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Abstract
Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/
CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations
and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present
methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-
stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually
accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations
in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9
RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of in-
terest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)—
in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the gen-
erated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial
ftsY or the WD and TetratriCopeptide repeats protein 1 genes in �1% of the oxyfluorfen resistant colonies. Analysis of
the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during
homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could
also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of
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individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways,
or structures.

Introduction
The green alga Chlamydomonas (Chlamydomonas reinhard-
tii) has gained recognition as a model organism for the
study of diverse organelles and physiological processes and
has also been used in explorative work related to biofuel,
nutraceutical, and pharmaceutical recombinant protein pro-
duction (Rosales-Mendoza et al., 2012; Jinkerson and Jonikas,
2015; Scranton et al., 2015; Salomé and Merchant, 2019).
The ability to genetically manipulate the Chlamydomonas
genome allows the investigation of gene function as well as
the pursuit of innovative biotechnological applications. A va-
riety of methods have been developed to disrupt nuclear
genes in this alga, including chemical-, UV light-, gamma ir-
radiation-, and insertional mutagenesis, the latter involving
cell transfection with exogenous DNA that integrates ran-
domly into the genome (Jinkerson and Jonikas, 2015;
Picariello et al., 2020). Moreover, a genome-wide mutant li-
brary has been recently generated using insertional muta-
genesis (Li et al., 2016, 2019). However, all these methods
result in random alterations to the genome sequence, and
mutations in a desired gene may not be obtained or may
not affect gene function.

Targeted strategies for nuclear gene inactivation have also
been explored in Chlamydomonas. Post-transcriptional gene
silencing by RNA interference, involving transgenic strains
expressing artificial microRNAs (Molnar et al., 2009; Zhao et
al., 2009) or double-stranded RNAs (Rohr et al., 2004; Kim
and Cerutti, 2009), seems to have variable knockdown effi-
ciency, depending on the target gene, and may potentially
cause unintended off-target effects. Homologous recombina-
tion (HR)-mediated gene disruption has also been
attempted, but a major drawback is the low frequency of
HR between exogenous DNA and a nuclear gene of interest
(Sodeinde and Kindle, 1993; Gumpel et al., 1994; Zorin et al.,
2009; Plecenikova et al., 2013; Sizova et al., 2013; Jinkerson
and Jonikas, 2015; Jiang et al., 2017). Promisingly, recent
studies have successfully used sequence-specific nucleases
(SSNs) to achieve targeted gene disruption (Sizova et al.,
2013; Jiang et al., 2014; Baek et al., 2016; Shin et al., 2016;
Ferenczi et al., 2017; Greiner et al., 2017; Jiang and Weeks,
2017; Shamoto et al., 2018; Guzmán-Zapata et al., 2019;
Angstenberger et al., 2020; Cazzaniga et al., 2020; Dhokane
et al., 2020; Kang et al., 2020; Kim et al., 2020; Park et al.,
2020; Picariello et al., 2020). SSNs cause DNA double-strand
breaks (DSBs) at specific sites, which can be repaired by al-
ternative cellular mechanisms resulting in mutations or pre-
cise sequence changes. DSB repair by error-prone
nonhomologous end-joining (NHEJ), including canonical and
alternative pathways, may result in insertions/deletions (i.e.
indels) and/or missense/nonsense mutations at the target

sites (Rodgers and McVey, 2016; Gallagher and Haber, 2018;
Scully et al., 2019; Capdeville et al., 2020; Gallagher et al.,
2020). Alternatively, homology directed repair (HDR) in the
presence of template donor DNA, which can also occur by
several pathways, may result in precise sequence changes
(Rodgers and McVey, 2016; Gallagher and Haber, 2018; Paix
et al., 2017; Scully et al., 2019; Capdeville et al., 2020;
Gallagher et al., 2020).

Most current work on nuclear gene targeting in
Chlamydomonas has focused on the RNA-programmable site-
specific nucleases, such as the clustered regularly interspaced
short palindromic repeat (CRISPR)/CRISPR-associated protein
9 (Cas9) system from Streptococcus pyogenes (Makarova et al.,
2011; Jinek et al., 2012; Jeon et al., 2017; Swarts and Jinek,
2018), which rely on Watson–Crick base pairing for DNA rec-
ognition. Several reports have demonstrated that both
CRISPR/Cas9 and CRISPR/Cas12a (formerly Cpf1), belonging
to types II-A and V-A of the CRISPR–Cas systems (Makarova
et al., 2011; Swarts and Jinek, 2018), are useful for targeted
gene disruption in Chlamydomonas (Jiang et al., 2014; Baek et
al., 2016; Shin et al., 2016; Ferenczi et al., 2017; Greiner et al.,
2017; Jiang and Weeks, 2017; Shamoto et al., 2018; Guzmán-
Zapata et al., 2019; Angstenberger et al., 2020; Cazzaniga et al.,
2020; Dhokane et al., 2020; Kang et al., 2020; Kim et al., 2020;
Park et al., 2020; Picariello et al., 2020). In this organism, the
CRISPR/Cas systems have been implemented as a transgenic
method, with components expressed either transiently from
plasmids (Jiang et al., 2014; Guzmán-Zapata et al., 2019) or
constitutively from genome-integrated constructs (Greiner et
al., 2017; Jiang and Weeks, 2017; Park et al., 2020), or as a
transgene-free approach, by introducing into cells preas-
sembled CRISPR/Cas9 (or CRISPR/Cas12a) ribonucleoproteins
(RNPs) by electroporation (Baek et al., 2016; Shin et al., 2016;
Ferenczi et al., 2017; Greiner et al., 2017; Shamoto et al., 2018;
Angstenberger et al., 2020; Dhokane et al., 2020; Cazzaniga et
al., 2020; Kim et al., 2020; Picariello et al., 2020) or by using a
cell penetrating peptide (Kang et al., 2020). Published meth-
ods using RNA-programmable site-specific nucleases differ in
efficiency, applicable genes/strains, and/or experimental details
but, in general, targeted disruption of nuclear genes in
Chlamydomonas and in the related alga Volvox carteri has be-
come a feasible approach (Baek et al., 2016; Shin et al., 2016;
Ferenczi et al., 2017; Greiner et al., 2017; Jiang and Weeks,
2017; Shamoto et al., 2018; Guzmán-Zapata et al., 2019;
Ortega-Escalante et al., 2019; Angstenberger et al., 2020;
Cazzaniga et al., 2020; Dhokane et al., 2020; Kang et al., 2020;
Kim et al., 2020; Park et al., 2020; Picariello et al., 2020).

In contrast, precise gene editing (i.e. precise nucleotide
changes in a target genomic sequence) triggered by RNA-pro-
grammable SSNs remains fairly inefficient or limited to specific
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strains/experimental approaches (Ferenczi et al., 2017; Greiner
et al., 2017; Jiang and Weeks, 2017). As reported for somatic
cells of land plants (Capdeville et al., 2020), a major constraint
is that, in Chlamydomonas, DSB repair by error-prone NHEJ
pathways appears to be much more efficient than HR in the
presence of donor DNA (Sizova et al., 2013; Greiner et al.,
2017). As described for some mammalian cell lines (Shy et al.,
2016; Mitzelfelt et al., 2017), only a small subset of the popu-
lation, in asynchronously grown Chlamydomonas, may be ca-
pable of HDR, possibly associated with being in a certain
phase of the cell cycle (Angstenberger et al., 2020).
Additionally, the cell wall appears to pose a substantial barrier
for the introduction of macromolecules into Chlamydomonas
cells (Jeon et al., 2017; this work). Electroporation of CRISPR/
Cas RNPs into cell wall-less mutant strains or after removal of
the cell wall by autolysin treatment often resulted in gene
editing (disruption) frequencies of a few percentage (relative
to the number of electroporated cells; Baek et al., 2016;
Ferenczi et al., 2017; Shamoto et al., 2018; Angstenberger et
al., 2020; Picariello et al., 2020). However, using similar meth-
ods with walled strains resulted in gene editing (disruption)
frequencies several orders of magnitude lower (Shin et al.,
2016; Greiner et al., 2017; Kang et al., 2020; this work). In the
absence of a selectable phenotype for a gene of interest, a
common approach has been to electroporate walled strains
with CRISPR/Cas RNPs and DNA coding for a selectable
marker (e.g. an antibiotic resistance gene), sometimes with
the addition of template DNA to elicit HDR. Chlamydomonas
colonies surviving on the selective agent, due to nuclear inte-
gration and expression of the selectable transgene, were then
screened for editing of a desired endogenous gene in labor-in-
tensive efforts (Shin et al., 2016; Greiner et al., 2017; this
work). Unfortunately, in many cases, the target gene con-
tained insertions of the exogenous marker DNA or other
DNA fragments, preventing the recovery of precisely edited
genes for study (Greiner et al., 2017; this work).

To overcome the outlined problems, we explored whether
selection for precise editing of an endogenous gene in
Chlamydomonas, which would effectively select for cells tak-
ing up the editing components and capable of carrying out
HDR, may facilitate the recovery of precise, scarless edits in
another gene of interest, when both genes were simulta-
neously targeted by co-electroporation of CRISPR/Cas9 RNPs
and template donor DNAs. We used single-stranded oligo-
deoxynucleotides (ssODNs) as donor DNA because prior
work demonstrated their usefulness, based on design sim-
plicity and commercial availability, as templates in the repair
of CRISPR/Cas-induced DSBs in Chlamydomonas (Ferenczi et
al., 2017; Greiner et al., 2017; Jiang and Weeks, 2017; Sizova
et al., 2021) and land plants (Shan et al., 2013; Svitashev et
al., 2015; Sauer et al., 2016).

