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ABSTRACT
2020 was an unprecedented year, with rapid and drastic changes in human mobility due to the COVID-19
pandemic. To understand the variation in commuting patterns among the Chinese population across stable
and unstable periods, we used nationwide mobility data from 318 million mobile phone users in China to
examine the extreme fluctuations of population movements in 2020, ranging from the Lunar New Year
travel season (chunyun), to the exceptional calm of COVID-19 lockdown, and then to the recovery period.
We observed that cross-city movements, which increased substantially in chunyun and then dropped sharply
during the lockdown, are primarily dependent on travel distance and the socio-economic development of
cities. Following the Lunar New Year holiday, national mobility remained low until mid-February, and
COVID-19 interventions delayed more than 72.89 million people returning to large cities. Mobility
network analysis revealed clusters of highly connected cities, conforming to the social-economic division of
urban agglomerations in China. While the mass migration back to large cities was delayed, smaller cities
connected more densely to form new clusters. During the recovery period after travel restrictions were
lifted, the netflows of over 55% city pairs reversed in direction compared to before the lockdown.These
findings offer themost comprehensive picture of Chinesemobility at fine resolution across various scenarios
in China and are of critical importance for decision making regarding future public-health-emergency
response, transportation planning and regional economic development, among others.
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INTRODUCTION
Understanding human mobility is fundamental to
societies, with applications such as urban plan-
ning [1], traffic programming [2], epidemic mod-
eling and control [3], and regional economic de-
velopment at different geographic scales [4,5]. Data
for human mobility studies can be extracted from
census data or surveys [6,7], mobile phone data
[8,9] (usually individual trajectories or aggregated
population flows collected from call detail records,
CDRs) or the Global Positioning System (GPS)
data obtained from different devices [10,11]. Mod-
els [12–15] of human mobility demonstrate that
human population movements are far from ran-
dom, possessing a high degree of regularity [16] and

predictability [17,18] at multiple spatio-temporal
scales [19–22].

Mobility patterns change with the occurrence of
major holidays [23] and the emergence of epidemics
[24,25]. In early 2020 in China, these two factors
coincided: on one side, the outbreak of the severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was dramatically expedited by the high lev-
els of domestic and international human mobility in
this modern world [26,27]. On the other, the un-
folding of the virus and interventions put in place
might have significantly modified human behavior
and movements [28]. Complex variations in mobil-
ity behavior cause standardmodels of humanmobil-
ity to become less predictive.Therefore, a systematic
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understanding of the changes in human mobility
across space and time during the COVID-19 pan-
demic is critical for assessing the risk of infec-
tious disease transmission and the effectiveness of
non-pharmaceutical interventions (NPIs) [29,30],
thereby tailoring precise intervention strategies for
future waves and pandemics [31,32].

The worldwide implementation of travel restric-
tions, event postponements, curfews, quarantines
and physical distancing policies have resulted in
a substantial decrease in population flow [33,34].
These restrictions have been proven to be one of
the most effective measures for significantly reduc-
ing the transmission rate of COVID-19 in the ab-
sence of an effective vaccine [35,36]. The accelera-
tion of COVID-19 transmission in China coincided
with the annual chunyun, for which a population
migration of nearly three billion trips around the
Lunar New Year was recorded in 2019. Since the
Wuhan travel ban on23 January 2020,China has im-
plemented stringent COVID-19 containment mea-
sures [37,38], and together with the massive efforts
of residents in China to contain the disease, China
has, to date, been considered to have implemented
one of the most successful national strategies for
COVID-19 suppression.

By analyzing aggregated, non-personally iden-
tifiable human movement data recorded before,
during and after the first wave of the COVID-19
outbreak in China, we revealed the changing
spatio-temporal features of mobility and examined
the impact of China’s COVID-19 containment
policies on domestic travel in 2020. Specifically, we
studied the changes of population mobility patterns
during the chunyun, epidemic and intervention
period—including aggregated flows, travel distance
and community evolution—across 366 prefectures
in Chinese mainland. The analysis of these patterns
facilitates a deeper understanding of changes in hu-
man behavior [39], which will inform efforts to fight
future waves of the pandemic, tailor control strate-
gies and manage population movements to prevent
the spread of new variants of concern in resurgences,
as well as provide evidence for transportation plan-
ning and regional economic development [40,41].

