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Abstract
Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts.
The deduced K + -permeable channel was coined fast-activating chloroplast cation channel but its molecular identity
remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered dis-
tant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used
Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both
candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS
(PEC1/2), form oligomers with regulator of K + conductance domains protruding into the intermembrane space.
Heterologous expression of PEC1/2 rescues yeast mutants deficient in K + uptake. Nuclear POLLUX ion channels cofunction
with Ca2 + channels to generate Ca2 + signals, critical for establishing mycorrhizal symbiosis and root development.
Chloroplasts also exhibit Ca2 + transients in the stroma, probably to relay abiotic and biotic cues between plastids and the
nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic
stromal Ca2 + release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality,
pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant’s
stress-related Ca2 + signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope
membrane is another critical step towards completing the chloroplast ion transport protein inventory.
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Introduction
Land plants cannot escape from environmental challenges
collectively known as abiotic and biotic stress. Consequently,
evolutionary innovations in the molecular mechanisms to
sense and respond to rapidly changing conditions likely
played a key role in the success of land plants (Furst-Jansen
et al., 2020). Leaf plastids are optimized for light harvesting,
rendering the organelle a sensory hub to collect information
about the plant’s environment. Chloroplasts employ several
mechanisms to transmit environmental information to the
nucleus to adjust gene expression. These include changes in
metabolite and hormone levels, redox potential, reactive oxy-
gen species production, and ion flux. Through the action of
ion channels and carriers, signals—encoded as ion transi-
ents—can be relayed within seconds. The best-known ion sig-
nals are Ca2 + transients which exist in plastids and several
other organelles, including the nucleus (Resentini et al., 2021).

In the nuclear envelope, Ca2 + and K + transport are cou-
pled (Charpentier et al., 2016). The, Ca2 + channel CYCLIC
NUCLEOTIDE-GATED CHANNEL 15 functionally interacts
with Doesn’t Make Infections 1 (DMI), a member of the
CASTOR/POLLUX/DMI ion channel family. Both channels
work in concert to trigger Ca2 + transients critical for root
development and in some species mycorrhizal symbiosis
(Charpentier et al., 2016; Leitao et al., 2019). In the plastid
envelope, a similar system may exist as the organelle elicits
stromal Ca2 + transients in response to various triggers such
as sodium chloride (NaCl) and osmotic shock (Nomura et
al., 2012), temperature changes (Lenzoni and Knight, 2019),
and circadian rhythms (Marti Ruiz et al., 2020). However,
the inventory of ion transport proteins in the inner enve-
lope (IE) membrane of plastids is still incomplete. Only re-
cently, the dual-targeted mitochondrial calcium uniporter
cMCU has been discovered, and reportedly plays a role in
Ca2 + flux into mitochondria and mature chloroplasts
(Teardo et al., 2019). Indeed, cmcu loss-of-function mutants
show dampened stromal Ca2 + flux in response to osmotic
but not salt-stress (Teardo et al., 2019). Because significant
stromal Ca2 + transients remain in cmcu, other ion channels
and/or Ca2 + transporters are expected in the plastid IE
membrane (Resentini et al., 2021). The CHLOROPLAST
MANGANESE TRANSPORTER 1/BIVALENT CATION
TRANSPORTER 2 (CMT1/BICAT2) transporter was sug-
gested as an alternative IE Ca2 + transporter as its absence
impacts the shape of stromal Ca2 + release after dark transi-
tion (Frank et al., 2019). However, other data indicate that
this particular carrier may primarily transport Mn2 + ions
(Eisenhut et al., 2018; Zhang et al., 2018).

Knowledge about plastid K + flux across the IE is similar
limited. Thus far, only two K + /H + exchangers from the K
efflux antiporter (KEA) family have been characterized in
more detail (Aranda-Sicilia et al., 2012; Kunz et al., 2014).
Both carriers (KEA1 and KEA2) physiologically function in
pH and ion homeostasis which is critical for plastid gene ex-
pression and development (Aranda Sicilia et al., 2021; deTar
et al., 2021). The IE membrane potential of at least –70 mV

on the stromal side (Wu et al., 1991) makes K + /H + valves
such as KEA1/2 a necessity for osmoregulation to balance
K + influx and prevent rupture of plastids (Bernardi, 1999).
To functionally describe IE cation channel(s) that aid in ion
influx, reconstituted proteins from Spinacia oleracea L. (spin-
ach) (Wang et al., 1993; Mi et al., 1994) or Pisum sativum L.
(pea) (Pottosin et al., 2005) chloroplasts were employed in
electrophysiological studies; these efforts resulted in the
characterization of the voltage-dependent fast-activating
chloroplast cation (FACC) channel of pea chloroplasts
(Pottosin et al., 2005). The channel exhibits conductivity for
K + 4 Na + 4 Ca2 + 5 Mg2 + ions. While the experimental
setup seemed to assure that the channel(s)’ activity origi-
nated from the IE membrane (Pottosin and Dobrovinskaya,
2015), it is not entirely clear if the currents came exclusively
from a single channel type. Fifteen years later, no FACC
channel gene candidate(s) has emerged to explain what pro-
tein(s) may have caused the recorded K + currents in patch-
clamped pea chloroplasts.

In this study, we set out to identify first candidate pro-
teins and their corresponding genetic loci that may explain
the recorded K + and other cation currents in the chloro-
plast IE membrane. By mining proteomic data on pea and
Arabidopsis thaliana leaf plastids, distant members of the
CASTOR/POLLUX/DMI ion channel family emerged as po-
tential FACC candidates. Therefore, the goal of this study
was to (1) determine if leaf plastids indeed possess members
from the CASTOR/POLLUX ion channel family, (2) gain ini-
tial insights into their physiological relevance through heter-
ologous expression in yeast and the study of A. thaliana
loss-of-function mutants, and (3) test if plastid Ca2 + transi-
ents depend on the activity of CASTOR/POLLUX-like ion
channels.

Results and discussion

The family of CASTOR/POLLUX cation channels
contains functionally similar members with plastid
transit peptides
To identify potential FACC candidates, we mined published
pea chloroplast envelope proteome datasets (Brautigam et al.,
2008; Gutierrez-Carbonell et al., 2014). Only four different pro-
tein types related to ion transport were found: putative
metal-transporting P-type ATPase PAA1, glutathione-regu-
lated potassium-efflux system protein (KEA), Voltage-
dependent anion-selective channel protein (VDAC), and
probable ion channel CASTOR-like (Psat6g113560). PAA1 and
KEA represent well-characterized copper and respectively K +

carriers (Shikanai et al., 2003; Aranda-Sicilia et al., 2012; Kunz
et al., 2014; Tsujii et al., 2019) and are therefore unlikely re-
sponsible for FACC-mediated currents. A frequent contami-
nant in plastid proteomics, VDAC is an anion-selective
channel in the mitochondrial outer membrane (Clausen et
al., 2004). However, a protein annotated “probable ion chan-
nel CASTOR-like” was intriguing as CASTOR/POLLUX/DMI
have been described as nuclear cation channels with
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Arabidopsis lyrata AL6G12230.t1
Arabidopsis thaliana AT5G02940.2
Arabidopsis thaliana AT5G02940
Arabidopsis lyrata AL37U10030.t1
Arabidopsis lyrata AL8G16520.t1

Arabidopsis thaliana AT5G43745.1
Arabidopsis thaliana AT5G43745
Brassica rapa Bra035988 PACid_22724465
Brassica rapa Bra039925 PACid_22716278

Lotus japonicus Lj5g0007630.1
Medicago truncatula Medtr1g076330.1
Pisum sativum Psat6g113560.1
Pisum sativum Psat6g113560.1 Cameorv1a
Spinacia oleracea Spo13223
Spinacia oleracea KNA19197.1
Brachypodium distachyon Bradi3g21330.1.p
Brachypodium distachyon Bradi3g21330.2.p
Oryza sativa Os03g06720.1
Oryza sativa Q8H7Z2y