The enzyme protoporphyrinogen oxidase (Protox),
encoded by the PPX1 gene in Chlamydomonas, oxidizes pro-
toporphyrinogen IX to protoporphyrin IX in the biosynthetic
pathway of heme and chlorophyll (Duke et al., 1991;
Randolph-Anderson et al., 1998). Inhibition of this enzyme

causes accumulation of protoporphyrinogen IX, which is
nonenzymatically oxidized to protoporphyrin IX and eventu-
ally leads to membrane peroxidation and cell lethality in the
light (Duke et al., 1991; Ha et al., 2004). A single base-pair
mutation (G!A, causing a valine-389 to methionine substi-
tution) within the protein coding sequence results in the
Protox enzyme being resistant to inhibition by porphyric
herbicides such as oxyfluorfen (Randolph-Anderson et al.,
1998; Brueggeman et al., 2014). Electroporation of
Chlamydomonas cells with a CRISPR/Cas9 (PPX1) RNP and
an ssODN donor (designed to introduce the G->A muta-
tion in PPX1 during HDR) led to the isolation of colonies
precisely edited in PPX1 by selection on oxyfluorfen contain-
ing medium. Interestingly, co-targeting PPX1 (as the select-
able marker) and FTSY (encoding a signal recognition
particle receptor protein, denoted as FtsY in bacteria, which
is required for the integration of light-harvesting complex
proteins into thylakoid membranes) or WD and
TetratriCopeptide repeats protein 1 (WDTC1; encoding a con-
served protein with antiadipogenic functions in several
eukaryotes) allowed the recovery of precisely edited mutants
in the latter genes. Optimizing this approach of simulta-
neously editing a selectable marker and any gene of interest
may prove to be a viable strategy for introducing precise se-
quence changes in the genome of Chlamydomonas and, po-
tentially, of other microalgae.

Results

Targeted disruption of the FTSY gene
The FTSY gene encodes a component of the chloroplast sig-
nal recognition particle-dependent pathway, which is re-
quired for insertion of light-harvesting chlorophyll a/b-
binding proteins into the thylakoid membranes (Aldridge et
al., 2009; Kirst et al., 2012). In Chlamydomonas, null FTSY
mutants showed diminished ability to assemble some pro-
teins of the light harvesting complex II, resulting in lower
chlorophyll content than in the wild-type (WT; Kirst et al.,
2012; Baek et al., 2016; Kim et al., 2020). Hence, mutant col-
onies displayed a pale green phenotype. Because of this eas-
ily identifiable phenotype, we initially attempted to edit
exon 4 of the FTSY gene (Figure 1A), using a CRISPR/Cas9
protocol-dependent on square-wave electroporation as de-
scribed by Greiner et al. (2017).

Cells of the walled CC-5415 (g1) strain were electropo-
rated with a CRISPR/Cas9 (FTSY) RNP and a double-
stranded DNA (dsDNA) PCR fragment containing a trans-
gene expressing the Streptomyces rimosus aphVIII gene,
which confers resistance to the antibiotic paromomycin
(Sizova et al., 2001). After electroporation, cells were selected
on agar plates containing paromomycin. Antibiotic-resistant
colonies displaying a pale green phenotype (Figure 1B) were
assumed to be FTSY null mutants for calculation of gene
disruption frequencies (Supplemental Table S1). However,
we note that the reported values are an approximation to
the actual frequency of targeted gene alterations since some
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CRISPR/Cas9-induced mutations in FTSY may not affect pro-
tein function and the corresponding colonies would not be
detectable as pale green. Conversely, some pale green colo-
nies may be caused by random insertion of the selectable
transgene into genes, other than FTSY, associated with chlo-
rophyll synthesis or photosynthetic complex assembly. Yet,
all pale green colonies examined by PCR amplification of the
target site (Supplemental Table S1) either showed indels at

the Cas9 cleavage site (Figure 1C), consistent with disruption
of FTSY gene function, or lacked a detectable PCR product,
likely due to large DNA insertions and/or rearrangements at
the target site, as previously reported common occurrence
associated with CRISPR/Cas9 gene editing in
Chlamydomonas (Shin et al., 2016; Greiner et al., 2017; Kang
et al., 2020; Picariello et al., 2020).

In agreement with the results of Greiner et al. (2017), heat
shocking the cells prior to electroporation increased more
than five-fold the number of recovered pale green colonies
(Supplemental Table S1, Experiments 2 and 3). To achieve
precise FTSY gene editing, in several experiments, we also
added to the electroporation mix a ssODN (Supplemental
Table S2), overlapping the Cas9 cleavage site and designed
to serve as template for HDR. Precise repair by homology di-
rected mechanisms of the DSB caused by CRISPR/Cas9
(FTSY) RNP would introduce stop codons within the FTSY
coding sequence, create a new restriction enzyme site
(NheI) for genotypic analyses, and destroy the Cas9 proto-
spacer adjacent motif (PAM; Supplemental Figure S1).
However, out of 21 pale green colonies examined by PCR
amplification of the targeted FTSY exon, 12 lacked a detect-
able PCR product, and 9 showed indels at the target site
(Figure 1C and Supplemental Figure S2). We did not recover
any colony precisely edited by HDR in any of these experi-
ments, underlining the difficulty in obtaining precise gene
editing in walled Chlamydomonas strains with current meth-
odological approaches. Although, one colony exhibited ap-
parent integration of donor DNA by HR on one side of the
DSB whereas the repair was carried out by NHEJ on the
other side, resulting in the insertion of a 104-bp DNA frag-
ment (Supplemental Figure S2, colony 13b; see
“Discussion”).

We also examined uptake of the CRISPR/Cas9 (FTSY) RNP
after electroporation of the walled g1 strain of
Chlamydomonas. For these experiments, we assembled the
RNP with trans-activating CRISPR RNA (tracrRNA) conju-
gated to the ATTO 550 fluorophore (Banas et al., 2020).
Four hours after electroporation, cells were examined by
fluorescence microscopy to visualize uptake and intracellular
localization of the labeled RNP. The tracrRNA-ATTO 550
electroporated alone localized predominantly in the nucleus
(Supplemental Figure S3A), as previously reported for single-
stranded DNA oligonucleotides (Jiang et al., 2017). In con-
trast, the assembled tracrRNA-ATTO 550-Cas9 RNP was dis-
tributed in the cytosol and the nucleus with some
preferential perinuclear accumulation (Supplemental Figure
S3A). However, examining over a thousand individual cell
images revealed that <1% of the cells had taken up enough
RNP to be detectable by fluorescence microscopy
(Supplemental Figure S3B), suggesting that electroporation
of CRISPR/Cas9 RNPs into walled Chlamydomonas strains is
quite inefficient.

Precise editing of the PPX1 gene
With the goal of developing a co-editing approach in
Chlamydomonas, we next attempted to modify an

Figure 1 Targeted disruption of the FTSY gene. A, Schematic of the
FTSY gene showing the target (highlighted in bluish purple) and re-
verse complement PAM (highlighted in gray) sequences. A black ar-
rowhead indicates the Cas9 cleavage site. Short red arrows indicate
the primers used for PCR analyses. B, Cells co-transfected with the
CRISPR/Cas9 (FTSY) RNP and dsDNA encoding the aphVIII transgene
were spread on TAP agar plates containing paromomycin.
Representative plates show some pale green colonies as a conse-
quence of FTSY gene disruption. C, DNA sequences of pale green colo-
nies, indicating alterations at the FTSY target site relative to the WT.
Insertions, indicating type (C, cytosine) or number of base pairs, are
depicted in red. Deletions, indicating type or number of base pairs, are
depicted in green. Complete sequences are shown in Supplemental
Figure S2.
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endogenous gene amenable to being converted (via precise
mutagenesis) to a selectable marker gene. As already men-
tioned, a single point mutation (G!A) in PPX1 exon 10
(Figure 2A), causing a single amino acid substitution
(Val389Met) in the Protox enzyme, confers resistance to
porphyric herbicides in Chlamydomonas (Randolph-
Anderson et al., 1998; Brueggeman et al., 2014). Cells of the
g1 strain were electroporated with a CRISPR/Cas9 (PPX1)
RNP and an ssODN (Supplemental Table S2), overlapping
the Cas9 cleavage site and designed to serve as template for
HDR. Precise DSB repair by homology-directed mechanisms
would introduce the G!A mutation within the PPX1 cod-
ing sequence as well as a nearby, functionally silent, C!T
mutation (Figure 2A; Supplemental Figure S4).
Electroporated cells were selected on agar plates containing
oxyfluorfen. By using the protocol developed by Greiner et
al. (2017), we recovered several oxyfluorfen-resistant colonies
(Figure 2B). Moreover, the frequency of CRISPR/Cas9 (PPX1)
RNP-induced mutants, particularly when including a heat
shock treatment (Supplemental Table S3, Experiments 1 and
2), was well above the frequency of spontaneous PPX1 mu-
tation to herbicide resistance, which has been reported to
be <1 � 10�8 (Randolph-Anderson et al., 1998). However,
the overall number of oxyfluorfen-resistant colonies was
quite low.