RESULTS
An overview of population flows in China
A substantial increase in population flow was ob-
served a few days before the start of the chun-
yun migration (Fig. 1A). Average cross-city daily
movements increased from 107.06 million in nor-
mal times to 125.83 million for chunyun, from 10
to 23 January. The flow was followed by a sharp

drop beginning on 23 January, when lockdownmea-
sures were implemented in Wuhan, with all public
transport, including buses, railways, flights and ferry
services, being suspended. With travel restrictions
immediately adopted in other provinces following
the Wuhan travel ban, this reduction was sustained
for almost three weeks in China: the population
flow reached the minimum level (29.15 million) on
15February, dropping to nearly a quarter of the pop-
ulation flow of 22 January (124.87 million). From
24 January to 29 February, there were ∼45.05 mil-
lion cross-city movements each day, on average,
which was less than half of that on 22 January. Af-
ter returning towork, the population flowdid not re-
turn to previous levels, even at the end of the study
period.

Compared with one week earlier, when lock-
down measures were implemented, the population
flow decreased by over 70% in the week after the
LunarNewYear holiday.Theaveragedecrease ratios
for population outflow were typically larger in high-
tier prefectures (the concept of prefecture tier is a hi-
erarchical classification of Chinese prefectures that
describes the prefecture’s relative level of develop-
ment, see details inMethods). Significantly, popula-
tion outflow from the super-tier prefectures (mean
decrease ratio = 0.876) declined much faster than
the other prefectures’ outflow (Fig. 1B). In contrast,
population inflow to the super-tier prefectures from
the fourth-tier and fifth-tier prefectures remained
nearly unchanged (mean decrease ratio = 0.07 and
–0.04, respectively). Assuming that the excessive
population flow during chunyun would have oth-
erwise returned to its originating cities, the travel
restrictions delayed more than 72.89 million peo-
ple returning by the end of chunyun (18 Febru-
ary), mainly for work and education purposes. For
Beijing, Shanghai, Guangzhou and Shenzhen, this
number holds for 17.14 million (Fig. 1C). High-tier
prefectures were the leading destinations of those
delayed population flows, while the low-tier prefec-
tures around the neighboring central prefectures re-
tained a large fraction of population flows. Changes
in human movements were partially driven by NPIs
[42] such as lockdown measures, event cancella-
tions, and university and business closures. Addi-
tionally, many citizens spontaneously obeyed social
distancing measures, staying at home for as long as
possible. As a result, a consistent decline in popula-
tion movement effectively contained the spread of
COVID-19 in China [43].

The directions of population flow between pairs
of cities changed significantly among prefecture
tiers. There was a substantial drop in inflows for the
highest three prefecture tiers starting on 10 January
2020, the start of chunyun. The outflows of these
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Figure 1. Temporal patterns of population flow in China in early 2020. (A) Aggregated population flows for all prefectures from 1 January to 29 February
2020. Each curve represents changes in flows for each prefecture tier over 60 days. Data were normalized by the maximum flow value in each tier.
(B) The mobility decrease ratio before (from 17 to 23 January, the week prior to the implementation of lockdown measures) and after (from 1 to 7
February, the week after the Lunar New Year holiday) Wuhan travel ban. Each cell (x tier, y tier) represents the ratio for flow from cities in tier y to tier x.
(C) The geographic distribution of the delayed population flows due to travel restrictions. These flows were expected to return at the end of chunyun.

higher tiers were much higher than their inflows.
However, the lowest three prefecture tiers exhibited
increases in inflows and outflows, which peaked on
20 January. The outflows of these lower tiers were
smaller than their inflows (Fig. S1 in the online sup-
plementary data). Besides, we found that neither the
population size nor distance of the city to Wuhan
was correlated to the decrease ratio of population
movements, indicating that the societal response
and implementationof containmentmeasures to the
outbreak ofCOVID-19 is universal inChina, regard-
less of the proximity or social-economic develop-
ment of the location (Fig. S2).

