

as mean±std. dev. Statistically significant improvements (2-tailed paired t-test, p < 0.05) over the cross-

sectional method8 are denoted in bold.

Average surface distance

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 0.051±0.016 0.051±0.018 0.030±0.016 0.030±0.012 0.035±0.014 0.040±0.030 0.032±0.035 0.029±0.011

Longitudinal 0.049±0.017 0.048±0.017 0.029±0.014 0.028±0.019 0.031±0.012 0.035±0.019 0.028±0.015 0.028±0.014

95-percent Haussdorf distance

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 0.585±0.495 0.568±0.497 0.093±0.292 0.119±0.325 0.161±0.369 0.253±0.448 0.051±0.221 0.076±0.267

Longitudinal 0.508±0.502 0.492±0.502 0.051±0.221 0.093±0.292 0.102±0.304 0.169±0.377 0.008±0.092 0.059±0.237
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Table 3.

Pearson’s correlation coefficient between volume loss between two time-points and the TMS decline during 

the same time period. Bold numbers denote the method identifying a stronger correlation. We observe that 

some structures like the thalamus show weak correlations with both methods, in line with the existing HD 

literature. Note that subjects with missing TMS data were excluded from this analysis (n=3, 2, 2 for high-CAP, 

medium-CAP and low-CAP categories respectively).

All HD Subjects (low-CAP, med-CAP, high-CAP)

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 −0.1985 −0.0232 −0.3800 −0.2826 −0.3233 −0.4280 −0.3750 −0.3431

Longitudinal −0.1345 0.0743 −0.3809 −0.3654 −0.3712 −0.4587 −0.3152 −0.3482

Low-CAP Subjects

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 −0.0639 −0.2707 −0.2342 −0.1888 −0.4166 −0.2540 −0.2987 −0.4645

Longitudinal −0.0840 −0.2680 −0.2764 −0.2871 −0.4079 −0.3044 −0.2922 −0.4730

Med-CAP Subjects

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 −0.1258 0.3095 −0.3268 −0.2676 −0.3877 −0.4911 −0.3082 −0.3169

Longitudinal −0.1034 0.4050 −0.3270 −0.3185 −0.4349 −0.5535 −0.2327 −0.4000

High-CAP Subjects

R thalamus L thalamus R caudate L caudate R pallidum L pallidum R putamen L putamen

Cross-sec.8 −0.5348 −0.2763 −0.627 −0.5513 −0.4162 −0.6226 −0.6836 −0.4264

Longitudinal −0.3254 −0.0960 −0.6549 −0.6006 −0.6017 −0.6232 −0.5589 −0.3597
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