To enhance the recovery of PPX1 edited colonies, we in-
troduced several modifications to the Greiner et al. (2017)
method, including changes to some electroporation parame-
ters, the amounts of Cas9 nuclease and ssODN donor used
in the electroporation mix, as well as the timing of the heat
shock treatment, which was performed after (rather than
before) cell electroporation. Incubating Chlamydomonas cells
at 35�C, during the recovery period after RNP electropora-
tion, has also been recently reported to increase the fre-
quency of edited colonies (Dhokane et al., 2020). All of our
modifications have been incorporated into an optimized
protocol described under “Materials and Methods”. This
modified protocol increased approximately five-fold the
number of recovered oxyfluorfen-resistant colonies
(Supplemental Table S3, Experiments 3 and 4). Fifteen of
these colonies were examined by PCR amplification of the
target site and sequencing of the PCR products. Nine colo-
nies displayed the expected (i.e. G!A and C!T) sequence
changes, one colony appeared to be a mixture between WT
and a properly edited clone, and five colonies showed only
the G!A change, which is solely necessary to confer herbi-
cide resistance (Figure 2C). Thus, about two-thirds of the ex-
amined colonies were fully consistent with editing by HDR,
using as template the electroporated ssODN donor.
However, we surmise that the remaining examined colonies
were also edited by homology-directed mechanisms, since
we have not recovered any spontaneous herbicide-resistant
mutant in any of our negative control experiments
(Supplemental Table S3). As described in other eukaryotes
(Gallagher and Haber, 2018; Paix et al., 2017; Boel et al.,
2018; Gallagher et al., 2020), we expected that Cas9-induced

Figure 2 Precise editing of the PPX1 gene. A, Schematic of the PPX1
gene showing the target (highlighted in bluish purple) and PAM
(highlighted in gray) sequences. Other symbols are as described under
Figure 1A. HDR of the DSB, using as template the transfected PPX1
ssODN, is expected to introduce two base pair changes (highlighted in
yellow) into the genome (bottom sequence). B, Cells co-transfected with
the CRISPR/Cas9 (PPX1) RNP and ssODN donor DNA were spread on
TAP agar plates containing oxyfluorfen. A representative plate shows two
green oxyfluorfen resistant colonies as a consequence of PPX1 gene edit-
ing. C, Representative sequencing chromatograms of the WT, fully edited
(9�, containing both G!A and C!T changes) and, likely, partly edited
(5�, containing only the G!A change) colonies. The chromatogram of
an apparently mixed colony (1�), displaying a heterozygous (i.e. WT and
fully edited) sequence, is also shown. Figures followed by an X indicate
the number of colonies of each DNA type examined by sequencing.
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DSBs in Chlamydomonas would be repaired by the single-
strand template repair (SSTR) mechanism (see “Discussion”).
Following this model (Supplemental Figure S4), the PPX1
ssODN would be used as a homologous template for DNA
synthesis primed by the 30 ending strand on the left side of
the cleavage site. If a very short stretch of DNA (at most six
nucleotides), next to the Cas9 cleavage site, is copied by
DNA synthesis, only the G!A change would be introduced
into the genome of some cells. Alternatively, a longer stretch
of DNA may be copied (including both G!A and C!T
modifications) but after annealing of the newly synthesized
strand with the complementary WT strand, heteroduplex
DNA may be formed and mismatch repair mechanisms may
correct the C!T change back to the original sequence
(Harmsen et al., 2018; Gallagher et al., 2020). Either of these
alternative modes of DNA repair would explain the recovery
of colonies showing only the G!A edit.

Precise co-editing of the PPX1 and FTSY genes
If in asynchronously grown Chlamydomonas only a small
subpopulation of cells is receptive to DSB repair by homol-
ogy-directed mechanisms, selection for an HDR-based edit-
ing event (such as PPX1 editing) may facilitate the recovery
of simultaneous HDR-mediated edits at other loci. To test
this hypothesis, we attempted co-editing of PPX1 and FTSY
by co-electroporation of the respective CRISPR/Cas9 RNPs
and template ssODN donors. Electroporated cells were se-
lected on agar plates containing oxyfluorfen. Out of three
independent experiments, we isolated nine (4.0%) pale
green colonies, with alterations in the FTSY gene, among
223 oxyfluorfen-resistant colonies (Supplemental Table S4).
However, only three (1.3%) of these colonies displayed
changes in the FTSY sequence (Figure 3A) consistent with
precise, scarless editing by HDR. In these cases, a new NheI
restriction enzyme site, as shown for a subset of these col-
onies (Figure 3B), and the designed stop codons within
the FTSY coding sequence were incorporated at the
intended site (Figure 3C, colonies 10-1b, 8-1, and 6-1). The
other six colonies showed indels at or near the expected
Cas9 cleavage site (Figure 3C; Supplemental Figure S5), al-
though FTSY in one of these colonies did appear to be
repaired by homology-directed mechanisms but including
an unexpected single base-pair deletion (Figure 3C, colony
3-2), possibly resulting from replicative errors (see
“Discussion”).

As discussed above, in our initial attempts at precise FTSY
editing, by supplying a ssODN as template for HDR together
with dsDNA encoding a selectable marker, out of 21 exam-
ined pale green colonies, none showed precise HDR. In con-
trast, when selecting first for PPX1 edited colonies on
medium containing oxyfluorfen, out of nine examined pale
green colonies, three showed precise FTSY HDR and an addi-
tional one showed FTSY sequence changes consistent with
repair by homology-directed mechanisms, although includ-
ing an unintended single base-pair deletion. Thus, in com-
parison to current gene editing methodology for walled
Chlamydomonas strains, our observations suggest that a

CRISPR/Cas9 RNP co-targeting strategy does facilitate the
isolation of colonies precisely edited in a gene of interest
lacking a selectable phenotype.

Figure 3 Co-editing of the FTSY gene in colonies selected for precise
PPX1 editing. A, Schematic of the FTSY target region in exon 4. Color
schemes and symbols are as described under Figure 1A. HDR of the
DSB, using as template the transfected FTSY ssODN, is expected to in-
troduce five base pair changes (highlighted in yellow) into the genome
(bottom sequence). These sequence changes insert two stop codons
(i.e. TAA and TAG) in the coding frame, destroy the PAM site, and
create a new NheI restriction enzyme site (underlined in black). B, The
FTSY target region of selected oxyfluorfen-resistant, pale green colo-
nies was amplified by PCR (with primers F1 and R1) and the PCR
products digested with NheI. The panels show representative reverse
images of agarose resolved PCR products stained with ethidium bro-
mide. The sizes of molecular weight markers are indicated in base
pairs. g1, WT strain. C, DNA sequences of oxyfluorfen-resistant, pale
green colonies, indicating alterations at the FTSY target site relative to
the WT. Insertions, indicating type (C, cytosine) or number of base
pairs, are depicted in red. Deletions, indicating type or number of base
pairs, are depicted in green. Base substitutions are highlighted in yel-
low. Complete sequences for colonies exhibiting FTSY indels are
shown in Supplemental Figure S5.
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Precise co-editing of the PPX1 and WDTC1 genes
WDTC1 is a conserved eukaryotic polypeptide, containing
WD40 and tetratricopeptide repeat domains. In flies and
mammals, loss of function of WDTC1 results in an increase
in adipocytes, fat accumulation, and obesity (Häder et al.,
2003; Groh et al., 2016). The Arabidopsis thaliana homolog,
Altered Seed Germination 2 (ASG2), also appears to have
antiadipogenic functions, since asg2 knockout mutants pro-
duce seeds that have greater weight and increased fatty acid
content than the WT (Ducos et al., 2017). The
Chlamydomonas WDTC1 gene has not been characterized in
any detail and the phenotype(s), if any, of a null mutant is
unknown. Therefore, it provided a good system for testing
the practicality of our co-targeting approach, because edited
colonies in the gene of interest needed identification by
bulk PCR analyses.

Cells of the g1 strain were co-electroporated with CRISPR/
Cas9 RNPs and template ssODN donors targeting PPX1 and
WDTC1. Electroporated cells were then selected on agar
plates containing oxyfluorfen. Precise repair of the DSB
caused by CRISPR/Cas9 (WDTC1) RNP, using a ssODN
(Supplemental Table S2) as a homologous template, would
eliminate the WDTC1 start codon (precluding synthesis of a
full-length protein) and create a new BssHII restriction en-
zyme site for genotypic analyses (Figure 4A; Supplemental
Figure S6A). Out of two independent experiments, we iso-
lated nine (2.3%) colonies with alterations in the WDTC1
gene, among 395 oxyfluorfen-resistant colonies examined by
PCR (Supplemental Table S5). However, only three (0.8%) of
these colonies displayed changes in the WDTC1 sequence
(Figure 4A) consistent with precise, scarless editing by HDR.
In these cases, the new BssHII restriction enzyme site was in-
corporated into the genome, as shown for a subset of these
colonies (Figure 4B), and the WDTC1 sequence around the
start codon (i.e. AATG) was replaced with the intended se-
quence (i.e. GCGC; Figure 4C, colonies 3-15b, 1A-37, and 3B-
48). In one colony, all changes expected for HDR did occur
but we also observed unintended substitution of two base
pairs (Figure 4C, colony 2B-19), possibly the result of errors
during DNA synthesis (see “Discussion”). The remaining five
colonies showed insertions at the expected Cas9 cleavage
site (Figure 4C; Supplemental Figure S7).

