
Monocytes and monocyte-derived inflammatory macro-
phages have been implicated in the pathogenesis of neovas-
cular age-related macular degeneration (nvAMD) [1-11]. 
Although studies suggest that inflammatory macrophages 
may be associated with increased choroidal neovasculariza-
tion (CNV) [6,7], the mechanisms that underlie this process 
are poorly understood. We recently reported that activated 
inf lammatory macrophages derived from patients with 
nvAMD express several proangiogenic and proinflamma-
tory cytokines, accelerating the pathogenesis of ex vivo and 
in vivo experimental models of angiogenesis and CNV [11]. 
We also found that monocytes obtained from patients with 
nvAMD and activated by culturing with IFN-γ and LPS to 
form proinflammatory M1 macrophages have a more robust 
proangiogenic effect compared to other macrophage pheno-
types and macrophages derived from age-matched controls 
[11].

Vascular endothelial growth factor (VEGF) plays a major 
role in the development of CNV, and anti-VEGF compounds 
are the primary therapy for nvAMD. Although anti-VEGF 
therapy can improve visual outcomes in some patients with 
nvAMD, other patients develop a substantial loss of visual 
acuity despite receiving this therapy [12].

Inflammatory macrophages express VEGF and a variety 
of other cytokines that are potentially proangiogenic in the 
context of CNV; however, whether myeloid-derived VEGF 
is solely responsible for the contribution of macrophages to 
the development of CNV remains unclear [13-17]. Additional 
cytokines may mediate the proangiogenic effects of macro-
phages in the context of nvAMD. Thus, identifying these 
cytokines may provide important insights into the pathogen-
esis of nvAMD and may reveal new therapeutic targets for 
treating this disease.

Previous studies identified markers for M1 (i.e., clas-
sically activated proinflammatory) and M2 (alternatively 
activated) macrophages in the eyes of patients with AMD, 
and recent studies illustrated how inhibiting M1 macrophages 
can suppress laser-induced CNV (LI-CNV) [18-21]. In addi-
tion, we recently reported high levels of the M1 macrophage 
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marker inducible nitric oxide synthase (iNOS) in a rodent 
model of LI-CNV [22].

We examined the role of various cytokines in mediating 
the proangiogenic properties of activated macrophages in 
nvAMD by screening cytokines that are expressed by acti-
vated macrophages derived from patients with nvAMD [11]. 
Specifically, we examined the effect of these cytokines in 
ex vivo and in vivo models of neovascularization that reca-
pitulate many of the features of nvAMD. We then tested the 
ability of anti-TNF-α therapy to reduce the proangiogenic 
effects of activated macrophages in nvAMD. Finally, we 
analyzed cytokine expression data to determine whether 
the production of TNF-α by macrophages can be modified, 
providing a potential therapeutic route for inhibiting TNF-α 
in nvAMD.

METHODS

Patients: Two elderly (92 and 86 years of age) male patients 
with nvAMD were recruited from the Retina Clinic in the 
Department of Ophthalmology at Hadassah-Hebrew Univer-
sity Medical Center. The patients’ diagnosis of AMD was 
based on criteria established by the Age-Related Eye Disease 
Study (AREDS) [23], and CNV was confirmed using fluo-
rescein angiography and optical coherence tomography. 
Overall, the lesions comprised at least 50% active CNV and 
<25% subretinal hemorrhage. The patients did not present 
with any other retinal disease or any other possible causes 
of CNV, such as myopia, trauma, or uveitis. In addition, the 
patients did not present with any major systemic illness, such 
as cancer, autoimmune disease, congestive heart failure, or 
unmanaged diabetes.

Ethics: All experimental protocols and studies involving 
human subjects were approved by the local Committee on 
Research Involving Human Subjects of the Hebrew Univer-
sity-Hadassah Medical School, the Helsinki Committee of 
Hadassah Medical Organization, and the Israel Ministry of 
Health’s Helsinki Committee for Genetic Experiments on 
Human Subjects (File #22–03.08.07). Patients and control 
subjects provided written informed consent in accordance 
with the tenets of the Declaration of Helsinki prior to partici-
pating in the study, in accordance to the guidelines of the 
Association for Research in Vision and Ophthalmology 
(ARVO). All methods used in the study were performed in 
accordance with approved study guidelines while ensuring 
the participants’ privacy.

