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Abstract

Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data
analysis. An important step in cell clustering is to select a subset of genes (referred to as ‘features’), whose expression
patterns will then be used for downstream clustering. A good set of features should include the ones that distinguish
different cell types, and the quality of such set could have a significant impact on the clustering accuracy. All existing
scRNA-seq clustering tools include a feature selection step relying on some simple unsupervised feature selection methods,
mostly based on the statistical moments of gene-wise expression distributions. In this work, we carefully evaluate the
impact of feature selection on cell clustering accuracy. In addition, we develop a feature selection algorithm named FEAture
SelecTion (FEAST), which provides more representative features. We apply the method on 12 public scRNA-seq datasets and
demonstrate that using features selected by FEAST with existing clustering tools significantly improve the clustering
accuracy.
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Introduction
Single-cell RNA sequencing (scRNA-seq) technologies have
revolutionized biological research [1–3]. Unlike the traditional
bulk RNA sequencing (RNA-seq) that measures the average
expression of the large number of cells, scRNA-seq profiles
the transcriptome of individual cells, which provides data with
higher resolution for better understanding the transcriptomic
regulation and variation at the cellular level. It has been
successfully applied to study many complex biology systems
such as the immune system [4], cerebral cortices [5] and
tumor progressions [6]. In addition to the traditional expression
analysis in bulk RNA-seq, scRNA-seq provides information to
answer many new biological questions, such as discovering
novel and rare cell types [7] and constructing pseudotime cell
trajectories [8].

The scRNA-seq experiments usually generate expression
profiles for large number of cells. For example, the 10×
genomics sequencer can profile thousands to millions of cells
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at a relatively low cost. One of the most important goals
for scRNA-seq data analysis is cell clustering, which is to
partition cells into multiple groups via unsupervised clustering
algorithms. Cell clustering provides important information for
the cell composition and cell type specific transcriptome in
complex tissues. It lays the foundation for downstream analyses
such as differential expression, pseudotime construction and
new/rare cell type discovery. There are many methods and
tools developed for unsupervised cell clustering [9–11], and they
have been comprehensively reviewed and compared [12–14].
These methods usually start with a matrix of gene expression
and output the grouping of cells. Many algorithmic factors can
affect the performances of the cell clustering methods, including
data preprocessing [15], normalization [16, 17], feature selection,
dimension reduction [18], cell-to-cell similarity calculation, etc.
Among them, feature selection is an important step which
could have significant impact on the overall performance of
cell clustering.
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Although feature selection is implemented in most scRNA-
seq clustering tools, it is not clear how different selection pro-
cedures will impact the results. Despite some efforts that have
been made to systematically compare and evaluate methods for
data normalization [19, 20], dimension reduction [21] and cell
similarity metrics [22] in scRNA-seq, there is no study specifi-
cally focused on the impact of feature selections. In this work,
we comprehensively evaluate and compare the impact of feature
selection on cell clustering in scRNA-seq. To the best of our
knowledge, this is the first work to systematically evaluate and
compare the impact of feature selection approaches on cell
clustering accuracy. In addition, we also develop an algorithm,
named FEAST (FEAture SelecTion), which selects representative
genes for scRNA-seq cell clustering. We compare FEAST with
the feature selection approaches implemented in existing clus-
tering tools through extensive benchmark tests. We demon-
strate that FEAST can select more representative features than
other approaches. Moreover, we demonstrate that using features
selected FEAST with existing clustering tools can significantly
improve the clustering accuracy.