For comparison purposes, we also attempted precise
WDTC1 editing by electroporating g1 cells with CRISPR/Cas9
(WDTC1) RNP, a dsDNA PCR fragment containing the
aphVIII transgene and the WDTC1 ssODN. Cells were se-
lected on paromomycin containing medium. Out of 96
paromomycin resistant colonies examined by PCR, 2 (2.1%)
showed alterations in the WDTC1 gene. However, both colo-
nies had insertions of the aphVIII transgene at the Cas9
cleavage site, consistent with DSB repair by NHEJ mecha-
nisms (Supplemental Figure S8, colonies 20 and 63).
Although, in one case, SSTR appears to have started cor-
rectly, using the WDTC1 ssODN as a homologous repair
template (see “Discussion”), but the event was resolved by
NHEJ on the left side of the cleavage site (Supplemental
Figure S8, colony 63). Thus, as for the FTSY gene, we did not

recover any colony showing precise editing of WDTC1 by us-
ing established gene editing methodology for walled
Chlamydomonas strains.

Figure 4 Co-editing of the WDTC1 gene in colonies selected for pre-
cise PPX1 editing. A, Schematic of the WDTC1 gene showing the target
(highlighted in bluish purple) and PAM (highlighted in gray) sequen-
ces. Other symbols are as described under Figure 1A. HDR of the DSB,
using as template the transfected WDTC1 ssODN, is expected to intro-
duce four base-pair changes (highlighted in yellow) into the genome
(bottom sequence). These sequence changes destroy the WDTC1 start
codon and create a new BssHII restriction enzyme site (underlined in
black). B, The WDTC1 target region of selected oxyfluorfen-resistant
colonies was amplified by PCR (with primers F3 and R3) and the PCR
products digested with BssHII. The panels show representative reverse
images of agarose resolved PCR products stained with ethidium bro-
mide. The sizes of molecular weight markers are indicated in base
pairs. g1, WT strain. C, DNA sequences of oxyfluorfen resistant colo-
nies showing alterations at the WDTC1 target site relative to the WT.
Insertions, indicating number of base pairs, are depicted in red. Base
substitutions are highlighted in yellow. Complete sequences for colo-
nies exhibiting insertions at the WDTC1 gene are shown in
Supplemental Figure S7.
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Phenotypic characterization of WDTC1 edited
mutants
To gain insight on WDTC1 function in Chlamydomonas, we
examined growth and the accumulation of nonpolar lipids
in a subset of edited mutants. We chose to analyze two pre-
cise HDR edited mutants (i.e. 3-15b and 3B-48) and three in-
sertional mutants (i.e. 3-2a, 20, and 63). Semi-quantitative
reverse transcriptase (RT)-PCR analyses of exon–exon junc-
tions close to the beginning (i.e. exon2/exon3) or to the end
(i.e. exon 13/exon14) of the WDTC1 coding sequence
(Figure 5A) revealed that the HDR edited mutants had simi-
lar or slightly higher WDTC1 transcript abundance than the
WT, when cells were grown under either mixotrophic or
phototrophic conditions (Figure 5, B and C). In contrast, the
insertional mutants displayed reduced WDTC1 transcript
abundance, albeit to different and somewhat variable
degrees, relative to the WT (Figure 5, B and C).

Interestingly, under phototrophic conditions, four of the
edited mutants appeared to grow at a somewhat faster rate
than the WT (Figure 5D), whereas the growth of insertional
mutant 63 was nearly identical to that of the WT. Since
WDTC1 homologs have been implicated in antiadipogenic
functions in several eukaryotes (Häder et al., 2003; Groh et
al., 2016; Ducos et al., 2017), we also examined the perfor-
mance of the Chlamydomonas mutants with respect to tria-
cylglycerol biosynthesis. This alga has been shown to
accumulate significant amounts of triacylglycerol when sub-
ject to nitrogen deprivation (Siaut et al., 2011; Msanne et al.,
2012; Kim et al., 2018). Thus, we first analyzed the growth/
survival of the strains in the absence of nitrogen (in medium
supplemented with acetate as a carbon source). Under these
conditions, none of the edited mutants differed substantially
in growth from the WT (Figure 5E). To evaluate neutral lipid
accumulation, Chlamydomonas cells were examined by fluo-
rometry after staining with the nonpolar lipid fluorophore
Nile Red (Msanne et al., 2012). As expected, the WT strain
showed substantial accumulation of nonpolar lipids, over
time, under nitrogen starvation in the presence of acetate
(Figure 5F). However, four of the Chlamydomonas WDTC1
edited mutants showed reduced nonpolar lipid

Figure 5 Phenotypic characterization of WDTC1 mutants generated
by CRISPR/Cas9 editing. A, Schematic of the WDTC1 transcript. Exons
are depicted as boxes in two alternating shades of green and even
exons are numbered. Short red arrows indicate the primers used for
semi-quantitative RT-PCR analyses. B, WDTC1 transcript abundance
examined by semiquantitative RT-PCR in cells grown under mixotro-
phic conditions. The panels show representative reverse images of
agarose resolved RT-PCR products stained with ethidium bromide.
Amplification of the Actin transcript was used for normalization

purposes. The sizes of molecular weight markers are indicated in base
pairs. g1, WT strain. C, WDTC1 transcript abundance examined by
semiquantitative RT-PCR in cells grown under phototrophic condi-
tions. D, Growth of the indicated strains under phototrophic condi-
tions in nutrient replete minimal medium. Values shown are the
average of three biological replicates 6 SD. E, Growth of the indicated
strains under mixotrophic conditions in nitrogen deprived medium
(TAP-N). Values shown are the average of three biological replicates
6 SD. F, Nonpolar lipid accumulation in the indicated strains cultured
under mixotrophic conditions in TAP medium lacking nitrogen.
Nonpolar lipid content was estimated by staining with the lipophilic
fluorophore Nile Red and measuring fluorescence (excitation at 488
nm; emission at 565 nm) in a multiwell plate reader. Nile Red fluores-
cence was normalized to cell density (determined as absorbance at
750 nm) and expressed in arbitrary units. Values shown are the aver-
age of three biological replicates 6 SD.
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accumulation relative to the WT (Figure 5F); only insertional
mutant 20 behaved similarly to the WT strain.

Given that an antiadipogenic role of WDTC1 was not sup-
ported by our experiments, defining the function(s) of
WDTC1 in Chlamydomonas will require further work.
However, in the context of CRISPR/Cas9-generated mutants,
we observed that the phenotypes of the two HDR edited
mutants (i.e. 3-15b and 3B-48) and of the insertional mutant
isolated during co-editing with PPX1 (i.e. 3-2a) were consis-
tently similar in all the analyses that we performed. In con-
trast, the aphVIII insertional mutants (i.e. 20 and 63) showed
divergent behavior under certain conditions. For instance, in
comparison to the other edited mutants, mutant 63 differed
in growth under phototrophic conditions whereas mutant 20
differed in nonpolar lipid accumulation under nitrogen depri-
vation. Since the WDTC1 start codon or the proper transla-
tion frame were disrupted in all five examined mutants, these
idiosyncratic phenotypic variations cannot be explained based
exclusively on loss-of-function of the WDTC1 gene. In
Southern blot analyses of mutants 20 and 63, using the
aphVIII coding sequence as a probe, we only detected single
genomic insertions of the selectable transgene (Supplemental
Figure S9); and the fragment sizes were consistent with those
predicted by transgene integration at the WDTC1 Cas9 cleav-
age site (Supplemental Figure S8). However, genomic insertion
of a very short segment of the aphVIII coding sequence or of
a fragment from the regulatory sequences controlling trans-
gene expression would not be detected by this approach.
While the actual reason(s) for the described phenotypic dis-
crepancies remains elusive, our observations emphasize the
need to carefully examine CRISPR/Cas9-generated insertional
mutants since it is conceivable that integration of short
dsDNA fragments at off-target sites in the Chlamydomonas
genome may cause unintended phenotypic alterations.

Precise editing of the ALS1 gene, an alternative
selectable marker
For studies of groups of genes involved in specific enzymatic
pathways or cellular functions, the ability to sequentially pro-
duce in the same strain (i.e. in the same genetic background)
precise mutations in multiple genes of interest can be a pow-
erful tool. However, with the strategy, we put forward in the
present communication, each additional round of mutagene-
sis with a CRISPR/Cas9 RNP and an ssODN donor targeting a
specific gene would require the simultaneous targeting of a
different gene that is capable of being converted into a select-
able marker. We have already shown that the acetolactate
synthase (ALS1) gene is an attractive target for CRISPR/Cas9
RNP-directed mutagenesis since a single amino acid change
from lysine 257 to threonine (caused by a single base-pair
substitution, changing codon AAG to ACG) results in strong
resistance to the herbicide sulfometuron methyl (SMM; Kovar
et al., 2002; Jiang and Weeks, 2017). To test the efficiency of
ALS1 as a selectable marker gene as well as an alternative
transfection protocol relying on exponential-wave electropora-
tion, cells of the walled CC-124 strain were electroporated

with a CRISPR/Cas9 (ALS1) RNP and a ssODN (Supplemental
Table S2), overlapping the Cas9 cleavage site and designed to
serve as template for HDR. Precise DSB repair by homology-
directed mechanisms would introduce the A!C mutation
within the ALS1 coding sequence as well as a nearby, func-
tionally silent, C!T mutation that creates a new EcoRV re-
striction enzyme site for genotypic analyses (Figure 6A;
Supplemental Figure S10). Electroporated cells were selected
on agar plates containing SMM.