Mobility network variation
across periods
Compared with normal times, population flows no-
tably increasedduring the chunyunmigrationperiod,
and over 68% of all pairs (directed) of cities had an
increase in population flows. Along the national mo-
bility network, the average daily flow of 4588 links
(directed pairs of cities) increased by >200, mainly
due to outflows from super-tier and first-tier pre-
fectures with large populations and high GDPs to
lower-tier prefectures (Fig. 2A). Conversely, inflow
to these higher-tier prefectures dropped simultane-
ously (Fig. 2B).
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Figure 2. A comparison of spatial patterns of mobility across four periods. The mobility network is visualized with links that decrease/increase by more
than 200 in average daily flows. (A, D and G) Links that exhibited increases in population flow in comparison with the previous period. The size of the
node is proportional to total outflows for (A), and total inflows for (D and G). (B, E and H) Links that exhibited decreases in population flow in comparison
with the previous period. The size of the node is proportional to total inflows for (B and H), and total outflows for (E). (C, F and I) The association of
mobility distance with the ratio of links with increased or decreased travel. Each bar shows the ratio of links with increased or decreased travel, and
each curve shows the variation tendency.

During the travel restriction period, few migrant
workers [44] returned to workplaces located in the
most developed regions in China: the Yangtze River
Delta (YRD) and the Pearl River Delta (PRD)
Greater Bay Area. There were only 216 links with
an increase in average daily flow of >200 dur-
ing this period (Fig. 2D). These regions contain
many of the most high-tech, capital-intensive man-
ufacturing industries in China, which provide many
jobs and competitive salaries. Return-to-work mi-
gration contributed to the increase in population
flows from 10 to 29 February (Fig. 2G). During the
COVID-19 epidemic, humanmovements decreased
due to travel restrictions, such as lockdownmeasures
and stay-at-home orders. All city pairs exhibited a
massive 82.46% decline in population flows. The

average daily flows of 9004 links were reduced by
>200 (Fig. 2E).

Even during the period when people were re-
turning to work, population flows had not yet re-
turned to their prior levels. Over 62.64% of all pairs
of cities had a decrease in population flow.The aver-
age daily flows of 1795 links reduced by more than
200, especially for inflows to Beijing and Shanghai,
the capital and financial center, which implemented
strict intervention measures, including more strin-
gent controls on the movement of residents and ve-
hicles, mandatory temperature checks and compul-
sory mask-wearing in public (Fig. 2H).

The initial increase and subsequent dramatic de-
crease in human movements clearly showed how
chunyun and the following COVID-19 epidemic
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Figure 3. Overall population movements. (A) Plots of cumulative probability distribution against daily travel distance (log) across all four periods.
The subgraph shows the variability of movement within prefecture tiers across all four periods. The cumulative probability distribution of daily travel
distances is denoted by p, and the mean distribution over all 60 days is denoted by p̄ . For each day k, we calculate the proximity of pk to p̄k to express
the variability of movement, and then we arrive at the sum of 60 days’ variation. (B) Plots of the cumulative probability distribution of movements
grouped by prefecture tiers against distance (log) for chunyun (10–23 January). Each line represents the probability distribution per day. (C) Plots of
travel distance distributions produced by the gravity and radiation models, compared with real data during normal times.

affected human mobility patterns. During the chun-
yunmigrationperiod (vs. normal times), the flowde-
crease ratio was positively correlated with travel dis-
tance, while the flow increase ratio was negatively
correlated with travel distance (Fig. 2C). During the
epidemic (vs. the chunyunmigration period), the in-
crease ratio was positively correlated with travel dis-
tance, while the decrease ratio was highly negatively
correlated with travel distance (Fig. 2F), suggesting
that shorter distances saw amuch higher decrease in
flows than longer distances during this time. Imme-
diately following the lockdown of Wuhan and travel
restrictions across Chinese mainland, the decrease
ratio was more dramatic than the increase ratio dur-
ing the last two periods (24 January to 29 February).
When the government called for reopening of the
economy and schools, increased population flows
were observed over both short and long distances.
In contrast, travels over medium distances contin-
ued to decrease (Fig. 2I).