Feature selection in scRNA-seq cell clustering

The scRNA-seq experiment produces expression levels for the
whole transcriptome. A majority of the genes are not differen-
tially expressed among different cell types; thus, they contain
no information for cell clustering. The feature selection step
selects a subset of genes best representing the structures of the
dataset in a lower-dimensional space, which enhances the signal
to noise ratios and subsequently improves the cell clustering
results. Since the cell grouping is unknown before clustering,
the feature selection has to be done in an unsupervised fashion.
Simple metrics based on quantities related to the statistical
moments of the gene expressions are often used in most meth-
ods. We conduct a comprehensive review on the feature selec-
tion algorithms in existing cell clustering methods, summarized
In Table 1. To be specific, both Seurat [10] and PanoView [23] first
groups genes into 20 bins according to the mean expressions,
and then selects the most variable genes, termed as highly
variable genes (HVGs), within each bin. SC3 [9] filters out ubiq-
uitous and rarely expressed genes to retain informative genes
based on mean expression levels and dropout rates. Monocle [24]
selects genes based on minimum mean expression and variance.
SCANPY [25] identifies a set of HVGs by using normalized disper-
sions in the preprocess across different batches. scVI [26] selects
top-ranked gene by variance. TSCAN [11] finds featured genes
by considering both dropout rates and coefficient of variation
(CV). SAIC [27] first filters out low-expressed genes and selects
genes deviated from the fitted loess regression between CV
and mean. SCENT [28] retrieves a set of most variable genes
by singular value decomposition (SVD). SOUP [29] obtains the
most informative genes from two approaches: sparse principal
component analysis (SPCA) [30] algorithm and Gini index, which
is also adopted in DESCNED [31]. FiRE [32] first filters out genes
with low expression levels and high dropout, and then selects
the top 1000 genes with the largest normalized dispersions.
SINCERA [33] also first removes genes with low expression and
high dropout, and then defines a cell specificity index based on
the scaled expression to further filter out uninformative genes.
RaceID3 [34] finds the featured genes exceeding the estimated
variability from the fitted second-order polynomial functioning
on the mean.

In addition to these moment-based approaches, there are
other relatively more complicated methods for feature selection

Table 1. Feature selection methods implemented in different scRNA-
seq clustering algorithms

scRNA-seq
clustering method

Reference Quantities used for feature
selection

Seurat [10] μ and φ

PanoView [23] μ and φ (similar to Seurat)
SC3 [9] μ and δ

Monocle [24] μ and σ 2

SCANPY [25] φ

scVI [26] σ 2

TSCAN [11] δ and CV
SAIC [27] loess regression between μ

and CV
SCENT [28] SVD
SOUP [29] Gini index and SPCA
FiRE [32] μ, δand φ

SINCERA [33] μ, δ and cell specificity index
RaceID3 [34] Second-order polynomial

between σ 2 and μ

Mean is denoted as μ. Variance is denoted as σ2. Dispersion is denoted as φ.
Coefficient of variation is denoted as CV. Dropout rate is denoted as δ. SPCA
means the sparse PCA algorithm. SVD means the singular value decomposition.

in high dimensional data. For example, Laplacian Scores [37]
evaluate the feature importance by constructing a local weighted
graph. Moreover, some unsupervised approaches can be modi-
fied as the supervised approaches assuming the cell grouping is
known. For instance, both Fisher Scores [38] and F-test statistics
assess the efficiency of discrimination based on the fractions
of between-group variance and within-group variance. If initial
cell partitions are predetermined, one can use statistical test
based approaches such as Fisher Scores and F-statistics to select
the significant features. When preparing the manuscript, we
found a method named FEATS [35] that just came out recently.
FEATS uses F statistics to rank the features and optimizes a
feature set by using silhouette coefficient [36] based on the initial
hierarchical clustering outcomes.

Feature evaluation in scRNA-seq cell clustering

How to evaluate the quality of the feature set is another impor-
tant problem. A straightforward assessment is the clustering
accuracy if the reference labels (true classes for cells) are avail-
able. There are several metrics for clustering accuracy: adjust
Rand index (ARI) [39], normalized mutual information (NMI)
[41], Jaccard similarity index [42], Fowlkes–Mallows index [40],
normalized information distance [43] and purity [44]. Without
reference labels, it is more difficult to validate the quality of the
selected features in an unsupervised manner. In this case, one
can resort to a ‘pseudo-supervised’ way, that is, to look at the
‘separation’ of the clusters from the result based on selected
features. The separation can be defined based on the average
distance among the cluster centroids, or the mean squared
distances between individual cells and the cluster centroids, or
the combination of them. A set of features is deemed better
if it leads to clusters with larger between-group and smaller
within-group distances.