Out of 483 SMM resistant colonies obtained in the treat-
ment with CRISPR/Cas9 (ALS1) RNP and ssODN donor, 76
were examined by PCR amplification of the target site and
sequencing of the PCR products (Supplemental Table S6).
Forty-seven (61.8%) colonies displayed the expected (i.e.
A!C and C!T) sequence changes, although in two cases
(i.e. colonies 31 and 64) with additional sequence alterations
(Figure 6B; Supplemental Figure S11A; Supplemental Table
S6). Twenty-three (30.2%) colonies only showed the A!C
change, which is necessary to confer herbicide resistance
(Figure 6, B; Supplemental Figure S11, B; Supplemental Table
S6). These results are similar to those obtained in experi-
ments with the PPX1 gene (see above) and suggest that
�92% of the SMM-resistant colonies are consistent with
editing by HDR (Supplemental Table S6), using as homolo-
gous template the electroporated ssODN donor. Five addi-
tional colonies showed mutations causing substitution of
lysine 257 for alternative amino acids (other than threonine;
Figure 6B, colonies 24, 50, 54, 69, and 5; Supplemental Table
S6), which apparently also confer resistance to SMM. In two
colonies, a single nucleotide change occurred at the Cas9
cleavage site (Figure 6B, colonies 24 and 50; Supplemental
Table S6), possibly as a result of errors during NHEJ. The
other three colonies displayed single or a few nucleotide
substitutions close to the cleavage site (Figure 6B, colonies
54, 69, and 5; Supplemental Table S6) but the mechanism(s)
responsible for these changes is not clear. One colony out of
the 76 examined had a WT target sequence (Figure 6B, col-
ony 29), suggesting a potential spontaneous mutation con-
ferring SMM resistance elsewhere in the ALS1 gene.

Precise co-editing of the PPX1 and FTSY genes in
cells treated with autolysin to remove their cell
walls
The cell wall appears to pose a significant barrier for the in-
troduction of macromolecules into Chlamydomonas (Jeon et
al., 2017), and this may be the reason for the poor uptake of
CRISPR/Cas9 RNPs by electroporated walled cells
(Supplemental Figure S3). Indeed, the efficiency of targeted
insertional mutagenesis induced by electroporation of
CRISPR/Cas9 RNPs was improved substantially after removal
of the cell wall by autolysin treatment (Picariello et al.,
2020). Thus, we also attempted co-editing of PPX1 and FTSY
in the g1 strain treated with autolysin prior to delivery of
the respective CRISPR/Cas9 RNPs and template ssODN
donors by co-electroporation. As before, electroporated cells
were selected on agar plates containing oxyfluorfen
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(Figure 7A). In one experiment, the number of oxyfluorfen-
resistant colonies (indicative of PPX1 precise editing)
obtained with autolysin-treated cells increased by approxi-
mately five-fold relative to those obtained with walled cells
(Supplemental Table S7, Experiment 1). However, in a repli-
cate experiment with a less effective autolysin preparation,
treated cells only displayed �20% increase in the number of
recovered oxyfluorfen-resistant colonies (Supplemental Table
S7, Experiment 2). In both experiments, the proportion of
pale green colonies (with a presumably edited FTSY gene)
relative to the number of oxyfluorfen resistant colonies
remained between �4% and 6%, independently of whether
the RNPs were introduced into walled or autolysin treated
cells (Supplemental Table S7 and Figure 7A). In the first ex-
periment, we also verified FTSY editing in most pale green
colonies by PCR amplification of the target region followed

by assessment of PCR product size and its cleavage by the
NheI endonuclease (indicative of precise editing that creates
a new restriction enzyme site). Many of the tested pale
green colonies (�3% of the oxyfluorfen-resistant colonies)
showed a PCR product of the expected size digestable by
NheI (Figure 7B; Supplemental Table S7). The rest of the
examined pale green colonies showed PCR products of
abnormal size, mainly larger than expected (Figure 7C),
suggesting repair by NHEJ with insertion of additional
sequences (Supplemental Table S7). Thus, our limited set
of experiments suggest that cell wall removal does en-
hance the overall efficiency of CRISPR/Cas9-mediated
editing in WT Chlamydomonas, as previously reported
(Picariello et al., 2020), presumably by improving the de-
livery of electroporated RNPs. The co-editing efficiency of
an unselectable gene of interest (i.e. FTSY edited colonies
as percentage of PPX1 edited colonies) remained at a sim-
ilar rate to that observed in walled cells. However, the ef-
fectiveness of autolysin preparations appears to be quite
variable and, as suggested by Picariello et al. (2020), it
may be necessary to test for successful cell wall removal
by treatment with detergent before using cells for
CRISPR/Cas9 mediated editing.

Discussion
As mentioned earlier, targeted disruption of nuclear genes,
mediated by RNA-programmable SSNs, has become a practi-
cal method in Chlamydomonas (Baek et al., 2016; Shin et al.,
2016; Ferenczi et al., 2017; Greiner et al., 2017; Jiang and
Weeks, 2017; Shamoto et al., 2018; Guzmán-Zapata et al.,
2019; Angstenberger et al., 2020; Cazzaniga et al., 2020;
Dhokane et al., 2020; Kang et al., 2020; Kim et al., 2020; Park
et al., 2020; Picariello et al., 2020). In contrast, precise gene
editing still occurs at relatively low frequencies or it is lim-
ited to specific (cell wall-less) strains or experimental
approaches (Ferenczi et al., 2017; Greiner et al., 2017; Jiang
and Weeks, 2017). In Chlamydomonas, as observed in land
plants and other eukaryotes (Gallagher and Haber, 2018;
Kan et al., 2017; Paix et al., 2017; Boel et al., 2018;
Richardson et al., 2018; Sansbury et al., 2019; Capdeville et
al., 2020; Gallagher et al., 2020), the repair of DSBs induced
by CRISPR/Cas9 RNPs likely occurs by several distinct path-
ways, partly determined by the repair machinery expressed
in each cell, the complexity of the DSB, and the nature of
the DNA molecules involved in the repair. As described for
some mammalian cell lines (Shy et al., 2016; Mitzelfelt et al.,
2017), only a small subset of the population, in asynchro-
nously grown Chlamydomonas, may be capable of HDR, pos-
sibly associated with being in a certain phase of the cell
cycle (Angstenberger et al., 2020). In addition, the cell wall
appears to pose a substantial barrier for the introduction of
macromolecules into Chlamydomonas cells (Jeon et al., 2017;
this work). Indeed, when precise editing of walled strains is
attempted by co-electroporation of a CRISPR/Cas9 RNP, a
PCR fragment or a plasmid encoding a transgene expressing
an antibiotic resistance gene (for selection of the small

Figure 6 Precise editing of the ALS1 gene. A, Schematic of the ALS1
gene showing the target (highlighted in bluish purple) and reverse
complement PAM (highlighted in gray) sequences. A black arrowhead
indicates the Cas9 cleavage site. HDR of the DSB, using as template
the transfected ALS1 ssODN, is expected to introduce two base pair
changes (highlighted in yellow) into the genome (bottom sequence).
These sequence changes cause an amino acid substitution (K257T) in
the encoded ALS enzyme and create a new EcoRV restriction enzyme
site (underlined in black). B, DNA sequences of SMM resistant colo-
nies showing alterations at the ALS1 target site relative to the WT.
Base substitutions are highlighted in yellow. Figures followed by an X
(i.e. 45� and 23�) indicate the number of colonies of each DNA type
analyzed by sequencing (complete sequences for each colony are
shown in Supplemental Figure S11). Other numbers indicate the col-
ony names.
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fraction of cells taking up the editing components) and a
donor DNA (to be used as homologous template for HDR),
most Chlamydomonas cells appear to repair the induced
DSBs by NHEJ pathways, based on the sequence analyses of
recovered colonies (Greiner et al., 2017; Sizova et al., 2021;
this work). Such repair often involves the undesirable incor-
poration of intact or frequently jumbled antibiotic resistance

gene sequences at the site of Cas9 DNA cleavage (Greiner et
al., 2017; Sizova et al., 2021; this work).