Amborella trichopoda scaffold00002.522
Spirogyra pratensis Spipra_2290_c0_g1_i2

Anthoceros agrestis BONN 117.2360.1
Anthoceros punctatus 000023l.878.1
Physcomitrium patens Pp3c17_14700V3.1
Sphagnum fallax Sphfalx05G106700.1.p
Sphagnum fallax Sphfalx05G106700.2.p
Sphagnum fallax Sphfalx05G106700.3.p
Sphagnum fallax Sphfalx05G106700.4.p
Anthoceros agrestis BONN 117.2350.1
Anthoceros punctatus utg000023l.869.1
Selaginella moellendorffii 104898

Selaginella moellendorffii 169248
Spirogloea muscicola SM000155S01660
Spirogloea muscicola SM000225S07023
Spirogloea muscicola SM000332S12449

Klebsomidium nitens GAQ92049.1
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Lotus japonicus CASTOR
Medicago truncatula Medtr7g117580.1
Pisum sativum Psat3g000200.1

Amborella trichopoda scaffold00017.65
Arabidopsis lyrata AL8G23930.t1
Arabidopsis thaliana AT5G49960.1
Arabidopsis thaliana AT5G49960
Brassica rapa Bra022510 PACid_22690227

Lotus japonicus Lj6g0022277.1
Lotus japonicus POLLUX
Medicago truncatula Medtr2g005870.1
Medicago truncatula DMI1
Pisum sativum Psat1g222280.1
Pisum sativum SYM8
Brachypodium distachyon Bradi2g56274.2.p
Brachypodium distachyon Bradi2g56274.1.p
Brachypodium distachyon Bradi2g56274.3.p
Oryza sativa Os01g64980.1
Oryza sativa Pollux

Selaginella moellendorffii 84001
Anthoceros agrestis BONN 368.2877.1
Anthoceros agrestis BONN 368.2877.2
Anthoceros agrestis BONN 368.2877.4
Anthoceros punctatus 000145l.10.1

Sphagnum fallax Sphfalx03G100100.1.p
Marchantia polymorpha Mapoly0173s0003.1.p

Chara braunii GBG87426.1
Spirogyra pratensis Spipra_3866_c8_g1_i1

Mesotaenium endlicherianum ME000161S01595
Zygnema circumcarinatum DN47216_c0_g1_i8
Coleochaete orbicularis GBSL01017616
Coleochaete scutata DN34166_c2_g1_i4

Coleochaete orbicularis GBSL01037703
Klebsomidium nitens GAQ84141.1

Spirogyra pratensisSpipra_4139_c1_g1_i9
Chlorokybus atmophyticus Chrsp97S09277

Mesostigma viride Mesvi1226S02179
Anthoceros agrestis BONN 362.1183.1
Anthoceros punctatus utg000051l.544.1
Physcomitriumpatens Pp3c6_21060V3.1
Sphagnum fallax Sphfalx03G099000.1.p
Sphagnum fallax Sphfalx03G099000.2.p

Chara braunii GBG84671.1
Coleochaete orbicularisGBSL01052303

Mesotaenium endlicherianum ME000019S02691
Spirogyra pratensisSpipra_4049_c4_g2_i2

Peniummargaritaceum pm003103.t3
Peniummargaritaceum pm010911.t1

Peniummargaritaceum pm007374.t1
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Chlorokybus atmophyticus Chrsp17S00171
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Coccomyxa subellipsoidea55736
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Anthoceros punctatus utg000192l.50.1
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Sphagnum fallax Sphfalx14G038400.4.p
Sphagnum fallax Sphfalx14G038400.5.p
Sphagnum fallax Sphfalx14G038400.2.p
Sphagnum fallax Sphfalx14G038400.3.p

Sphagnum fallax Sphfalx13G076100.1.p
Sphagnum fallax Sphfalx13G076100.2.p
Sphagnum fallax Sphfalx13G076100.3.p
Sphagnum fallax Sphfalx03G074000.1.p
Marchantia polymorpha Mapoly0003s0221.1.p
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Sphagnum fallax Sphfalx05G064000.3.p
Sphagnum fallax Sphfalx05G064000.4.p

Sphagnum fallax Sphfalx01G177000.1.p
Sphagnum fallax Sphfalx01G177000.4.p
Sphagnum fallax Sphfalx01G177000.6.p
Sphagnum fallax Sphfalx01G177000.3.p
Sphagnum fallax Sphfalx01G177000.5.p
Sphagnum fallax Sphfalx01G177000.2.p
Sphagnum fallax Sphfalx02G147800.1.p
Sphagnum fallax Sphfalx02G147800.3.p
Sphagnum fallax Sphfalx02G147800.2.p
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Spirogloea muscicola SM000048S16560
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Chara braunii GBG80526.1
Klebsomidium nitens GAQ81706.1

Chlorokybus atmophyticus Chrsp29S00338
Chlorokybus atmophyticus Chrsp1S03195

Chlorokybus atmophyticus Chrsp36S00420
Nematostella vectensis XP_032219013.1
Acanthaster planci XP_022107722.1

Danio rerio XP_017214273.1
HomosapiensNP_001154824.1
MusmusculusNP_001240293.1
Biomphalaria glabrata XP_013068787.1
Aplysia californica5TJ6_A
Pomacea canaliculata XP_025115020.1

Echinococcus granulosus XP_024348916.1
Lingula anatina XP_013413787.1
Caenorhabditis elegans Q95V25|SLO1_CAEEL

Drosophila mojavensis XP_015021875.1
Parasteatoda tepidariorum XP_021003323.1

2.0

Figure 1 Phylogenetic tree of PEC/CASTOR/POLLUX family members. Phylogenetic framework for the evolutionary history of PEC, CASTOR, and
POLLUX. Homologs of PEC, CASTOR, and POLLUX were sampled from genomes of 17 land plants, 7 streptophyte algae, and 4 chlorophytes. We
further added in silico translated homologs from the transcriptomes of Spirogyra pratensis (de Vries et al., 2020), Coleochaete scutata and
Zygnema circumcarinatum (de Vries et al., 2018), and Coleochaete orbicularis (Ju et al., 2015). Thirteen animal streptolysin O (SLO1) sequences
were included as an out-group (blue). Only protein sequences longer than 700 AAs were included in the analysis. A rooted maximum likelihood
phylogeny of all 170 sequences was computed using LG + F + R7 as model for protein evolution (chosen according to BIC). A 1,000 ultrafast boot-
strap (UFBoot2; Hoang et al., 2018) replicates were computed. Only ultrafast bootstrap values 550 are shown and full support (ultrafast boot-
strap values of 1,000) is depicted by a filled dot. PEC, CASTOR, and POLLUX sequences are found across the green lineage (fully supported yellow
clade) and were likely present as a single-copy ortholog in the last common ancestor of Chloroplastida. Early during streptophyte evolution, the
PEC/CASTOR/POLLUX ortholog duplicated, giving rise to the clade of streptophyte PECs (hues of orange) and CASTOR/POLLUX (hues of teal
green). Scale bar length corresponds to 2.0 expected substitutions per site.
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conductance for K + , Rb + , Na + , and Ca2 + (Charpentier et al.,
2008; Venkateshwaran et al., 2012; Kim et al., 2019). We desig-
nated the candidate PEC. To understand the evolutionary his-
tory of PEC, POLLUX, and CASTOR, we performed a
phylogenetic analysis (Figure 1). We used: (1) POLLUX,
CASTOR, and DMI proteins from L. japonicus, M. truncatula,
Pisum sativum, and O.a sativa; (2) PEC proteins from A. thali-
ana (At5g02940, At5g43745) as query in a BLASTp search
against a dataset of 17 land plants, 11 streptophyte algae, and
4 chlorophyte algae. Among these 31 chloroplastida, we
detected 157 homologs with a minimum length of 700 amino
acids (AAs). These long homologs were used in all following
analyses; the topology stayed robust when we included
shorter sequences (Supplemental Figure S1). PEC’s structural
similarity to the SLO big potassium channel family (Roy et al.,
2010), led us to add 13 animal SLO sequences as an
outgroup.