Result
We comprehensively evaluate several existing scRNA-seq clus-
tering methods in a number of datasets (Supplementary Table S1)
and find that feature selection has a significant impact on the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
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Figure 1. The overall FEAST workflow. FEAST includes three major steps: (A) it performs consensus clustering to find clusters with high confidence, the cell that is less

correlated with the clusters are filtered out as indicated by the ‘×.’ (B) It calculates the feature significance based the initial clusters. (C) It determines the optimal size

of the feature set through a validation process.

cell clustering results. To better assist the existing scRNA-seq
clustering algorithm, we develop the FEAST framework (https://
github.com/suke18/FEAST) that produces a representative
feature set to improve the clustering accuracy. To provide a
quick summary, FEAST first performs a consensus clustering to
get initial cell clusters. Features are then ranked and selected
based on the initial clusters. Optimal number of features is
determined by the fitness of the clustering results from different
numbers of top features. The output of FEAST is a list of
features that can be fed into the existing cluster methods.
We systematically compare features selected by FEAST with
other unsupervised feature selection methods implemented in
existing cell clustering tools. We demonstrate that the FEAST can
identify more representative features and significantly improve
the clustering accuracy.

Overview of FEAST

FEAST is a tool solely designed for scRNA-seq feature selection
and works with any existing cell clustering method. Users can
use FEAST to replace the feature selection step provided in
existing cell clustering methods and obtain improved results.
The FEAST workflow includes three major steps, as illustrated
in Figure 1. First, it implements a computationally efficient algo-
rithm to obtain a consensus cell clustering (Figure 1A). This
unique consensus clustering step allows the detection of the
most confident cell clusters, which improves the feature selec-
tion in the next step. Second, based on the consensus clusters,
it calculates the significance for each feature via F-test and
ranks the features according to the F-statistics (Figure 1B). Third,
it finds an optimal feature set through a feature evaluation
algorithm (Figure 1C). We provide a detailed description for each
step in the Method section.

Datasets

We collect 12 public scRNA-seq datasets (Supplementary Table S1)
for evaluating the impact of feature selection on clustering and
benchmarking the performance of FEAST. These datasets are
obtained from different sources, including https://hemberg-lab.
github.io/scRNA.seq.datasets, https://portal.brain-map.org/atla
ses-and-data/rnaseq and Gene Expression Omnibus from the
National Center for Biotechnology Information (NCBI-GEO) [45].
It is noted that the cell type information for these collected
datasets is either obtained by experimental validation such as
fluorescence-activated cell sorting or annotated by well-known
cell-type-specific marker genes. All datasets include the raw

count gene expression matrix as well as the cell type labels,
which enable the evaluation and comparison of methods.

Consensus clustering improves the signal

As discussed before, feature selection in existing methods are
mostly based on the first and second moments of the gene-
wise expression distribution. We found that this procedure can
select wrong features, for example, a gene with high marginal
variance can be caused by the large within cell-type variation.
We design an algorithm to convert the unsupervised feature
selection problem into a supervised fashion. To be specific, we
first cluster the cells to generate initial clusters and then detect
features based on these initial clusters. The initial clustering
from this approach plays an important role. A biased cluster will
obviously lead to poorly selected features. FEAST implements a
consensus clustering procedure (details in the Method section)
to find clusters with high confidence, and then computes the
feature significance based on the cells in the consensus clusters.
Here, we show that this consensus clustering step can improve
the signals.

Figure 2 shows the distribution of the statistical significance
of all genes when comparing their expression across clusters.
As a comparison, we benchmark the results from using
K-means to determine initial clusters. Results from two embryo
development datasets Yan (Figure 2A) and Deng (Figure 2B) are
shown. To be specific, we apply both K-means and consensus
clustering on each dataset to obtain the clustering. Then for
each gene, we perform F-test to compare the expression levels
cross clusters. These figures show that the P-values from the
consensus clustering in FEAST are more significant than those
from K-means, that is, there are more genes with P-values
closer to 0. Additionally, we investigate the distributions of
F-statistics (Supplementary Figure S1) from these two approaches
and obtain a similar finding that the consensus clustering can
improve the separation signal by showing higher F-statistics
values than K-means. These results demonstrate that the
consensus clustering procedure provides ‘tighter’ clusters and
more distinctive features (ones that show greater difference
among clusters).