Travel distance analysis
Figure 3A shows the cumulative distribution of
travel distances over all four periods. Short-distance
travel occurred more frequently during normal
times, while long-distance travel occurred more
frequently during the chunyun migration period.
In this period, movements across >100 km in-
creased by 5%; however, people were more likely
to stay at home or travel shorter distances following
the COVID-19 outbreak due to travel restrictions.
This evidence suggests that long-distance travel de-
creased during the last two periods. Detailed sum-
mary statistics concerning travel distances are pro-
vided in Table S1 in the online supplementary data.
Unsurprisingly, the mobility patterns for the chun-
yun migration period coincided with that of the

recovery period, asmigrantworkersmight have trav-
eled home when the chunyun began and then re-
turned to work, producing a similar but reversed net
population flow.

To better understand themass increase inmigra-
tion during chunyun, we plotted cumulative proba-
bility distributions against distance with the dates of
chunyun.With eachday, travel distancesof the super-
tier prefectures increased progressively towards Lu-
nar New Year’s Eve. An increase in average daily
travel distances was also found in the first-tier and
second-tier prefectures. However, travel distance
distributions remained nearly the same for prefec-
tures at the lower (third, fourth and fifth) tiers, as
their mobility patterns had stabilized considerably
(Fig. 3B). Additionally, mobility patterns differed
substantially between tier groups but showed strong
consistency within each tier group over all 60 days
(Fig. 3A, inset). Although there are many models of
human mobility (e.g. the radiation model [12] and
the gravity model [13]), according to the goodness
of fit for the mobility models evaluated by the root
mean square error (RMSE), the radiation model
outperforms the gravity model, as well as a series of
other mobility models (Fig. S3 and Table S2), in
predicting the population flows for all four periods
(Fig. 3C).However, there is still a significant predic-
tion discrepancy for population flows within short
distances (e.g.≤150 km).Therefore, we do not have
a well-understood model to account for the mobil-
ity patternwherein chunyun, epidemic and lockdown
are intertwined.

Quantifying the backflow effect
Since chunyun is a temporary relocation that oc-
curs over the Lunar New Year holiday, people might
have traveledwhen chunyun began and then traveled
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back to their prior locations afterward. Through-
out the process, the return trips roughly matched
the outward trips. We refer to this as the back-
flow effect (Fig. 4A). For example, thousands of
migrant workers traveled to their homes during
chunyun and then returned to their jobs during
the recovery period, reversing the direction of net-
flows along the mobility network. In fact, over
55% of all links exhibited reversed netflow between
chunyun and the recovery time. We developed a
mathematical model to explore the backflow phe-
nomenon across all prefectures (see Methods). The
ratio of linkswith reversed netflow initially increased
markedly with small population flows and then de-
clined with large population flows (Fig. 4B). A de-
tailed investigation of the decreasing trend revealed
that large population flows usually exist in neighbor-
ing prefectures that are geographically connected
(Table S3), such as Guangzhou and Foshan (dis-
tance = 30 km; 400 145 movements per day) or
Beijing and Langfang (distance = 40 km; 70 148
movements per day). This mobility pattern is a kind
of daily commuting pattern rather than backflow.
Furthermore, the backflow phenomenon typically
occurred between lower-tier prefectures, e.g. third-
tier, fourth-tier and fifth-tier prefectures (Fig. 4C).
Thedistributionof reversemovements that occurred
between every two periods are shown in Fig. S4.

Evaluation of community dynamics
Crowd movement reveals socio-economic and cul-
tural interactions among prefectures, which form
city clusters. We used the Louvain algorithm [45]
to detect community dynamics of the national tem-
poral mobility network and found that the forma-
tion of communities across China mainly depends
on regions of urbanization and economic devel-
opment. For example, Beijing, Tianjin, Jinan and
Shijiazhuang form the Beijing-Tianjin-Hebei region

(Jing-Jin-Ji); Guangzhou, Shenzhen, Foshan and
Dongguan form the PRD; and Shanghai, Nanjing,
Hangzhou and Hefei form the YRD. These regions
have been identified as the three world-class city
clusters in China (Fig. 5 and Table S4).