All homologs of PEC, POLLUX, and CASTOR fell into a fully
supported clade of diverse sequences from chloroplastida
(Figure 1). In this large Chloroplastida clade, a few chloro-
phyte homologs branch sister to all other streptophyte
sequences. The sequences from streptophytes (forming a sub-
clade, bootstrap support of 87) were distributed over two
major clades: a PEC clade and a CASTOR/POLLUX clade.
Homologs of PEC fell into a fully supported clade that in-
cluded sequences spanning the diversity of streptophytes; we
detected PEC homologs in all major classes of streptophyte
algae—from those most divergent from land plants, repre-
sented by C. atmophyticus and M. viride (Wang et al., 2020)—
and diverse land plants. Nested within this clade of putative
streptophyte PEC proteins was an angiosperm-specific sub-
clade, in which a PEC homolog from A. trichopoda (see
Amborella Genome, 2013) branched sister to homologs from
all other angiosperms—which is in line with its position in
the species phylogeny. A duplication that gave rise to AtPEC1
and AtPEC2 appears specific to the genus Arabidopsis.

The large CASTOR/POLLUX clade (ultrafast bootstrap
support of 91) also contained homologs from across the di-
versity of streptophytes; the topology of this clade largely
followed the species phylogeny. Clear orthogroups of solely
CASTOR and solely POLLUX first appeared in angiosperms;
in each of these two clades, Amborella sequences branch sis-
ter to the other angiosperm sequences, suggesting a duplica-
tion event that occurred in a common ancestor of all extant
angiosperms. It is noteworthy that, branching sister to the
streptophyte CASTOR/POLLUX clade, we recovered a fully
supported clade that contained homologs from diverse non-
vascular streptophytes (including representatives of all strep-
tophyte algae); this suggests that there was another very
early duplication of the CASTOR/POLLUX ortholog followed
by a loss early during vascular evolution—or euphyllophyte
evolution (see Supplemental Figure S1, where a Selaginella
homolog falls into this clade).

In sum, it appears that there was a single PEC/CASTOR/
POLLUX ortholog in the last common ancestor of chloro-
plastida when the green lineage was in its infancy. At the
base of streptophyta, this ortholog duplicated, giving rise to

the clade of PECs and the clade of CASTOR/POLLUX pro-
teins. During the course of evolution, there were some
lineage-specific duplications in each of the orthogroups—in-
cluding the duplication in a common ancestor of angio-
sperms that gave rise to the separate POLLUX and CASTOR
clades. From a bird’s eye view, the orthogroups of PEC and
CASTOR/POLLUX are each likely as old as streptophyta.

We compared functional domains of AtPEC1/2 with the
nuclear member DMI1 using InterPro (Supplemental Figure
S2A). All three proteins contain a well-conserved C-terminal
CASTOR/POLLUX domain (IPR010420). This stretch includes
a tandem regulator of K + conductance (RCK) domain
(IPR036721), previously determined as functionally relevant
for the nuclear members (Kim et al., 2019). In the N-termi-
nal regions the three members differ. Only PEC1/2 possess a
voltage-gated potassium channel superfamily domain
(SSF81324) which was not identified in DMI1. Additionally,
both PEC members contain a predicted pTP (Schwacke et
al., 2003; Sun et al., 2009) and were identified in recent enve-
lope proteomes from Arabidopsis (Bouchnak et al., 2019;
Trentmann et al., 2020).

Heterologous expression of PEC1 and PEC2 rescues
a K + transport deficient yeast mutant
Nuclear envelope members of the CASTOR/POLLUX cation
channel family exhibit conductivity for K + , Rb + , Na + , and
Ca2 + ions (Charpentier et al., 2008; Kim et al., 2019).
Initially, we injected PEC1/2-YFP (-pTPs) cRNA into
Xenopus oocytes to perform electrophysiology. However,
oocytes did not synthesize the candidate proteins and
PEC1/2-YFP was not detectable at the plasma membrane.

Therefore, we employed yeast in which the plasma mem-
brane K + -transportome is well-established [reviewed in
(Arino et al., 2019)] and that had been successfully used as a
model to study POLLUX family channels (Charpentier et al.,
2008). Heterologous expression of LjPOLLUX restored growth
of MAB2d, a yeast mutant defective in K + uptake and K + ef-
flux across the plasma membrane (Maresova and Sychrova,
2005), at low K + (Charpentier et al., 2008). PEC1/2 (-pTPs)
were cloned into the constitutive expression yeast vector
pYeT. As a control, we cloned DMI1, the closest Arabidopsis
homolog to LjPOLLUX. Resulting strains were grown over-
night in K + supplemented media and washed extensively.
Optical density at 600 nm (OD600) was adjusted and cells
were spotted side-by-side on media plates supplemented
with increasing K + amounts from 0 mM to 25 mM KCl
(Figure 2A). While the wild-type (WT) strain W303
showed strong growth at all K + levels, MAB2d + pYeT-
empty vector cells were severely growth limited below
25 mM KCl in the growth medium. DMI1, the Arabidopsis
homolog of LjPOLLUX, did not robustly restore MAB2d
mutant growth at low (525 mM) KCl levels. In contrast,
PEC1 and PEC2 transformed cells were able to grow on
media even without additional KCl. PEC1/2 outperformed
DMI1 in the MAB2d background, suggesting that PEC1 and
PEC2 may possess higher K + permeability than DMI1 in this
setup.
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Independent studies confirm PEC1 and PEC2 as
proteins of the plastid envelope membrane
For subcellular localization studies, PEC1/2 full-length cDNA
YFP fusions were co-injected with plastid envelope marker
TIC40-CFP into Nicotiana benthamiana leaves. The PEC1/2-
YFP fluorescence signals appeared ring-shaped and overlaid
with the IE marker TIC40-CFP (Figure 2B). Both signals sur-
rounded the chlorophyll (Chl a) fluorescence from the thyla-
koids. Line plots for each fluorescence channel confirmed
the spatial signal overlay (Supplemental Figure S3A).
Truncated PEC1/2 variants lacking pTPs did not exhibit YFP
signal around chl fluorescence but at the cell periphery
(Supplemental Figure S3B). We also attempted to establish
stable full-length PEC1/2-YFP overexpressor mutants in A.
thaliana. In successfully isolated T1 individuals, YFP signal

co-localized with the chl fluorescence (Supplemental Figure
S3C). Unfortunately, both constructs underwent transgene
silencing in the T2 generation.

Next, we radiolabeled PEC1/2 and DMI1 proteins with
35S-Met. Isolated intact chloroplasts were incubated with
labeled proteins and half of each reaction thermolysin treated
to degrade nonimported substrate. After electrophoresis, pro-
tein bands were visualized using a phosphorimager
(Supplemental Figure S3D). For the two candidate plastid
proteins PEC1/2, an additional smaller sized band was de-
tectable in the plus and minus thermolysin lanes (see aster-
isks), which was absent in DMI1 lanes. The results confirm
that only PEC1/2 carry pTPs which are processed by the
translocon on the outer/inner chloroplast membrane
(TOC–TIC) complex after import into the organelle. In

C

Merge + Chl a

Merge + Chl a

TIC40-CFP

TIC40-CFP

PEC1-YFP

PEC2-YFP

B

A
mM KCl 0 5 10 15 25

WT + pYeT

MAB 2d + pYeT

MAB 2d + PEC1

MAB 2d + PEC2

MAB 2d + AtDMI1

D

α-KEA1(2)

α-Tic40

α-TOC64

0 0.5 1 1.5

60

75

kDa

50

30

25

40
α-PEC1

Ponceau
50

mg trypsin/mg chl

Chl Str Thy Env

α-KEA1(2)