FEAST selects features better than other
unsupervised approaches

After obtaining the initial cell labels from consensus clustering,
FEAST selects the top features based on F-test statistics. We
systematically compare the top-m features generated by FEAST

https://github.com/suke18/FEAST
https://github.com/suke18/FEAST
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
https://portal.brain-map.org/atlases-and-data/rnaseq
https://portal.brain-map.org/atlases-and-data/rnaseq
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
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Figure 2. Consensus clustering improves the separation signals. Results are shown for two embryonic development datasets: Yan (A) and Deng (B). We use consensus

clustering from FEAST and K-means to determine initial clusters. Then, we calculate the feature significance by F-test. The results demonstrate that the P-values from

the consensus clustering are more significant.

with the other three feature selection procedures implemented
in SAIC, SC3 and Seurat. Specifically, for SAIC, we select the
genes that are most deviated from the fitted loess regression
between CV and mean. For SC3, we filter out the rarely and
ubiquitously expressed genes and select the top genes based
on expression levels. For Seurat, we adopt the FindVariableFeature
function inside the Seurat R package to select the top genes. We
purposely fix the number of top features for each approach and
evaluate the feature quality via cell clustering. Specifically, we
select top-m (m = 500, 1000 and 2000) and perform the clustering
by SC3 on a series of test datasets (Supplementary Table S1). It
is noted that SC3 allows users to specify the input number of
clusters. For the evaluation and comparison, we assume that the
number of the true cell types is known. We use the ARI value
as a metric to compare the cell clustering results with features
selected from different methods.

These comparison results are summarized in Figure 3, where
each panel represents a test dataset, and each group of bars
corresponds to the ARI values from using a certain number of
the top (m = 500, 1000 and 2000) features. The results show
that the FEAST has the best performance compared with other
feature selection methods. Out of the 12 datasets, FEAST shows
the highest ARI values in 11 of them. The performance gain
can be substantial, for example, in Goolam, Treutlein and LGd
data. Even in the Nestorowa data where FEAST result is not
the best, its performance is comparable with other methods.
The features selected by Seurat show the second-best perfor-
mance overall. It also shows that genes selected by SAIC could
lead to poor ARI values such as in Close, Treutlein and Zheng
datasets. Additionally, we also compare FEAST to the feature
selection approaches implemented in raceID3, scVI and SOUP.
It is demonstrated that features selected by FEAST lead to better
cell clustering results compared to the features selected by the
other approaches (Supplementary Figure S2).

We further inspect the features selected by other unsuper-
vised approaches including kurtosis and CV, and find that the
top selected genes show extremely high expression in only a
few cells while remaining the same (usually 0) in the rest of the
cells (Supplementary Figure S3). These are the ones with highly
skewed expression distribution, and clearly not good features
for clustering. These bar plots in Figure 3 also indicate that
including more features does not necessarily lead to a better
clustering performance; for example, the performances decrease
from m = 1000 to m = 2000 in Goolam, and Romanov datasets.
Overall, these results show that FEAST can select better fea-
tures than the other approaches with respect to cell clustering
accuracy.

FEAST optimize the feature set through validation

Above we show that FEAST outperforms other methods in top-m
features. In addition, to provide a better ranking for the genes,
a good feature selection method also needs to determine an
optimal number of genes to be included in the final feature set.
For the second part, FEAST implements a validation process to
determine the number of features. Details of the method are pro-
vided in the Method section. Briefly, FEAST selects a series of top-
m (m = 20, 50, 100, 200, 500, 1000, 2000, 5000 and all genes) features
based on consensus clustering and then conducts clustering
using the different number of features. Then, FEAST assesses
the goodness of fit of the clustering results and determines the
optimized number of features.

We benchmark the method on two datasets, the Zheng
dataset which contains eight well-annotated PBMC types,
and Deng dataset which includes six adult liver cell types. In
Figure 4A and C, each curve represents a metric for evaluating
the clustering results from SC3 under the different number of top
features. The conclusions from these metrics overall agree with
each other. For example, in the Zheng data, with the increasing
number of input features (m = 50–1000), the clustering accuracy
also increases. Specifically, the ARI increases from 0.33 to 0.74
and the NMI increases from 0.48 to 0.80. However, after reaching
the peak at m = 2000 (ARI = 0.75 and NMI = 0.81, respectively), the
accuracy curve plateaus until using 5000 features, and becomes
lower is using all genes. This indicates that including more
features will not necessarily improve the clustering accuracy.

For many datasets where the true cell labels are unavail-
able, we adopt a criterion based on the mean squared errors
(MSE) of clustering (details in Method section) to assess overall
clustering fitness and select the optimal number of features.
Figure 4B and D shows the MSE values from the clusters based
on different numbers of top features. We find that the MSE
reaches the lowest level at m = 2000 for the Zheng data, which
matches the best clustering accuracy result in Figure 4A. In the
Deng data, we find the lowest MSE result is concordant with the
best clustering accuracy at m = 1000. These results show that
the MSE criteria works well in selecting the optimal number of
features.