The observed community changes during chun-
yun were mainly due to laborers returning to home-
towns from cities principally located in the wealthy
coastal regions that are far from their home re-
gions. For example, many prefectures from Anhui
Province, such as Hefei, Anqing and Lu’an, left the
community located in the YRD region, and merged
into the neighboring community, which is located
more geographically inland. During the period from
chunyun to the travel restrictions, COVID-19 im-
pacted economic activities and restricted population
movements across the country. For example, most
prefectures in Hunan Province, which were closely
connected with Hubei Province, left the commu-
nity centered around Wuhan, and merged into the
community centered around Guangzhou.The num-
ber of communities was 11 before the lockdown,
and increased to 14 during the recovery period
(Tables S5–S7 in the online supplementary data).
The three new communities are centered around
Changsha (including 15 neighboring prefectures),
Taiyuan (including 20 neighboring prefectures) and
Guiyang (including 27 neighboring prefectures).
The subdivision of communities into smaller com-
munities revealed that stronger local interactions
were generated in response to the stay-at-home or-
der and other legally enforced mobility restrictions
(Fig. 6).

In all four periods, most high-tier prefectures
were more likely to be located in the same region
(usually centered around two or three neighbor-
ing central prefectures) than low-tier prefectures
before and after the COVID-19 outbreak. Higher-
tier prefectures have integrated overall strengths,
which amplified their influence and radiation effect
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and promoted the socio-economic development of
regional integration, thus creating more opportu-
nities for them to draw substantial population in-
bound from lower-tier prefectures. Approximately
one-third of the prefectures (126 out of 366) exhib-
ited changes in their communities. Of these prefec-
tures, over 90% belonged to the lowest three prefec-
ture tiers; only two of these prefectures belonged to
the first-tier (Changsha, Hefei). Twenty prefectures
ultimately returned to their initial communities.
The south-central cluster (Wuhan, Changsha and
Xiamen are the central prefectures) was seriously af-
fected by theWuhan travel ban. Changsha, Xiamen,
as well as their neighboring prefectures, moved to
PRD and YRD, respectively. The number of prefec-
tures in the south-central community declined from
45 to 16.

DISCUSSION
Human mobility is the driving force of many social
dynamics, including socio-economic development,
disease transmission and forming of new fact-to-face
interactions. Within the first two months of 2020,
China experienced extreme fluctuations in the travel
patterns of its population, ranging from the chun-
yun (maybe the busiest mass migration on Earth)
to the exceptional calm of COVID-19 lockdown.
The chunyunmass migration has influenced China’s
mobility levels, and the large-scale outbreak of
COVID-19 that began inDecember 2019 has added
some complications. Characterizing mobility at a
large-scale and with high resolution is of critical im-
portance to the understanding and policy making
of everyday life. With data extracted from mobile
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phones at the national level, our study offers com-
prehensive analyses of bulk population movements
in China, across distinct periods before and after the
COVID-19 outbreak.

We found that variations between population
flows were strongly correlated with travel distances
across all four investigated periods. Daily move-
ments changed as a function of distance much more
remarkably in high-tier prefectures than in low-tier
prefectures, and China’s decline in mobility levels
overall might have been due to both government
interventions and personal behavioral changes. In-
terestingly, it appears that substantial reductions in
mobility occurred continuously since the implemen-
tation of travel restrictions, with more than 72.98
million people delaying their return to cities until
the end of chunyun. Ourmathematical model for an-
alyzing backflowmobility also revealed that this phe-
nomenon mainly occurred between two prefectures
belonging to low, proximal prefecture tiers. Despite
large variations in mobility at the national scale, we
found that clusters of prefectures formed by densely
connected cities remained stable across the extreme
periods of mass migration and travel restrictions.

The best public health strategy forminimizing se-
rious outcomes in viral outbreaks is to control the
viral spread at the earliest stage. A systematic un-
derstanding of the mobility patterns of populations
and subsequent outcomes is clearly an important
agenda item for urgent policy decisions.The present
examination of mobility levels provided profound
insight into how people move in response to emer-
gencies, such as mass migration and widespread epi-
demics [46]. We believe the presentation of these
results provides a state-of-the-art understanding of
China’s migration patterns during both stable and
unstable scenarios. Additionally, as aggregated mo-
bility data can provide near real-time information re-
garding changes in human mobility patterns, it can
also be used to evaluate the effectiveness of govern-
ment public health policies, such as travel restric-
tions and the integration of NPIs and vaccinations,
thereby contributing to thefight against futurewaves
of this pandemic and the threat of newvariants.With
accurate mobility information, the degree of strict-
ness with which governments implement travel re-
strictions should be varied and adjusted from region
to region over time. Since the low-tier prefectures re-
tained a large fraction of their population flows by
the endof chunyun, it was revealed that the control of
in-province mobility is more important than mobil-
ity across provinces for those regions. When people
resume work, specific guidelines for the authorities
of high-tier prefectures may be beneficial in protect-
ing inbound migrant workers.The patterns found in
this study are valuable in assessing and revising ex-
isting lockdown measures, not only for the present,

but also for when life resumes, without risking a
major resurgence of this pandemic.