α-PEC1

α-FBPase

α-LHCP

Figure 2 PEC1 and PEC2 functional protein characterization. A, Complementation of K + -uptake deficient Saccharomyces cerevisiae strain MAB2d
with Arabidopsis POLLUX members. WT W303 cells transformed with empty pYeT vector show growth regardless of KCl concentration whereas
MAB2d cells with empty pYeT vector cannot grow. PEC1 and PEC2 complement the K + uptake deficient MAB2d strain, indicating K + permeabil-
ity for PEC1 and PEC2 proteins. Shown is OD 0.01 after 48 h at 30�C. B, Localization of PEC cDNA-YFP fusions to the chloroplast envelope mem-
brane in N. benthamiana. Positive controls TIC40-CFP and Chl a confirm colocalization of PEC1 and PEC2 with the IE (scale bars = 10 lm). C,
Immunoblotting of isolated chloroplast membrane fractions. Boxes indicate separate exposure time to account for relative protein abundance
(Original figure Supplemental Figure S4C). Chl = entire chloroplast, Str = Stroma, Thy = Thylakoid membrane, Env = Envelope membranes (D)
Protease treatment of intact WT chloroplasts. Samples were treated with 0–1.5 mg trypsin*mg–1 chl. Samples corresponding to 10 mg chl were
separated on SDS gels, blotted onto PVDF and individually immunolabeled with a-PEC1, a-KEA1(2), a-TIC40, and a-TOC64. Molecular size
markers are displayed on the left of the a-PEC1 blot.
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summary, independent assays led us to conclude that PEC1/
2 reside in leaf plastids. It is noteworthy that the DMI ho-
molog was initially also suggested as a plastid channel
(Imaizumi-Anraku et al., 2005). However, later it was shown
that this was caused by a promoter artifact and that the nu-
clear membrane is the genuine CASTOR/POLLUX/DMI lo-
calization (Charpentier et al., 2008).

The C-terminal RCK domains of PEC1 reside in the
envelope intermembrane space
To realize PEC1/2 immunolabeling studies we used the well-
conserved C-terminal soluble stretch (� 64 kDa) harboring
the RCK domain of PEC1 to raise serum (Supplemental
Figures S2, B and S4, A). The resulting a-PEC1 almost
exclusively recognized PEC1, but not PEC2 or DMI1
(Supplemental Figure S4B). Initially, we produced suborganellar
fractions from A. thaliana chloroplasts. Immunoblotting of
established marker proteins confirmed fraction purity
(Figure 2C; Supplemental Figure S4C). A strong enrichment of
PEC1 was identified only in the plastid envelope fraction. To
probe the topology of PEC1 and the localization of the func-
tionally critical RCK domain, intact chloroplasts were isolated
from WT plants. Subsequently, isolated plastids were incu-
bated with increasing amounts of trypsin (Figure 2D;
Supplemental Figure S4D). Trypsin accesses the intermem-
brane space (IMS) but does not cross the IE as long as the
plastids remain intact (Froehlich, 2011). TOC64, which
expands from the outer envelope membrane into the cytosol,
served as a control to monitor proper function of the pepti-
dase at the cytosolic surface of the outer envelope, while
KEA1/2 was used to show that trypsin entered the IMS. TIC40
is a plastid intactness indicator. The bulk of the TIC40 protein
resides in the stroma and therefore only remains stable in the
presence of trypsin if the IE membrane remains intact. In
untreated chloroplasts, native PEC1 protein was detected
at 75 kDa. In the presence of trypsin, TOC64, KEA1/2,
and PEC1 were rapidly degraded while TIC40 signal remained
unchanged. Because no stable PEC1 degradation product of �
64 kDa accumulated, our results suggest that the long soluble
PEC1 C-terminus harboring the RCK domain resides in the en-
velope IMS. In line with this, the heterologously expressed sol-
uble PEC1 C-terminus was also trypsin-sensitive (Supplemental
Figure S4E). It follows that PEC1 monomers likely possess an
uneven number of transmembrane domains.

In planta characterization of PEC1/2 genes and loss-
of-function mutants
Initially, we inserted 2 kB PEC1/2 promoter fragments directly
upstream of a GUS reporter gene. Several independent
Arabidopsis lines were tested for consistent staining patterns
to gain insights into what plastid types harbor PEC1 and
PEC2, respectively (Figure 3A). No unspecific blue GUS stain-
ing was observed when the WT plants were incubated with
X-Glu, while the pUBQ10::GUS positive control line displayed
dark blue GUS stain throughout all tissues. PEC1 and PEC2
were robustly expressed at plant ages 10, 28, and 35 d

(Figure 3A; Supplemental Figure S5C). While PEC1 seemed ex-
clusively expressed in aerial tissue, pPEC2::GUS reporter lines
also showed staining in seedling roots. Both loci were
expressed in mature leaf and flower tissue which is in line
with the robust immunoblot signal we observed when prob-
ing isolated chloroplasts with a-PEC1 (Figure 2, C and D).
The GUS tissue expression patterns were generally in line
with publicly available transcriptomic data (Supplemental
Figure S5A and B; Kilian et al., 2007; Zhang et al., 2020) al-
though these suggest higher PEC1 expression in mature leaves
compared to PEC2.

Subsequently, we isolated T-DNA insertion mutants in
PEC1 and PEC2 loci (Figure 3B; Supplemental Figure S6, A
and B). None of the independent pec1 and pec2 single
mutants displayed obvious phenotypes (Supplemental
Figure S6C). Therefore, two independent pec1pec2 double
mutant lines were isolated by crossing respective single
mutants. In both double mutants, the absence of detectable
gene-specific transcripts and PEC protein was confirmed by
means of RT-PCR and immunoblotting, respectively
(Figure 3C and D). CASTOR/POLLUX/DMI form tetramers
in in vivo (Kim et al., 2019). Thus, we probed the oligomeric
state of PEC1 using isolated WT and pec1pec2 mutant chlor-
oplasts separated on blue native (BN)-PAGE (Figure 3E).
Indeed, PEC1 protein gave several higher molecular bands
above the 440 kDa marker, suggesting that also the distantly
related POLLUX member PEC1 exists as a multimer in vivo
and potentially in complex(es) with other binding partners.
To characterize the pec single and double loss-of-function
lines, mutant plants and WT controls were grown under
long-day conditions (16-h/8-h day–night cycle, 150 mmol
photons m–2 s–1). While some mutant individuals appeared
slightly smaller, no statistical differences from WT were
found for fresh weight and chlorophyll content (Figure 3, F–
H). Additionally, several basic photosynthesis parameters
(Fv/FM, NPQ, and UPSII) were recorded by pulse-amplitude-
modulation (PAM) fluorometry (Figure 3, I and J). Again, we
detected no differences from WT in any of the
photosystem-II-related parameters. This indicates that the
lack of PEC1 and PEC2 neither impacts photosynthesis nor
chloroplast function under normal growth conditions—a
striking difference from envelope K + /H + exchanger mutants
kea1kea2 (Kunz et al., 2014; deTar et al., 2021) but also from
Mn2 + /Ca2 + carrier deficient cmt1/bicat2 lines (Eisenhut
et al., 2018; Zhang et al., 2018; Frank et al., 2019). Because of
the importance of plastid ion carriers and their impact on
the leaf ionome, several mutants show aberrations from the
WT in ionomics experiments (Shikanai et al., 2003; Eisenhut
et al., 2018; Zhang et al., 2018; Höhner et al., 2019).
Therefore, we analyzed leaf element levels but did not
find significant changes between WT and the two pec1pec2
loss-of-function lines (Table 1). We reckoned that the
lack of phenotypic abnormalities and quantitative changes
of leaf elements along with intact photosynthesis may
point towards a more specialized role for PEC1/2 channels
such as in signaling pathways triggered by specific stress
conditions.
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Figure 3 PEC expression and loss-of-function mutant characterization. A, Promotor studies of pPEC1/2::GUS constructs indicate strong expression
in A. thaliana tissues. Left part shows 10-d-old seedlings, right part leaves of 28-d-old plants. Experiments were repeated three times with similar
results. Representative images are shown (scale bars = 5 mm). B, PEC1 and PEC2 locus information, including T-DNA insertion sites for all pec
mutants isolated in this study. Border sequences of T-DNA insertion sites are provided in (Supplemental Figure S6C) Full-length semi-quantitative
reverse transcriptase PCR shows absence of PEC1 and PEC2 transcripts in the two independent pec1pec2 lines. D, Immunoblotting of WT and
pec1pec2 mutant proteins validates lack of PEC1(2) in the mutant plastids. a-KEA1(2) and commassie are presented as loading controls, a-VDAC
confirms absence of mitochondrial contamination in the isolated chloroplast fraction. E, BN-PAGE of WT and pec1-1pec2-1 isolated chloroplasts.
Specific signals in WT samples detected by a-PEC1 are marked with asterisks. An unspecific band appearing in WT and knockout lanes was
marked with triangle (D), which was confirmed by 2D SDS–PAGE of the WT BN lane (striped border). F, RBG and false color panel of photosyn-
thesis measurements of WT and two pec1pec2 double mutants. No obvious phenotypes could be detected when grown under long-day condi-
tions at 150 mmol m–2 s–1 (scale bar = 1 cm). G, Normalized chlorophyll values are unchanged when compared to the WT as determined by
analysis of variance and Dunn’s multiple comparisons test (P 4 0.05, mean ± SEM, n = 9). H, Loss of PEC1/2 does not affect plant fresh weight.
Shown are pooled results of three independent experiments (mean ± SEM, n = 23). Photosynthetic parameters [Fv/Fm (I) and NPQ kinetics (J)] are
unchanged in pec1pec2 mutants (mean ± SD, n = 8, a representative result of three experiments is shown).
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The loss of PEC1/PEC2 function affects stress-
induced stromal Ca2 + transients
Chloroplasts harbor the Ca2 + sensor protein CaS and are
therefore an integral part of cellular Ca2 + signaling (Weinl
et al., 2008). Because of the involvement of CASTOR/
POLLUX channels in the formation of nuclear Ca2 + transi-
ents, it was important to test if PEC proteins may function
in plastid Ca2 + signaling.