Additionally, we also perform the above analyses using
TSCAN as the clustering method (Supplementary Figure S4). We
obtain similar findings that the optimized feature set in general
matches with the validation procedure by MSE. It is noted that
we utilize TSCAN or SC3 for clustering, which allows to specify
the number of clusters (k). The user can also adopt their favorite
scRNA-seq algorithm on the selected feature sets but need to
keep the same k for fair comparison and evaluation.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
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Figure 3. The comparison of the feature selection methods. We benchmark FEAST with other three unsupervised feature selection procedures implemented in SAIC,

Seurat and SC3. In each test dataset, we select the top 500, 1000 and 2000 features from each criterion followed by SC3 clustering. FEAST outperforms the other methods

in almost all the scenarios by showing the highest ARI values in 11 out of 12 datasets.

FEAST improves the clustering accuracy

We systematically evaluate the performance of FEAST on 12
publicly available scRNA-seq datasets (Supplementary Table S1).
These datasets cover a wide range of sample sizes (from tens
to thousands of cells), as well as from different sequencing
technologies such as smart-seq2 [46], 10x Genomics, and inDrop
[47]. In each dataset, we utilize FEAST to select features, which
are obtained through the MSE validation process of using the
top-m (m = 500, 1000, 2000) features. Then, we feed the optimal
feature set into SC3 for cell clustering. We compare these
results to the default setting in SC3, which selects features
based on mean expression and dropout rates. The clustering
ARI values from default SC3 and SC3 with FEAST features are
summarized in Figure 5. For all datasets, features selected by
FEAST results in better clustering ARI. In all 12 datasets, the
ARI is increased by 0.19 on average, indicating a significant
improvement. In some datasets, the ARI values increase
dramatically with specified FEAST features. For example, in
Goolam dataset, the ARI values increase from 0.65 to 0.93.
Similar improvements are also observed in Treutlein, LGd, and
Deng datasets (Supplementary Table S2). To demonstrate the
broad applicability of FEAST, we perform the same analyses
using three other clustering methods: TSCAN, SHARP [48], and
SIMLR [49]. We observe significant improvements in clustering

accuracy in all methods. The results are summarized in
Supplementary Figures S5–S7.

Note that all the above tests are well-controlled: the only
difference between the blue and red bars is the feature selec-
tion procedure. Even though these clustering tools implement
different methods and perform differently at different datasets,
we show that using features selected by FEAST can instantly
improve the clustering accuracy. Taken together, we show the
superior performance and broad applicability of FEAST, regard-
less of the clustering method, experimental protocol (full-length
or 3′ end sequencing) and size of the dataset.

Test FEAST on larger datasets

Furthermore, we test the performance of FEAST on relatively
larger datasets. The purpose is to evaluate the computational
scalability and the robustness of the algorithm when there are
more cells and cell types. We analyzed three public datasets
(Supplementary Table S3), which contains ∼28 k cells and ∼28
cell types on average. For these tests, we use SHARP as the clus-
tering method since it’s specifically designed for large datasets.
Again, we observe significantly improved ARI values using the
features selected by FEAST (Figure 6). These results suggest that
FEAST is robust and efficient, and work well for large datasets.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data


6 Su et al.

Figure 4. The validation process used in FEAST to determine the optimal number of features. In both Zheng and Deng datasets, FEAST selects the top-m (m = 20, 50, 100,

200, 500, 1000, 2000, 5000 and all genes) features, and performs cell clustering by SC3. For different m, (A) and (C) show the clustering accuracy measurements, (B) and

(D) show the MSE which represents the goodness of fit of the clustering results. We find that the lowest MSE results (B and C) agree with the best clustering accuracy

(A and C).

FEAST is implemented as an open-source R package and
freely available at https://github.com/suke18/FEAST. As a feature
selection tool, it can serve as a plug-in for established scRNA-seq
clustering methods. FEAST offers excellent computational per-
formance. We profile the computational performance of FEAST
for a wide range of sample sizes (100–50 000 cells). Results are
shown in Supplementary Figure S8. It is important to note that
the computational burden does increase exponentially with the
increasing number of cells, due to the first step of consensus
clustering in the algorithm. However, with efficient implementa-
tion, FEAST still provides excellent computational performance
and will handle a majority of the tasks. For example, the feature
selection step takes less than 1 min for 10 000 cells and takes
less than 4 min for 50 000 cells. The validation process requires
running clustering for the different number of top features; thus,
its performance depends on the clustering method itself.