Given these constraints, we tested whether co-targeting
two genes by electroporation of CRISPR/Cas9 RNPs and
template ssODN donors would facilitate the recovery of pre-
cise edits in a gene of interest after selecting for precise edit-
ing of the other gene (corresponding to a selectable

Figure 7 Co-editing of the FTSY and PPX1 genes in g1 cells treated with autolysin prior to RNPs electroporation. A, Cells co-transfected with the
CRISPR/Cas9 (FTSY) RNP, CRISPR/Cas9 (PPX1) RNP and the corresponding ssODN donor DNAs were spread on TAP agar plates containing oxy-
fluorfen. Representative plates (7A and 8B) are shown after 15 d of incubation under continuous light. To facilitate the identification of pale green
colonies (expected to be FTSY edited), images were manipulated to reduce shadows and increase brightness (as shown on the right). Colonies
identified as pale green are indicated by black arrowheads. B, The FTSY target region of selected pale green colonies was amplified by PCR (with
primers F1 and R1, Figure 3A) and the PCR products digested with NheI. The panel shows a representative reverse image of agarose resolved DNA
fragments stained with ethidium bromide. g1, WT strain. C, For a subset of pale green colonies, amplification of the FTSY target region revealed
PCR products of larger size, suggestive of insertions at the Cas9 cleavage site, relative to the WT sequence. The panel shows a representative re-
verse image of agarose resolved DNA fragments stained with ethidium bromide.
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marker). Conceptually, this strategy is expected to select for
cells capable of taking up the editing components and
expressing the machinery required for HDR after transfec-
tion. We first chose PPX1, encoding Protox, as a selectable
marker since a single base-pair change (G!A) within the
protein coding sequence confers resistance to porphyric her-
bicides such as oxyfluorfen (Randolph-Anderson et al., 1998;
Brueggeman et al., 2014). Selecting electroporated cells on
oxyfluorfen containing medium allowed the recovery of col-
onies edited in two co-targeted genes, namely FTSY and
WDTC1. On average, between 2% and 5% of oxyfluorfen-re-
sistant colonies showed sequence alterations in the co-tar-
geted genes, and at least one third of these colonies showed
precise, scarless editing mediated by HDR. These observa-
tions suggest that our co-editing approach does facilitate
the isolation of colonies precisely edited in genes of interest
in walled Chlamydomonas. Moreover, the co-editing ap-
proach avoids the incorporation of exogenous selectable
marker gene fragments at CRISPR/Cas9 cleavage sites, which
makes it difficult to obtain scarless gene edits, as observed
in previous gene editing protocols (Shin et al., 2016; Greiner
et al., 2017; Kang et al., 2020; Picariello et al., 2020) and once
more documented in this study (Figure 1 and Supplemental
Figure S2).

The heart of the scheme presented here is to expedite the
recovery of a specific mutation in any Chlamydomonas gene,
in the absence of a selectable phenotype for that mutation.
Selection of the desired mutant is based on the ability to si-
multaneously deliver into cells two pairs of components: a
CRISPR/Cas9 RNP and ssODN donor designed to modify the
target gene of interest along with a second pair consisting
of CRISPR/Cas9 (PPX1) RNP and a ssODN donor designed
to convert the PPX1 gene into a selectable marker gene. Our
isolation of oxyfluorfen-resistant colonies containing precise,
scarless mutations in the FTSY and WDTC1 genes is proof of
concept for this approach. Since each additional mutation
that an investigator wishes to incorporate into a strain
requires another gene that can be converted to a selectable
marker, we also demonstrated that the ALS gene could serve
as an additional selectable marker. Preliminary experiments
indicate that the argininosuccinate lyase (ARG7) gene, of the
arginine auxotroph arg7-8, could also be used as a selectable
marker since conversion to the WT sequence can create eas-
ily selected autotrophic cells (Jiang and Weeks, 2017; Jiang et
al., 2017). Other endogenous genes could potentially be
edited by single base-pair substitutions to become selectable
markers, such as those encoding phytoene desaturase, con-
ferring resistance to the bleaching herbicide norflurazon
(Brueggeman et al., 2014; Suarez et al., 2014), and cytosolic
ribosomal protein S14 (CRY1), conferring resistance to the
antibiotics cryptopleurine and emetine (Nelson et al., 1994;
Neupert et al., 2009). These examples of endogenous genes
with demonstrated or potential utility as selectable markers
suggest it may soon be possible to attempt the creation of
Chlamydomonas cell lines containing precise mutations in
multiple target genes, directed at aiding the study of

complex cellular functions or metabolic pathways of aca-
demic or biotechnological interest. We also note that our
strategy is “transgene-free” since, in the instances of precise
gene editing, exogenous DNA is not expected to be incorpo-
rated into the genome, although potential off-target effects
mediated by CRISPR/Cas9 RNPs remain to be examined.

If the presence of transgenes is not a concern, the
Hegemann laboratory (Sizova et al. 2013; Greiner et al., 2017.
Sizova et al., 2021) demonstrated that an antibiotic resis-
tance gene (i.e. an aphVIII transgene), which had been delib-
erately inactivated by a simple sequence modification, can
be introduced by transformation into the Chlamydomonas
nuclear genome. Using this transgenic strain, they subse-
quently employed CRISPR/Cas9-mediated editing to modify
the mutant aphVIII gene and restore antibiotic resistance. A
similar approach, using inactivated versions of the many an-
tibiotic resistance genes effective in Chlamydomonas, has
the potential to greatly broaden the spectrum of editable
genes available for selection purposes in co-targeting
experiments.

Sequence analyses of the recovered Chlamydomonas colo-
nies provided some insights regarding the mechanism of
DSB repair. We note that beyond the alterations reported in
close proximity to the Cas9 cleavage site, we did not observe
any other changes in �125–150 bp of flanking DNA sequen-
ces on either side of the expected cleavage site. In mamma-
lian cells, DNA repair of various lesions with donor ssODNs
can occur through two main pathways: synthesis-dependent
strand annealing or single-strand DNA incorporation, the
latter involving the physical integration of the ODNs into
the genome (Kan et al., 2017). However, in both animals
and fungi, the repair of Cas9-induced DSBs with homolo-
gous ssODNs appears to occur predominantly by the syn-
thesis-dependent pathway, often referred to as SSTR
(Radecke et al., 2006; Gallagher and Haber, 2018; Kan et al.,
2017; Paix et al., 2017; Boel et al., 2018; Harmsen et al., 2018;
Richardson et al., 2018; Sansbury et al., 2019; Gallagher et al.,
2020). In SSTR, ssODNs are used for the synthesis of com-
plementary DNA, rather than being integrated into the ge-
nome, and the process is polarity sensitive and dependent,
unlike other homologous repair mechanisms, on the
Fanconi anemia pathway (Gallagher and Haber, 2018; Kan et
al., 2017; Paix et al., 2017; Boel et al., 2018; Harmsen et al.,
2018; Richardson et al., 2018). As shown diagrammatically in
Supplemental Figure S1, for the proposed repair of FTSY, a
DSB generated by Cas9 is expected to be resected to yield
30-overhangs on both sides of the DSB. However, only one
of the 30-overhangs can pair with the homologous ssODN
donor, which confers polarity to the repair, and primes the
synthesis of a complementary DNA strand. Bridging of the
DSB is eventually accomplished when the newly synthesized
strand is displaced from the ssODN donor and anneals with
the complementary strand at the locus. Finally, DNA poly-
merases and ligases complete the DSB repair. As proposed
in mammalian cells (Kan et al., 2017; Harmsen et al., 2018),
the likely erosion of the ends of 30-overhangs would allow
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the introduction of edits very close to the DSB by de novo
synthesis of both DNA strands (i.e. by gap filling;
Supplemental Figure S1), avoiding the formation of hetero-
duplex DNA and interference from DNA mismatch repair
mechanisms.

In land plants, ssODNs have been used for precise gene
editing, as templates for the repair of DSBs generated by
CRISPR/Cas9, but very few edited plants/calli have been ana-
lyzed by sequencing precluding any inference on the repair
mechanism (Shan et al., 2013; Svitashev et al., 2015; Sauer et
al., 2016). In our current work with Chlamydomonas, several
lines of evidence, taken together, support the interpretation
that SSTR is responsible for the observed HDR. First, synthe-
sis of a DNA strand complementary to a ssODN donor
begins at the DSB and, since repair DNA polymerases are
not very processive (Rodgers and McVey, 2016), nucleotide
changes closer to the DSB are more likely to be incorpo-
rated into the genome (Paquet et al., 2016; Kan et al., 2017;
Paix et al., 2017; Boel et al., 2018). Additionally, since the lo-
cus strand complementary to the newly synthesized strand
may often be somewhat eroded at its 30-end (Dorsett et al.,
2014; Harmsen et al., 2018), the generation of heteroduplex
DNA (which could be corrected back to the WT sequence
by DNA mismatch repair mechanisms) may be avoided
closer to the DSB. These predictions are consistent with the
greater incorporation efficiency of G!A (closer to the DSB)
versus C!T (more distant from the DSB) in edited PPX1
(Figure 2C). Second, SSTR is unidirectional since only one of
the 30-overhangs at the DSB can pair with the ssODN donor
to synthesize a complementary strand (Gallagher and Haber,
2018; Paix et al., 2017; Boel et al., 2018). In Chlamydomonas
repair polarity is best supported by the analysis of colonies
where one side of the DSB appears to show integration of
donor DNA by HR (i.e. a crossover) and the other side by
NHEJ. Close inspection of the sequences at the target site in
these colonies (for both FTSY and WDTC1) indicates strict
polarity (Supplemental Figure S2, colony 13b; Supplemental
Figure S5, colony 4-1; Supplemental Figure S7, colony 2A-10;
Supplemental Figure S8, colony 63). The DSB side with ap-
parent integration by a crossover event is always the side
that would prime DNA synthesis using the ssODN donor as
template. A more plausible explanation is that SSTR started
correctly, with the synthesis of a DNA strand complemen-
tary to the ssODN donor, but the repair was eventually re-
solved by NHEJ resulting in templated insertions.