A homozygous WT reporter line expressing stromal tar-
geted YFP-AEQUORIN [NADPH-dependent thioredoxin re-
ductase C (NTRC) pTP fused to YFP-AEQUORIN, therefore
NTRC-YA (Mehlmer et al., 2012)] was introgressed into pec1
and pec2 single mutants and into both pec1pec2 double
mutant lines. The same sensor line was also crossed into the
cas-1 (Nomura et al., 2012) mutant to aid as an assay con-
trol. Proper stromal localization and homogenous expression
of the stromal Ca2 + reporter was verified for all lines by mi-
croscopy (Figure 4A; Supplemental Figure S7C). Additionally,
we verified similar YFP-AEQUORIN levels via RT-PCR and
immunoblotting in isolated pec1pec2 double mutants
(Figure 4, B and C).

A plate reader-based seedling assay was used to quantify
free stromal Ca2 + levels through the bioluminescence signal
emitted by AEQUORIN. After overnight dark incubation
with the substrate coelenterazine, each well was measured
to check for background luminescence which was negligible
throughout (Supplemental Figure S7A). Under the assump-
tion that pec single mutants are largely redundant, we first
focused on characterizing pec1pec2 double mutants. Initially,
we applied an equal volume of room temperature (RT)
buffer to the seedlings to observe changes in Ca2 + levels
merely triggered by the injection method. The result was a
slight increase of free stromal Ca2 + similar in all genotypes
tested (Figure 4D).

Next, we tested the two strong Ca2 + triggers NaCl and
Mannitol, and observed large Ca2 + transients maxing out at
about 550 nM in the WT. Interestingly, both independent

pec1pec2 double mutant lines exhibited a drastically lower
Ca2 + response upon elicitor application compared to WT
but also compared to pec single mutants (Figure 4, E and F;
Supplemental Figure S7, D and E). In addition to the time
course, we further evaluated response parameters, such as
total free stromal Ca2 + during our measurement in the
form of Ca2 + integration and peak Ca2 + levels. Both double
mutant lines showed nearly identical but significantly lower
values compared to WT regardless of parameter or elicitor.
As opposed to osmotic and salt stress, cold stress response
was not as uniform in the WT. Only 4 of 12 seedlings
showed a distinct peak in response to the addition of ice-
cold buffer, ranging from 400 to 620 nM (Figure 4G). In con-
trast, pec1pec2 double knockout lines never peaked higher
than 390 nM in our tests (n = 36, Supplemental Figure S7B).
In line with prior work (Nomura et al., 2012), the Ca2 + re-
sponse in the cas-1 control was also dampened, yet not as
extreme as reported previously. This could be explained by
the differing specimen types employed (leaf discs, Nomura
et al., 2012 versus seedlings, this study). Interestingly, the de-
crease in stromal Ca2 + transients in cas-1 was less pro-
nounced than in pec1pec2. When the same pec1pec2 double
mutant lines were backcrossed to WT, resulting F1 progenies
exhibited a clear but not full recovery of the Ca2 +

(Supplemental Figure S7, F and G) transients, confirming
that PEC proteins play a critical role in stromal Ca2 + kinet-
ics. Interestingly, none of the tested stress elicitors affected
homozygous pec1pec2 double mutant growth more severely
than WT (Supplemental Figure S8).

Based on the obtained results, we compiled a working
model which integrates PEC1/2’s suggested function with
previously described K + and Ca2 + transport proteins in the
plastid IE (Figure 4H). All our experiments confirmed PEC1/
2 as an IE protein which is in line with several proteomics
studies from pea and Arabidopsis. PEC1/2 expression rescues
K + -uptake deficient yeast mutants. Consequently, we pro-
pose that PEC1/2 can facilitate K + influx into the stroma.
According to the literature chloroplasts have a membrane
potential of at least –70 mV across the IE (Wu et al., 1991),
allowing for cation influx through an opened, cation-
selective pore down the electrical gradient. KEA1/2 balance
the K + influx through K + /H + exchange to avoid osmotic
stress. Akin to the nuclear CASTOR/POLLUX/DMI cation
channels, PEC1/2 function is highly relevant for organellar
stress-triggered Ca2 + transients. Regardless of the elicitor,
Ca2 + transients remained at a very low level in pec1pec2
double mutants. Comparing the here observed Ca2 + read-
ings with the published data on cmcu and cmt1/bicat2 null
mutants it appears that the loss of PECs has a more general
and severe impact on stromal Ca2 + transients. This indicates
two nonmutually exclusive scenarios: First, PEC proteins
themselves might also facilitate Ca2 + flux. Second, PEC pro-
teins may affect the activity of envelope Ca2 + transport pro-
teins (cMCU, BICAT2 and/or unknown ones).

In regards to scenario 1: Independent studies suggest
Ca2 + permeability for nuclear CASTOR-type cation channels
albeit with different quantities. While two studies found

Table 1 Leaf-level concentrations of elements (mg*g DW–1). Mean
leaf concentration of assorted elements normalized to dry weight
(mg*g DW–1) (± SEM, n = 6-7). No significance was determined using
ANOVA and Tukey’s multiple comparisons test (p4 0.05)

Element WT pec1-1pec2-1 pec1-2pec2-2

Mean SEM Mean SEM Mean SEM

P 10.233 0.305 10.432 0.247 10.369 0.205
S 10.184 0.279 9.902 0.220 10.444 0.254
Cl 0.101 0.007 0.104 0.01 0.144 0.013
K 38.482 0.502 40.222 0.707 40.544 1.352
Ca 49.014 1.231 51.130 0.87 51.160 2.282
Mn 0.028 0.004 0.03 0.005 0.03 0.005
Fe 0.083 0.006 0.08 0.006 0.079 0.004
Cu 0.004 0.000 0.005 0.001 0.008 0.003
Zn 0.097 0.003 0.095 0.003 0.108 0.004
Rb 0.021 0.005 0.023 0.006 0.025 0.006
Sr 0.143 0.014 0.15 0.016 0.147 0.016