Method
Preprocess and normalization

We preprocess the raw gene expression data as the following.
First, genes with all zero read counts and low expression rates
(δ) are filtered out. The default threshold for δ equals to 2 divided

by the total number of cells. It is common to observe some
genes are only expressed in very few (one or two) cells in 10×
and inDrop data, which are not informative for cell clustering.
We do not remove the ubiquitously expressed genes and use a
relatively conservative threshold for δ because we intend to keep
more features for further selection. Next, we normalize the count
matrix by cell-specific size factors, which are calculated based
on the sequencing depths, and take a log 2 transformation on
the normalized counts.

The consensus clustering

With the preprocessed gene expression matrix (Y) of G genes and
N cells, FEAST utilizes the cluster-based similarity partitioning
algorithm (CSPA) [41] to create a consensus matrix. Specifically,
FEAST first performs principle component analysis (PCA) to
obtain a sequence of principal components (PCs). For each of
the top-i (i = 2, 3, . . . ) PCs, FEAST fits a Gaussian Mixture Model
(GMM) to cluster the cells into k groups. Each clustering result is
represented by a binary N × N matrix, where the corresponding
cell unit is 1 if two cells belong to the same cluster, and 0
otherwise. By default, FEAST examines till top 10 PCs because we
purposely cover a relatively large number of PCs to account for

https://github.com/suke18/FEAST
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab034#supplementary-data
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Figure 5. FEAST improves the clustering accuracy with existing method. The figures show ARI values for 12 public datasets. For each dataset, we compare the results

from SC3 and SC3 with FEAST selected features. For all datasets, we observe significant improvement in ARI using SC3 with FEAST features.

Figure 6. FEAST improves the clustering accuracy on larger datasets. We investigate three datasets with ∼28 k cells and ∼28 cell types on average. For each dataset, we

compare the results from SHARP and SHARP with FEAST selected features. For all datasets, we observe significant improvement in ARI.

variabilities from different directions in the covariance matrix.
Next, FEAST construct a consensus matrix by averaging all the
similarity matrices. The final clustering labels are obtained by
fitting another round of GMM on the consensus matrix. Only

cells with posterior probability of belonging to a cluster greater
than 0.95 are kept in the final clusters.

The consensus clustering is similar to the procedure imple-
mented in SC3. It only retains cells that are tightly clustered
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together and exclude the ones whose cluster membership can-
not be determined with high confidence. As shown in the Result
section (Figure 2), this step enhances the signal in the data,
which subsequently helps to identify features.

Select and rank the features

After obtaining the consensus clusters, selecting the most repre-
sentative features becomes a supervised feature selection step.
FEAST uses F-statistics to test the feature significance because
it can summarize the differences among multiple groups into
a single number. F-statistics essentially calculates the fraction
between between-group variance (varb) and within-group vari-
ance (varw). Noticeably, F-statistics is similar to Fisher scores
which were initially developed as the estimation of variance
ratios. Mathematically, the F-statistics calculation for the gth

gene is denoted as in equation (1).

Fg = varbg/df1

varwg/df2
= varbg/df1(

vartg − varbg
)
/df2

(1)

Here, df1 and df2 are degrees of freedoms calculated as K − 1
and N′ − K, respectively, where N′ is the total number of cells
in the consensus clusters (N′ ≤ N). FEAST uses the difference
between total variance (vartg) and between-group variance to
represent within-group variance, where varbg is calculated as
∑K

i=1ni ×
(
Yg − Ygi

)2
and vartgis calculated as

∑N′
j=1

(
Yg − Ygj

)2
. Ygis

the average expression for gth gene, and Ygi is the expression
value for the gth gene and ith cell. Ygiand ni denote the mean
and sample size for the ith cluster, respectively.

Determine the optimal number of features

Unsupervised feature set validation is challenging without a
properly predefined optimization criterion. FEAST uses the MSE
to evaluate the clustering results. The MSE represents the aver-
age distances between cells and the cluster centroids, which
is a good representation of the goodness of fit. To be specific,
with the obtained clustering labels, FEAST fits simple linear
regression between the normalized gene expression and the
clustering outcomes. Then, FEAST computes the MSE from the
regression residuals, which represents the mean squared dis-
tance of each data point to its assigned cluster center. For each
clustering outcome with a different feature set, FEAST calculates
an MSE. The feature set associated with the smallest MSE is
recommended as the optimal feature set.