METHODS
Mobility data
Nationwide cellular signaling data (CSD) was used
to track population flows throughout China at the
prefecture (city) level. The data is recorded when
users are making phone calls, sending messages,
switching on/off their devices or switching towers.
The temporal resolution is at a minimum of one
record every 30 minutes because the CSD is
recorded as long as there is an active or passive
positioning data event. The spatial resolution was
originally at the tower level, then aggregated to the
prefecture-level, covering all prefectures in Chinese
mainland. The population flow data is provided by
one of the largest national mobile carriers in China,
China Unicom, and is aggregated based on all users’
mobile phone activity records across the country,
including geographic location. China Unicom had
318 million active users by the end of 2019 [47],
about one quarter of all active mobile phone users
in China (the other two operators are ChinaMobile
and China Telecom). It is worth noting that, as all
data were processed anonymously and aggregately,
it is impossible for the authors to identify or filter
users of certain groups. Thus, the population flow
presented in this article provides a representative
overview of the general population and cannot be
analyzed for minority groups (see details in the
online supplementary data).

The number of user trips in Chinese mainland
(366 prefecture-level cities in total) from 1 January
2020 to 29 February 2020 were aggregated to gen-
erate a national-level population flow matrix. If the
phone is on, the user’s location will be recorded,
whether users use it or not. To exclude a large num-
ber of users who only briefly pass through a pre-
fecture, users who stay in a prefecture for less than
half an hour were filtered out. The movement was
recorded by the operator such that on each day, if a
user was observed at locations A→B→C for more
than 30minutes, respectively, thenA→B andB→C
were counted.

The concept of prefecture tier is a convenientway
to quickly describe the prefecture’s relative level of
development in Chinese mainland. The Rising Lab,
a subsidiary of Yicai Media Group, has assessed the
prefectural level for the sixth consecutive year, and
the classification criteria includes five dimensions:
concentration of commercial resources, the city as
a hub, urban residential activity, lifestyle diversity
and future potential. Beijing, Shanghai, Guangzhou
and Shenzhen formed the super-tier. There were
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15 prefectures in the first-tier, headed by Chengdu
and Chongqing; 30 prefectures in the second-tier;
70 prefectures in the third-tier; 90 prefectures in
the fourth-tier and 127 prefectures in the fifth-tier
[48]. Details of the classification are presented in
Tables S8–S12.

Backflow model
For each day k, the population flow matrix is de-
noted byAk , where ai j and a j i are the outflow and
inflow from prefectures i to j, respectively. The uni-
directional netflow matrix is denoted by E k , where
e i j = ai j − a j i and e j i = a j i − ai j . Then, 60 uni-
directional netflow matrices E kcan be derived from
60 days of population flowmatrices Ak . A logical xor
is used for the following symbolic expression:

Skli j = xor
(
E k
i , E

l
j
)
, (1)

where k and l are the kth and lth days, respectively.
If e i j ∈ E k

i and e i j ∈ E l
j have the same signs, then

Skli j = 0. Otherwise, Skli j = 1, indicating opposite
variation in population flows between prefectures i
and j for the kth and lth days.To attain good statistics
regarding the variation of population flow, this anal-
ysis was restricted to variations of flow >10 in both
matrices Ak and E k . The reversed netflow direction
is illustrated in Fig. 4A.
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2. Çolak S, Lima A and González MC. Understanding congested
travel in urban areas. Nat Commun 2016; 7: 10793.

3. Kraemer MU, Yang C-H and Gutierrez B et al. The effect of hu-
man mobility and control measures on the COVID-19 epidemic
in China. Science 2020; 368: 493–7.

4. Barbosa H, Barthelemy M and Ghoshal G et al. Human mobility:
models and applications. Phys Rep 2018; 734: 1–74.
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