Mean leaf concentration of assorted elements normalized to dry weight (mg*g DW–

1) (±SEM, n = 6-7). No significance was determined using analysis of variance and
Tukey’s multiple comparisons test (p4 0.05)
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Figure 4 Stress-triggered stromal Ca2 + transients are diminished in pec1pec2. A, Plastid localization of the NTRC-YFP-AEQUORIN construct in
WT and pec1pec2 backgrounds. Representative images are shown (scale bars = 10 mm). B, Full-length semi-quantitative reverse transcriptase PCR
shows absence of either PEC transcript in the two independent pec1pec2 lines and shows similar expression of a YFP fragment that is attached to
AEQUORIN. C, Immunoblotting of WT and pec1pec2 mutant total leaf proteins shows similar YFP-AEQUORIN levels and confirms absence of
PEC in pec1pec2 mutants. Commassie and a-KEA1(2) validate similar loading for all samples. D–G, Ca2 + transients are decreased in plants lacking
plastid PEC proteins. Six-day-old seedlings were triggered with RT buffer (D) 200 mM NaCl (E) 400 mM Mannitol (F) or ice-cold buffer (G). Shown
in the kinetics are the mean Ca2 + concentrations (calculated according to Knight et al., 1996) in the stroma of 12 individuals (±SEM in the shaded
area, n = 12). Bar graphs highlight changes in response to the respective elicitors, that is, Ca2 + taken up into the chloroplast during the measure-
ment (integration, relative to WT, left) and peak Ca2 + values of the corresponding seedlings (right). Statistical differences were determined by
one-way analysis of variance followed by Tukey’s multiple comparisons test (mean ± SEM, n = 12 **P 5 0.01, ***P 5 0.001). Experiments were re-
peated multiple times with similar results. H, Working model of K + and Ca2 + transport mechanisms across the outer envelope and IE membrane
of A. thaliana chloroplasts. KEA1/2 facilitate K + -efflux across the IE membrane (Kunz et al., 2014). cMCU (Teardo et al., 2019) and potentially
CMT1/BICAT2 (Eisenhut et al., 2018; Frank et al., 2019) aid in Ca2 + import. PEC1/2 possess K + -permeability and may impact Ca2 + transients in
the stroma through (1) having Ca2 + conductance themselves or (2) their activity influences other envelope Ca2 + transport proteins.
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moderate preference for K + over Rb + , Na + , and Ca2 +

(Charpentier et al., 2008; Venkateshwaran et al., 2012), a re-
cent structural work suggested preference for Ca2 + over K +

ions (Kim et al., 2019). Each study had to overcome techni-
cal challenges; Charpentier et al. (2008) and Venkateshwaran
et al. (2012) reconstituted in vitro translated protein,
whereas Kim et al. (2009) expressed CASTOR/DMI without
the first two membrane domains. These limitations make
it difficult to draw strong conclusions regarding the
in vivo substrate of CASTOR/POLLUX/DMI cation channels.
This also pertains to their plastid homologs, the PEC pro-
teins, for which we unsuccessfully attempted electrophysiol-
ogy. However, the rescue of a K + uptake deficient yeast
mutant indicates that K + can pass through the PEC pore.
Given the very low-level free Ca2 + in the cytosol and stroma
(low nanomolar), it seems reasonable that highly abundant
K + ions (50–100 mM) represent the main PEC1/2 substrate
in vivo. Notably, also the enigmatic FACC channel from pea
exhibits K + and Ca2 + conductivity (Pottosin et al., 2005).

In regards to scenario 2: PEC function may control activity
of envelope Ca2 + transport proteins. The mechanism pro-
posed for the nuclear Ca2 + transients controlled by
CASTOR/POLLUX/DMI cation channels is unlikely to occur at
the IE. In the nucleus CASTOR/POLLUX/DMI cation channels
were suggested to carry counterions for the inward rectifying
Ca2 + flux. Given the literature values for the IE membrane
potential of at least –70 mV the flux direction for chloroplasts
should be different. Here, K + and Ca2 + should both be
drawn into the stroma by its negative voltage if facilitated by
a cation channel. Therefore, the exact mechanism by which
PEC activity may trigger Ca2 + influx via the two suggested
and potentially additional envelope Ca2 + transport proteins,
remains to be investigated in detail. Notably, while PEC1/2
and CMT1/BICAT2 were highly abundant in the plastid enve-
lope proteome of Arabidopsis mesophyll chloroplasts, cMCU
was not identified (Bouchnak et al., 2019; Trentmann et al.,
2020). Because of cMCU’s suggested cell-specific dual-target-
ing, the highly abundant PEC1/2 may not exert a strong im-
pact on cMCU activity. In the future, detailed colocalization
studies using endogenous promoter-driven fluorescence pro-
tein fusions and native antibodies for respective membrane
proteins are needed to resolve this question.

Conclusions
In this study, we set out to find candidate genes encoding
for the enigmatic FACC channel. While we cannot say with
certainty that PEC1/2 represent FACC it is likely that they
contribute to the measured FACC conductance. PEC1/2 re-
side in the envelope membrane of pea and Arabidopsis
chloroplasts and possess all characteristic functional
domains of an ion channel. Similar to their homologs, the
nuclear CASTOR/POLLUX/DMI cation channels, PEC1/2 re-
store K + flux in yeast mutants and affect the formation of
organellar Ca2 + transients. PEC1/2 might have Ca2 + con-
ductance themselves or their activity influences other enve-
lope Ca2 + transport proteins and thus impact stromal Ca2 +

transients indirectly. To resolve this, electrophysiology on
reconstituted PEC proteins, colocalization, and interaction
studies are needed. The discovery of PEC1/2 adds members
to the chloroplast transportome and enables the under-
standing of Ca2 + signaling in future work.

Materials and Methods

Phylogenetic analysis
We downloaded protein data from (1) genomes of seventeen
land plants: Anthoceros agrestis as well as Anthoceros puncta-
tus (Li et al., 2020), Amborella trichopoda (Amborella
Genome, 2013), Arabidopsis thaliana (Lamesch et al., 2012),
Arabidopsis lyrata (Hu et al., 2011), Brachypodium distachyon
(International Brachypodium, 2010), Brassica rapa (Brassica
rapa FPsc v1.3, DOE-JGI, http://phytozome.jgi.doe.gov/),
Gnetum montanum (Wan et al., 2018), Lotus japonicus (Li
et al., 2020), Marchantia polymorpha (Bowman et al., 2017),
Oryza sativa (Ouyang et al., 2007), Physcomitrium patens
(Lang et al., 2018), Pisum sativum (Kreplak et al., 2019),
Selaginella moellendorffii (Banks et al., 2011), and Sphagnum
fallax (Sphagnum fallax v0.5, DOE-JGI, http://phytozome.jgi.
doe.gov/); protein data for Spinacia oleracea were obtained
from (Dohm et al., 2014); (2) the genomes of seven strepto-
phyte algae: Chlorokybus atmophyticus (Wang et al., 2020),
Chara braunii (Nishiyama et al., 2018), Klebsormidium nitens
(Hori et al., 2014), Mesotaenium endlicherianum (Cheng et al.,
2019), Mesostigma viride (Wang et al., 2020), Penium margari-
taceum (Jiao et al., 2020), Spirogloea muscicola (Cheng et al.,
2019)—additionally, we included sequences found in the
transcriptomes of Spirogyra pratensis (de Vries et al., 2020),
Zygnema circumcarinatum and Coleochaete scutata (de Vries
et al., 2018), and Coleochaete orbicularis (Ju et al., 2015); (3)
the genomes of four chlorophytes: Chlamydomonas reinhard-
tii (Merchant et al., 2007), Coccomyxa subellipsoidea (Blanc et
al., 2012), Micromonas pusilla (Worden et al., 2009), Ulva
mutabilis (De Clerck et al., 2018).