Third, repair DNA polymerases, such as those involved in
the synthesis of a strand complementary to the ssODN do-
nor, are error prone and cause base pair substitutions and
frameshift mutations (Rodgers and McVey, 2016; Gallagher
and Haber, 2018; Richardson et al., 2018; Gallagher et al.,
2020). This is consistent with the recovery of several
Chlamydomonas colonies where the intended nucleotide
modifications in the FTSY, WDTC1, or ALS1 genes did occur,
but additional sequence changes typical of replicative errors
(such as single base-pair deletions or substitutions) were
also observed (Figure 3C, colony 3-2; Figure 4C, colony 2B-

19; Figure 6B, colonies 31 and 64). Similar findings have al-
ready been reported for CRISPR/Cas12a editing with ssODN
templates in cell wall-less Chlamydomonas strains (Ferenczi
et al., 2017). Fourth, ssODN-directed DNA synthesis is prone
to template switching between donor DNA molecules, an
event apparently dependent on regions of microhomology
(Rodgers and McVey, 2016; Paix et al., 2017; Boel et al.,
2018). This appears to have happened at least in one case in
Chlamydomonas, partly copying two molecules of WDTC1
ssODN donor DNA (Supplemental Figure S6B and
Supplemental Figure S7, colony 1B-24). In addition, DNA po-
lymerase theta (POLQ) has recently been demonstrated to
be required for the repair of CRISPR/Cas-induced DSBs using
ssODNs as donor DNA in Chlamydomonas (Sizova et al.,
2021). This polymerase participates in a microhomology-me-
diated DSB repair pathway, referred to as theta mediated
end joining and characterized by several features consistent
with our observations. The repair is error-prone, it often
involves “templated insertions,” which result from DNA syn-
thesis initiated from the free 30-end of a resected DSB and
template switching is fairly common (Schimmel et al., 2019;
Brambati et al., 2020; Sizova et al., 2021; Zahn et al., 2021).

Thus, our current strategy involving ssODNs as donor
DNA will largely be useful for the introduction of relatively
short edits, for instance to investigate the function of spe-
cific amino acid residues in proteins expressed in their en-
dogenous context. In mammalian cells, it has been proposed
that Cas9-induced DSB repair using ssODN donors mimics
some substrate of the Fanconi anemia pathway, such as a
stalled replication fork (Richardson et al., 2018). This diverts
DSB repair through SSTR, which results in short conversion
tracts prone to replicative errors, as also appears to be the
case in Chlamydomonas.

In summary, our co-editing approach allows the recov-
ery of precise sequence edits of genes of interest at a
practical frequency, often requiring the PCR analysis of
little more than 100 herbicide-resistant colonies (at least
for the genes currently tested). The methods described
are likely applicable to most WT, autolysin-treated WT,
or wall-less strains of Chlamydomonas and, potentially,
other microalgal species. The co-targeting strategy
employed in sequential rounds of gene editing also offers
the possibility to create one cell line with precise gene
modifications in multiple genes that affect particular
metabolic pathways or cellular mechanisms.

Materials and methods

Strains, culture conditions and lipid accumulation
Chlamydomonas (C. reinhardtii) strains CC-620 (nit1, nit2,
mtþ), CC-621 (nit1, nit2, mt-), g1 (CC-5415; nit1, agg1,
mtþ), CC-124 (nit1, nit2, agg1, mt-; Chlamydomonas
Resource Center, https://www.chlamycollection.org), or de-
rived edited mutants were used in all reported experiments.
Unless noted otherwise, cultures were incubated under con-
tinuous illumination (150 mmol m�2 s�1 photosynthetic
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photon flux density) on an orbital shaker (190 rpm) at 25�C
and ambient CO2 levels. For transfection experiments, cells
were precultured, after inoculation from one-week-old
plates, to an optical density of �0.4 at 750 nm in Tris–
Acetate–Phosphate (TAP) medium (Harris, 1989) supple-
mented with 1 lg mL�1 cyanocobalamin (vitamin B12), to
enhance Chlamydomonas thermal tolerance (Xie et al.,
2013). A one-tenth aliquot was then transferred into fresh
medium and grown to middle logarithmic phase (�1 to 2
� 106 cells mL�1). Prior to electroporation, cells were col-
lected by centrifugation and resuspended in TAP medium
containing 40 mM sucrose and 1 lg mL�1 cyanocobalamin
to a final density of �2.2 � 108 cells mL�1. For growth
experiments, cells were pre-cultured as described before and
then inoculated into minimal (Sueoka, 1960) medium (pho-
totrophic conditions) or TAP medium (mixotrophic condi-
tions). Culture growth was examined by measuring daily
absorbance at 750 nm. For lipid accumulation analyses, cells
were inoculated into TAP medium lacking nitrogen and 200
lL-aliquots were tranferred daily to a multi-well plate and
mixed with Nile Red (Sigma, 72,485) to a final concentration
of 1 lg mL�1 (Msanne et al., 2012). Nile Red fluorescence
(excitation at 488 nm; emission at 565 nm) was measured
in a multi-well plate reader (Synergy H1, Biotek), normalized
to cell density (determined as absorbance at 750 nm) and
expressed in arbitrary units (Kim et al., 2018). Autolysin
preparation by mating of CC-620 and CC-621 and cell treat-
ment of the g1 strain prior to electroporation were carried
out as previously described (Picariello et al., 2020).

crRNA, tracrRNA, ssODN donors, and aphVIII
transgenic DNA
The 19- or 20-nt guide sequences, corresponding to the tar-
get-specific protospacer regions (Supplemental Table S8,
were designed using the Cas-Designer (www.rgenome.net/
cas-designer) or Chopchop (https://chopchop.cbu.uib.no)
websites. Each CRISPR RNA (crRNA) was synthesized as a
custom, chemically modified 35- or 36-nt oligo (containing
16 additional, common nucleotides for annealing to the
tracrRNA) by Integrated DNA Technologies (IDT). We used
a commercially available trans-acting CRISPR RNA
(tracrRNA; IDT, 1072534 Alt-RVR CRISPR-Cas9 tracrRNA).
ssODN donors (Supplemental Table S2) were designed over-
lapping the CRISPR/Cas9 cleavage site, but with different
lengths of homology arms (from 30 to 70 nt), and synthe-
sized as Ultramer DNA Oligos (IDT). The paromomycin re-
sistance cassette (aphVIII transgene) was amplified by PCR
from the pSI103 plasmid (Sizova et al., 2001).

Preparation of CRISPR/Cas9 RNPs
CRISPR/Cas9 crRNA and tracrRNA (each at �53 lM final
concentration) in 1.2� NEB 3.1 buffer (New England
Biolabs, B7203S) were annealed by placing a microcentrifuge
tube in a beaker with water heated to 96�C and then
allowed to cool slowly to room temperature. To assemble
the RNP complex, one volume of Alt-RVR S.p.Cas9 Nuclease
V3 (IDT, 1081059) was mixed with 3.5 volumes of annealed

crRNA/tracrRNA and incubated at 37�C for 20 min. In this
mixture, the guide RNA is present at approximately three-
fold molar excess relative to the Cas9 protein and, if satura-
tion binding is achieved, the RNP final concentration would
be �13.6 lM.

Chlamydomonas transfection
The initial experiments (Supplemental Tables S1 and S3)
were carried out following the method of Greiner et al.
(2017). In order to improve the editing frequency, we
subsequently introduced several modifications that
resulted in an optimized protocol. For single gene edit-
ing experiments, 2.3 lL of the CRISPR/Cas9 (FTSY) RNP
[or the CRISPR/Cas9 (WDTC1) RNP] were mixed with 1.5
lL of the PCR product (�1.0 lg of dsDNA in TE buffer)
encoding the aphVIII transgene (6225 pmol of the cor-
responding ssODN donor). For co-editing experiments,
the CRISPR/Cas9 (PPX1) RNP and the CRISPR/Cas9
(FTSY) RNP or the CRISPR/Cas9 (WDTC1) RNP were first
mixed in a 1–3 ratio (i.e. a three-fold molar excess of the
RNP targeting the unselected gene of interest). Three
microliters of the combined RNPs were then added to
1.5 lL of pre-mixed (in TE buffer) PPX1 (at 50 lM) and
FTSY (or WDTC1; at 150 lM) ssODN donors. For each
electroporation, an aliquot of 36 lL of cells (�7.9 � 106

cells mL�1), resupended in TAP medium containing 40
mM sucrose and 1 lg mL�1 cyanocobalamin, was mixed
with 3.8 lL of the RNP/aphVIII dsDNA/ssODN or 4.5 lL
of the combined RNPs/ssODNs and placed in an electro-
poration cuvette with a 2 mm gap. Transfection was per-
formed with a NEPA21 electroporator (Nepa Gene Co.),
with adjusted parameters relative to a published proto-
col (Yamano et al., 2013). Prior to elecroporation the im-
pedance was adjusted to 0.25–0.28 kX by adding more
resuspended cells or withdrawing from the mixture in
the cuvette (stepwise, 3 lL at a time). Electroporation
was carried out by using two 6-ms/250-V poring pulses
at 50-ms intervals and a decay rate of 40%, followed by
five 50-ms/20-V polarity-exchanged transfer pulses at 50-
ms intervals and decay rate of 40%. Electroporation of
autolysin treated g1 cells was performed with two 4-ms/
200-V poring pulses at 50-ms intervals and a decay rate
of 40%, followed by five polarity-exchanged transfer
pulses as before. Immediately after electroporation, the
cells were diluted in 500 lL of TAP medium containing
40 mM sucrose and 1 lg mL�1 cyanocobalamin and
transferred to a 1.5-mL microcentrifuge tube.