The feature selection in clustering is similar to the variable
selection problem, i.e., one tries to identify a subset of variables
to best predict the classification outcomes. Since the clustering
is unsupervised, it is difficult to evaluate which set of variables is
the best without knowing the outcome. In this case, MSE, which
represents the model fitting, is a reasonable choice for evaluating
the variable selection result. It is worth noting that the MSE is
calculated from all genes and all cells, even though the features
are selected based on a subset of cells and the predicted cluster is
based on a subset of genes (the selected features). This ensures
fair comparisons for different clustering outcomes and avoids
over-fitting of the data. Our real data analyses demonstrate that
this approach can select an optimal set of features, i.e., the
feature set with the smallest MSE usually corresponds to the best
clustering results.

Discussion
In scRNA-seq clustering, selecting a desirable feature set before
performing clustering is very important because the features will
have a significant impact on the clustering outcomes. Particu-
larly, a feature set including excessive non-informative genes
or lacking marker genes will result in poor clustering accuracy.
Even though numerous clustering algorithms tailored for scRNA-
seq have been developed and widely used in the community, the
importance of the feature selection step has not been thoroughly
investigated. Currently, almost all clustering methods include
a feature selection step, mostly based on thresholding some
simple statistics, for example, to use the top 2000 HVGs, or to
choose genes with low dropout rate and high average expression.
It is unclear how much the feature selection will impact the cell
clustering accuracy, and whether better-selected features can
improve the cell clustering result.

The major contribution of this work is 2-fold. First, we care-
fully evaluate and compare the impacts of feature selection on
cell clustering by comprehensive data analysis. Secondly, we
design a new algorithm named FEAST for selecting an optimal
set of features. FEAST can work as a plug-in tool for existing
clustering methods. We systematically compare FEAST with
other common feature selection methods and demonstrate that
FEAST outperforms other methods in selecting more representa-
tive features, which subsequently improves clustering accuracy.
We show that the improvement brought by the FEAST features is
not limited to the clustering method, i.e., we observe significant
improvements using a number of existing cell clustering tools
including SC3, TSCAN, SHARP and SIMLR. These results show
that researchers can first run FEAST to obtain a set of features
then feed them to established scRNA-seq clustering algorithms,
which will likely improve the clustering accuracy. Moreover,
based on our experiences, selecting top 1000 or 2000 features
from FEAST usually give satisfactory results. So, if computational
time is a concern, we recommend users take top 1000 features
as the final feature set.

Determining the number of clusters (K) is an important step
in cell clustering. Some clustering software tools such as SC3,
TSCAN and CIDR provide the function for estimating K, but the
clustering functions in these tools require users to specify a
fixed K. FEAST does not provide the function for estimating K.
It works merely as a feature selection tool for cell clustering,
and the users need to provide K. On the other hand, users can
use methods implemented in current software tools or prior
knowledge to estimate K.

The current FEAST frame, similar to most other clustering
methods, selects features based on the given dataset. It is pos-
sible to incorporate existing biological knowledge on marker
genes into the feature selection algorithm. For example, we can
impose a prior on the features and formula the problem in a
Bayesian framework. In addition, even though the clustering put
cells into several distinct, exchangeable groups, the cell types
form a hierarchical tree in reality. With the consideration of such
hierarchical structure, it might be better to use a different set
of features at each branching point and perform clustering in a
top-down, step-wise manner. Furthermore, a new paradigm of
cell type identification has recently gained much attention [50,
51]. Those methods do not cluster the cells. Instead, they assign
each cell to a particular cell type, based on a reference panel.
We believe feature selection will also play an important role for
those methods, and FEAST can potentially be used to improve
those methods. These interesting questions are all on our future
research plan.
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Key Points
• In scRNA-seq clustering, feature selection is an impor-

tant step that can have significant impact on the clus-
tering accuracy. All state-of-art scRNA-seq clustering
tools have a step for identifying featured genes.

• We comprehensively review and evaluate the feature
selection methods implemented in existing clustering
tools.

• We develop a feature selection method FEAST. Users
can first apply FEAST to obtain a list of feature genes,
and then use them as input for exiting scRNA-seq
clustering tools.

• We show through extensive tests that using FEAST
features with exiting clustering tools significantly
improves the clustering accuracy.
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