We used (1) seed sequences from Lotus japonicus,
Medicago truncatula, Pisum sativum and Oryza sativa and
(2) animal Slo1 protein homologs from Caenorhabditis ele-
gans, Acanthaster planci, Danio rerio, Nematostella vectensis,
Pomacea canaliculate, Echinococcus granulosus, Parasteatoda
tepidariorum, Lingula anatine, Biomphalaria glabrata, Homo
sapiens, Drosophila mojavensis, and Mus musculus as a query
sequence for a BLASTp against this dataset. Initially, we con-
sidered all homologs recovered at a cutoff level of 10–5

Alignments were generated using MAFFT v7.475 (Katoh and
Standley, 2013) with an L-INS-I approach. Alignments are
provided in Supplemental Datasets S1 and S2. We com-
puted maximum likelihood phylogenies using IQ-TREE 2.0.3
(Minh et al., 2020), with 1,000 ultrafast (UFBoot2; Hoang et
al., 2018) bootstrap replicates. To determine the best model,
we used ModelFinder (Kalyaanamoorthy et al., 2017) and
picked LG + F + R7 for Figure 1 (Le and Gascuel, 2008) and
WAG + R8 (Whelan and Goldman, 2001) for Supplemental
Figure S1 as the best models based on the Bayesian
Information Criterion.
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Alignment and domain structure
Full-length amino acid sequences of PEC1, PEC2, and DMI1
were submitted to the InterPro protein families and
domains database (https://www.ebi.ac.uk/interpro/). Figures
were created using Affinity Designer (serif).

Plant growth and isolation of Arabidopsis thaliana
mutant lines
WT and mutant seeds from accession Columbia-0 (Col-0)
were surface-sterilized, stratified in the dark (48 h at 4�C),
and then germinated for seven days on 1/2 strength
Murashige and Skoog (MS) 0.8% (w/v) phytoagar plates
(pH 5.8) at 150 mmol photons m–2 s–1 in long-day condi-
tions (16 h/8 h at 22�C). On day seven seedlings were
transferred to soil (Sungro Professional Growing Mix #1,
Sun Gro Horticulture, Agawam, MA, USA) and grown un-
der 150 mmol photons m–2 s–1 illumination in 16-h/8-h
day–night cycle at 22�C. Rosettes of 3-week-old plants
were used for all experiments if not stated differently, ex-
cept for chloroplast isolation where seeds were sown di-
rectly onto soil. All T-DNA insertion mutants were
ordered from the ABRC stock center. Homozygous geno-
types were confirmed by PCR using primers detailed in
Supplemental Tables S1 and S2.

Yeast complementation assay
For Saccharomyces cerevisiae assays, we used the MAB2d
mutant (Maresova and Sychrova, 2005) and the correspond-
ing WT strain W303. PEC1, PEC2, and DMI1 coding sequen-
ces without stop codon were cloned into the yeast
expression vector pYeT, harboring a GAP promoter for
strong expression and a C-terminal YFP and were trans-
formed according via lithium acetate method (Gietz and
Woods, 2001). To minimize mislocalization, the N-terminal
plastid transit peptide of PEC1 and PEC2 were truncated.
According to predictions of the plant proteome database
(Sun et al., 2009) 44 AAs were truncated in the case of
PEC1 and 50 AAs for PEC2, respectively. We observed more
consistent localization of DMI1 to the plasma membrane in
yeast cells, which prompted us to use the putative DMI1 sig-
nal peptide (70 AAs) as an N-terminal fusion to the PEC1/2
coding DNA sequence. Strains were grown overnight in K + -
supplemented dropout media, washed extensively, and
shaken at 30�C for 30 min in K + -free media. OD600 was ad-
justed to 0.1 in water and cells were spotted side-by-side on
media plates supplemented with increasing K + amounts.

Transient N. benthamiana infiltration and confocal
microscopy for protein localization studies
For localization studies in N. benthamiana, Agrobacterium
tumefaciens strains carrying respective vectors (Supplemental
Table S3) were co-injected with the 19k vector (Voinnet
et al., 2003) according to (Waadt et al., 2014). Images were
taken on a Leica SP8 Confocal Laser Scanning Microscope
equipped with a supercontinuum laser and hybrid detectors.
In co-localization experiments employing yellow fluorescent
protein (YFP) and chlorophyll autofluorescence (chl a),

both fluorophores were excited at 514 nm and recorded
at 524–560 nm and 627–700 nm, respectively. Cyan fluores-
cent protein (CFP) was excited with a pulsed laser at
405 nm and emission was sequentially recorded at 465–492
nm.

Promoter-GUS-activity staining
For GUS promoter fusion constructs (Supplemental Table
S3), 2,000 bp 50-fragments upstream from the respective
ATG were amplified from genomic DNA and cloned into
pGreenII 0179-derived vectors harboring the GUS reporter
gene (Pratt et al., 2020). Agrobacterium containing the re-
spective plasmids were transformed into WT plants accord-
ing to (Clough and Bent, 1998). GUS staining was performed
as described in (Höhner et al., 2019). Representative images
are shown and experiments were carried out three times
with similar results.

Generation of a-PEC1(2) immunoglobulin
To maximize chance of recognition of the antibody against
PEC1, the entire soluble domain (M244 until stop codon,
�64 kDa) was cloned into pET16b and transformed into
BLR 21 for expression in Escherichia coli. Purification of the
antigen was performed as described in (Höhner et al., 2021).
An antigen solution at 0.49 mg/mL was flash-frozen on dry
ice and sent for antibody generation. The PEC1 antiserum
was raised in rabbits (YenZym Antibodies, San Francisco,
CA, USA).

Immunoblotting
Arabidopsis leaf tissue frozen in liquid N2 was powderized
using mortar and pestle. Total protein was extracted in ex-
traction buffer [200 mM Tris pH 8.0, 4% (w/v) sodium
dodecyl sulfate (SDS), 20 mM dithiothreitol (DTT)] to 0.5 g
fresh weight/mL, followed by heating at 80�C for 10 min
and removing insoluble debris by centrifugation at 21,000g
for 8 min. Supernatant was mixed with Laemmli buffer and
loaded on 8%–10% (w/v) acrylamide gels. A voltage of 120
V was applied until the loading dye had left the gel. Gels
were either Commassie stained or electroblotted onto
Polyvinylidene Fluoride (PVDF) or nitrocellulose membranes
(0.45-mm pore size) by applying 70 V for 45 min.
Subsequently, the membrane was incubated with blocking
buffer (Tris-buffered saline with 0.05% (w/v) tween (TBS-T),
5% (w/v) nonfat dry milk) for up to 1 h at RT and incu-
bated overnight in blocking buffer plus primary antibody
at indicated dilutions, gently rocking at 4�C. Primary anti-
bodies used in this study were a-PEC1 (this study), a-
KEA1(2) (Bolter et al., 2020), a-LHCP, a-VDAC (both
(Clausen et al., 2004)), a-FPBase (Benz et al., 2009), a-
TIC40 (Stahl et al., 1999), a-TOC64 (Sohrt and Soll, 2000),
and a commercial a-GFP antibody (Roche, Basel,
Switzerland). The membrane was washed 4 times for 5
min in TBS-T and subsequently incubated with HRP con-
jugated secondary antibody (goat-anti-rabbit (Proteintech
Cat# SA00001-2) or goat-anti-mouse in case of anti-GFP),
diluted 1:10,000 in blocking buffer for 1 h at RT. The blot
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was rinsed 4 times with TBS-T, 10 min each, and then de-
veloped with Biorad clarity ECL substrates (Cat#1705060)
for 2–5 min. Signal was detected using a ImageQuant LAS
4000 (GE Healthcare, Chalfont St Giles, UK) with the pre-
cision setting and automatic exposure.

Chloroplast subfractionation
Initially, chloroplasts were isolated according to (Bolter et al.,
2020). Chloroplast subfractionation was performed as de-
scribed in (Flores-Perez and Jarvis, 2017), with slight modifi-
cations. Intact chloroplasts were isolated, then incubated in
10 mM HEPES/KOH, 5 mM MgCl2 plus complete protease
inhibitor (cpi) at a concentration of 1 mg/mL chl for 30 min
on ice and then ruptured by 50 strokes in a dounce homog-
enizer. The homogenate was loaded onto a step sucrose gra-
dient (0.46 M, 1.0 M, 1.2 M sucrose in lysis buffer) and
centrifuged at 58,000g for 2 h at 4�C. Stroma was collected
from the top and directly used for SDS–PAGE. The envelope
fraction was taken from the interface between 0.46 M and
1.0 M sucrose, diluted 1:4 with lysis buffer and centrifuged
for 30 min at 256,000g at 4�C. The resulting pellet was resus-
pended in loading buffer. Thylakoids were recovered from
the pellet of the gradient, washed 5 times in lysis buffer.
Loading was adjusted to total protein.