Post-electroporation heat shock, cell recovery and
plating
Electroporated cells were placed on an orbital shaker (50
rpm) under dim lights for 3 h at room temperature. Cells
were then heat shocked at 39�C for 30 min, with gentle agi-
tation, in a water bath. Subsequently, cells were incubated
again on the orbital shaker for �40 h. After completion of
this recovery period, cells from each electroporation were
spread on two TAP agar plates containing the appropriate
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selective agent (12 lg mL�1 paromomycin or 0.18 lM oxy-
fluorfen). The plates were incubated at room temperature
under continuous light (�100 mmol m�2 s�1 photosyntheti-
cally active radiation) until visible colonies appeared (usually
about 2 weeks).

Testing the ALS1 gene as a selectable marker
Cells of the WT strain CC-124 were grown in TAP medium,
in 5% (v/v) CO2 at 25�C with shaking and continuous light,
to mid-log phase and then concentrated to �5 � 107 cells
mL�1 in TAP medium containing 60 mM sucrose. A mixture
consisting of �100 pmol Cas9 (New England Biolabs,
M0386M) and �850 pmol of ALS1 crRNA (Supplemental
Table S8 preannealed with an equimolar amount of
tracrRNA, in a total volume of 30 mL in NEB Cas9 buffer,
was allowed to incubate at 37�C for 30 min. Then, 1 mL
(�800 pmol) of the ALS1 ssODN donor (Supplemental
Table S2) was added, just before cell transfection. This mix-
ture was added to 0.5 mL of concentrated cells (�2.5 � 107

cells) and placed in an electroporation cuvette with a 4-mm
gap for 5 min at 16�C. Electroporation was carried out with
a Gene Pulser Xcell system (Bio-Rad) set at 750 V, 25 mF,
and 1 resistance (to produce a time constant of 5–6 ms).
After electroporation, cells were allowed to rest for 10 min
and then diluted into 50 mL of TAP containing 60-mM su-
crose and incubated for 24 h in 5% CO2 at 25�C with shak-
ing and light. No post-electroporation heat shock treatment
was applied. Cells were eventually concentrated by centrifu-
gation, resuspended in �0.2 mL TAP, split into two aliquots
and spread on TAP agar plates containing SMM at 5 lM.
After incubation for �14 d in 5% CO2 at 25�C in continu-
ous light, colonies were picked and restreaked on TAP þ
SMM plates to isolate single colonies. DNA was extracted
from each colony and used for PCR amplification and DNA
sequencing of the ALS1 target site.

Genotyping of potentially edited mutants
When targeting the PPX1 gene, a subset of colonies surviving
on oxyfluorfen containing medium was examined by colony
PCR amplification (Cao et al., 2009) of the target site fol-
lowed by sequencing of the PCR products. When targeting
the FTSY gene, only pale green colonies surviving on paro-
momycin containing medium or oxyfluorfen containing me-
dium (in case of co-editing with the PPX1 gene) were
examined by colony PCR amplification of the target site. All
detectable PCR products, those of expected size and those
differing in size from the WT amplicon (due to possible
insertions or deletions), were examined by sequencing. PCR
products of the expected size were also characterized by di-
gestion with the NheI enzyme (Sambrook and Russell, 2001).
When targeting the WDTC1 gene, colonies surviving on
paromomycin containing medium or oxyfluorfen containing
medium (in case of co-editing with the PPX1 gene) were ex-
amined by colony PCR amplification of the target site fol-
lowed by digestion of the PCR product with the BssHII
enzyme (Sambrook and Russell, 2001). Only PCR products

successfully digested with BssHII or potentially having indels
were characterized by sequencing. In all cases, amplification
of the Actin gene was used as a positive control. To ensure
amplification of the correct DNA fragments from the target
genes, in most cases nested polymerase chain reactions were
carried out with the primers listed in Supplemental Table
S9. The PCR conditions for general amplification were 35
cycles at 94�C for 30 s, at 50�C for 30 s, and at 71�C for 90
s. Aliquots (8 mL) of each PCR were resolved on 1.5% (w/v)
agarose gels and visualized by ethidium bromide staining
(Sambrook and Russell, 2001).

Semi-quantitative RT-PCR analyses of WDTC1
transcript abundance
Total cell RNA, from cells harvested in the middle of the
logarithmic phase, was purified with TRI Reagent (Molecular
Research Center), following the manufacturer’s instructions.
RT reactions were performed as previously described
(Carninci et al., 1998) using Superscript III (Invitrogen,
18980051). The synthesized cDNA was then used as a tem-
plate in standard PCRs (Sambrook and Russell, 2001) using a
number of cycles showing a linear relationship between in-
put RNA and the final product, as determined in prelimi-
nary experiments. The PCR conditions for amplification of
the Actin control were 25 cycles at 94�C for 30 s, at 58�C
for 30 s, and at 71�C for 30 s. The PCR conditions for ampli-
fication of the WDTC1 transcript were 30 cycles at 94�C for
30 s, at 60�C for 30 s, and at 71�C for 30 s. Aliquots (8 mL)
of each RT-PCR were resolved on 1.5% agarose gels and visu-
alized by ethidium bromide staining (Sambrook and Russell,
2001). All primers used for RT-PCR are listed in
Supplemental Table S9.

Examination of CRISPR/Cas9 (FTSY) RNP cellular
uptake by fluorescence microscopy
Chlamydomonas cells were electroporated with a com-
mercially available trans-acting CRISPR RNA conjugated
to the ATTO 550 fluorophore (IDT, 1075928 Alt-R
CRISPR-Cas9 tracrRNA, ATTO 550), either alone or assem-
bled into a CRISPR/Cas9 (FTSY) RNP (using �two-fold
molar excess of the Cas9 protein relative to the
tracrRNA-ATTO 550). Cell were examined for uptake of
the transfected macromolecules at 1, 4, and 24 h after
electroporation. However, the reported data corresponds
to 4 h after electroporation, when the strongest signal
was detected. For microscopy analyses, cells from a single
electroporation were pelleted by centrifugation, washed
twice and eventually resuspended in TAP medium con-
taining 40 mM sucrose, to which a 1/100 volume of io-
dine (1% in ethanol) was added. Cells were visualized with
an EVOS FL Auto Cell Imaging System (ThermoFisher
Scientific), using the RFP light cube (Excitation 542/20,
Emission 593/40) for ATTO 550 fluorescence and the Cy5
light cube (Excitation 635/18, Emission 692/40) for chloro-
phyll fluorescence. Pseudo-colors were used to represent
signals from the different channels.
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Accession numbers
The accession numbers of all genes used in this paper are
taken from Phytozome v12.1 (https://phytozome.jgi.doe.gov/
pz/portal.html): ALS1, Cre09.g386758; FTSY, Cre05.g241450;
PPX1, Cre09.g396300; and WDTC1, Cre10.g425050.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. SSTR model for homology di-
rected repair of the FTSY gene, using as complementary
template the transfected ssODN.

Supplemental Figure S2. DNA sequences of FTSY dis-
rupted mutants obtained by co-transfection of CRISPR/Cas9
(FTSY) RNP, a dsDNA PCR product encoding the aphVIII
transgene and the FTSY ssODN donor.

Supplemental Figure S3. Fluorescence microscopy analy-
sis of the cellular uptake of the CRISPR/Cas9 (FTSY) RNP af-
ter electroporation.

Supplemental Figure S4. SSTR model for homology di-
rected repair of the PPX1 gene, using as complementary
template the transfected ssODN.

Supplemental Figure S5. DNA sequences of FTSY inser-
tional mutants obtained by co-targeting the PPX1 and FTSY
genes for CRISPR/Cas9 editing.

Supplemental Figure S6. SSTR model for homology di-
rected repair of the WDTC1 gene, using as complementary
template the transfected ssODN.

Supplemental Figure S7. DNA sequences of WDTC1 in-
sertional mutants obtained by co-targeting the PPX1 and
WDTC1 genes for CRISPR/Cas9 editing.

Supplemental Figure S8. DNA sequences of WDTC1 in-
sertional mutants obtained by co-transfection of CRISPR/
Cas9 (WDTC1) RNP, a dsDNA PCR product encoding the
aphVIII transgene and the WDTC1 ssODN donor.

Supplemental Figure S9. Southern blot analysis of
CRISPR/Cas9-induced insertional mutants of the WDTC1
gene.

Supplemental Figure S10. SSTR model for homology-di-
rected repair of the ALS1 gene, using as complementary
template the transfected ssODN.

Supplemental Figure S11. DNA sequence of the ALS1
target site in sulfometuron methyl-resistant colonies.
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