Protease treatments of chloroplasts
For trypsin treatment of intact chloroplasts an equivalent
of 100 mg chl was pelleted and resuspended in 100 mL
wash buffer supplemented with 0.5 mM CaCl2. Trypsin was
added in the indicated amounts per milligram chl and incu-
bated for 45 min at 23�C. The treatment was terminated
by addition of 1 � cpi, chloroplasts were reisolated by cen-
trifugation and washed once with wash buffer + 1 � cpi.
The final pellet was solubilized in Laemmli loading buffer
containing 2 M urea and 1 � cpi, heated at 65�C for 5 min
and plastids equivalent to 10 mg chl were loaded onto an
SDS gel followed by immunoblotting as described above. All
experiments were at least done in triplicates giving the same
results. Shown here are representative blots.

BN-PAGE
BN-PAGE experiments of total enriched chloroplast mem-
brane fractions were carried out as described by (Nickel et
al., 2016), with minor modifications. Samples equal to 15 mg
chl were solubilized with 5% b-dodecylmaltoside for 15 min
and separated on a 5%–15% acrylamide gradient overnight.
For subsequent western blotting, lanes were incubated in
Towbin buffer [25 mM Tris pH 8.3, 192 mM glycine, 0.1%
(w/v) SDS, 20% (v/v) MeOH] with additional 0.9% (w/v)
SDS for 1 h prior to blotting. For 2D experiments, the re-
spective BN gel lane was incubated for 30 min in BN-
denaturation buffer (1% (w/v) SDS, 50 mM DTT, 25 mM
Tris, 192 mM glycine), washed, and afterward assembled on
top of an SDS–PAGE. Total enriched chloroplast membrane
fractions equal to 15 mg chl were loaded as a control and
separated on the same SDS–PAGE.

Photosynthetic parameters and chlorophyll
quantification
Plants were dark-adapted for 20 min. Subsequently, chloro-
phyll a fluorescence was measured with a Walz IMAGING-
PAM M-Series MAXI version (Walz, Effeltrich, Germany).
False-color images were exported using the ImagingWinGigE
software. Total chlorophyll was extracted from 5 to 10 mg
of N2-frozen powderized plant material in prechilled reac-
tion tubes. After addition of 1 mL 80% (v/v) acetone, sam-
ples were incubated for at least 30 min on ice in the dark
interrupted by occasional vortexing. Samples were centri-
fuged at 10,000g for 5 min at 4�C to pellet debris.
Chlorophyll determination was performed trough photome-
try on the clear supernatant (Porra et al., 1989). Obtained
values were normalized to fresh weight, and then to the
WT. A representative result of three independent experi-
ments is shown.

Generation of stable Aequorin reporter mutants
and Ca2 + assays
Aequorin lines were generated by using the floral dip
method with A. tumefaciens strains harboring the plasmid
pBINU-CHYA(K) (Mehlmer et al., 2012). Homozygous T3

individuals were introgressed into mutant lines and homo-
zygosity of the reporter lines was confirmed in the F3 gener-
ation. Aequorin assays were performed according to
(Tanaka et al., 2013), with minor changes to the CTZ buffer.
In brief, 5-d-old seedlings were transferred from 1/2 MS
plates to white 96-well plates filled with 50 mL CTZ buffer
(1.4 mM CaCl2, 20 mM KCl, 5 mM MES pH5.7) containing
10 mM coelenterazine (NanoLight Technologies, USA,
CAS#55779-48-1). Seedlings were kept in the dark overnight
at 22�C. Luminescence was recorded in a TECAN SPARK
plate reader (Tecan, Männedorf, Switzerland) with 500 ms
integration time (400 ms in supplementary experiments).
Total, reconstituted AEQUORIN amounts were calculated
by discharging with 10% (v/v) ethanol and 1 M CaCl2.
Calibrations were performed according to (Knight et al.,
1996). Graphs were plotted with GraphPad Prism. A repre-
sentative result of at least three experiments is shown.
Statistical significance was tested using analysis of variance
followed by Tukey’s multiple comparisons test.

Elemental analysis
Leaf elements are analyzed by Total Reflection X-ray
Fluorescence (TXRF) spectroscopy. All procedures were pre-
viously described in detail (Höhner et al., 2016). In brief, 21-
d-old plants were harvested, pooled in groups of three, and
dried completely in an oven at 80�C. To avoid elemental
contamination, tissue was ground into fine powder using a
zirconia mortar and pestle (Stanford Advanced Materials,
Lake Forest, USA). A 5–10 mg dry weight tissue was digested
by boiling in 1 mL 70% (v/v) HNO3 (analytical grade). About
100 lL of the digested tissue was mixed with internal quan-
titative Ga and Sc standards to final concentrations of 1
ppm Ga and 50 ppm Sc. A mixture of 10 lL was spotted
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onto quartz disc carriers and dried before measuring on a
S4 T-STAR TXRF spectrometer (Bruker, Berlin, Germany).

Accession numbers
PEC1 (At5g02940), PEC2 (At5g43745), DMI1 (At5g49960),
TIC40 (At5g16620), NTRC (AT2G41680), pec1-1
(SAIL_300_A10, CS72537), pec1-2 (SALK_045095, CS72538),
pec2-1 (SALK_102200, CS72539), pec2-2 (SAIL_839_E05,
CS72540), pec1-1pec2-1 (CS72541), pec1-2pec2-2 (CS72542),
cas-1 (SALK_070416), Col-0 WT NTRC-YFP-AEQ (CS72534),
pec1-1pec2-1 NTRC-YFP-AEQ (CS72535), pec1-2pec2-2
NTRC-YFP-AEQ (CS72536).

Supplemental data
The following materials are available in the online version of
this article.

Supplementary Figure S1. Phylogeny of PEC, CASTOR,
and POLLUX homologs.

Supplemental Figure S2. PEC domains and construct
information.

Supplemental Figure S3. Localization studies of PEC pro-
teins in N. benthamiana and Arabidopsis thaliana.

Supplemental Figure S4. a-PEC1 antibody design and ap-
plication in localization studies.

Supplemental Figure S5. Extended PEC expression
information.

Supplemental Figure S6. PEC locus information and pec
single mutant characterization.

Supplemental Figure S7. Background AEQUORIN and
additional cold shock measurements, single mutant readings,
and complementation by backcross into the WT.

Supplemental Figure S8. Lack of stromal Ca2 + transients
in pec1pec2 mutants does not correspond with additional
growth defects under abiotic stress conditions.

Supplemental Table S1. Oligonucleotide combinations
used in genotyping PCRs.

Supplemental Table S2. List of oligonucleotides used in
this study.

Supplemental Table S3. Constructs used in this study
and their origin.

Supplemental Dataset S1. Main Figure 1 alignment
Supplemental Dataset S2. Supplemental Figure S1

alignment.
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Sciences at Prague) for sharing the MAB2d mutant strain.
Many thanks to Drs Michael Varnum (Washington State
University) and Miguel Pi~neros (Cornell University) for tre-
mendous support in trying to establish electrophysiology
assays on PECs in Xenopus ooyctes. We are very thankful
for many helpful aequorin-related discussions with Drs

Tanaka and Jewell (both WSU) and their insights on plate-
reader-based luminescence assays. Lots of thanks to A.H.
Howell for confocal microscopy assistance, to Dr DeTar for
help in ionomics sample preparation and evaluation, to A.I.
Pratt (all WSU) for early discussions on Ca2 + assays, and to
Dr Jordan Zager (Dewey Scientific) for discussion on various
parts of the project. C.M. and C.L. Lewis (Alumni WSU
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