Preparation of macrophages: Blood samples (30 ml each) 
from the patients with nvAMD were collected into EDTA-
containing tubes (BD Biosciences). Monocytes were isolated 
from the whole blood samples, differentiated into M0 

macrophages, and then activated to form M1 macrophages 
by stimulation with IFN-γ and LPS as previously described 
[11,24-28]. We chose this specific macrophage subtype 
because we previously found that M1 macrophages cause 
increased neovascularization in vitro and in vivo [11]. The 
medium was harvested from the cultured macrophages 
and stored at −20 °C for use in the choroid sprouting assay 
(CSA). Macrophages were collected using 0.25% trypsin 
(Sigma-Aldrich, Munich, Germany), washed with RPMI 
1640 medium (Biological Industries Israel Beit Haemek 
Ltd) containing fetal calf serum (FCS), washed 3 times with 
phosphate-buffered saline (1X PBS; 135 mM NaCl, 2.7 mM 
KCl, 10 mM Na2PO4, 1.5 mM KH2PO4, pH 7.4), and used 
immediately in the in vivo experiments.

Animal experiments: All protocols involving animals were 
approved by the Authority for Biologic and Pre-Clinical 
Models (ABBM) and the University Ethics Committee for 
the Care and Use of Laboratory Animals of Hebrew Univer-
sity, which is certified by the Association for Accreditation 
of Laboratory Animal Care (AAALAC; approval number: 
MD-16–14796–3, NIH approval number: OPRR-A01–5011). 
All researchers working with laboratory animals were 
approved by the ethics committee of the ABBM. All guide-
lines with respect to the humane and ethical treatment of 
laboratory animals based on the Association for Research in 
Vision and Ophthalmology (ARVO) were strictly followed, 
and all methods used in this study were performed in accor-
dance with approved study guidelines.

Choroid sprouting assay: This ex vivo angiogenesis assay 
was performed as previously described [29] to assess the 
putative angiogenic effects of candidate cytokines collected 
from the supernatant of cultured M1 macrophages prepared 
from patients with nvAMD as described above [11]. Cyto-
kines were added to the medium at the maximum concen-
tration based on previous enzyme-linked immunosorbent 
assay (ELISA) results measured using the culture medium 
of M1 macrophages [11]. Specifically, the following five 
cytokines (all from PeproTech, Rocky Hill, NJ) were tested 
at the indicated concentrations (n = 8 replicates for each cyto-
kine): VEGF, 0.25 ng/µl; IL-8, 0.50 ng/µl; IL-6, 2.50 ng/µl; 
IL-1β, 0.05 ng/µl; and TNF-α, 0.85 ng/µl. Where indicated, 
anti-TNF-α (infliximab, 100 µg/µl; Remsima, Celltrion Inc., 
Incheon, South Korea) and anti-VEGF (aflibercept, 40 µg/µl; 
Bayer Pharma AG, Berlin, Germany) were included in the 
presence or absence of M1 macrophage‒derived medium and 
were used at concentrations based on previous studies [30].

For the CSA assay, C57BL/6J mice (4-6 weeks old) were 
euthanized by cervical dislocation following anesthesia with 
inhalation liquid Isoflurane USP 100% (provided by Piramal 
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pharma solutions, Mumbai, India), and the eyes were removed 
immediately and placed in ice-cold endothelial cell growth 
medium (ECGM, Cat. C-22010; PromoCell, Heidelberg, 
Germany) containing 100 units/ml penicillin-streptomycin 
(Biological industries, Beit Haemek, Israel) and 1% gluta-
mine (Biological industries). The choroid-sclera complex 
was then gently dissected along with the retinal pigment 
epithelium (RPE) layer. The tissue was then cut into 5-6 
1-mm long pieces, which were embedded in 30 µl of growth 
factor‒reduced Matrigel (Cat. 354230, BD Biosciences, 
Cowley, Oxford, UK354230) in 24-well plates. The thickness 
of the Matrigel layer was approximately 0.4 mm. The plates 
were then incubated without medium for 10 min at 37 °C in 
5% CO2 to solidify the Matrigel, after which 500 µl ECGM 
containing 2.5% supplement mix (C-9215, PromoCell), 5% 
FCS, 100 units/ml penicillin-streptomycin, and 1% gluta-
mine was added to each well. For the experimental groups 
containing the supernatant from cultured macrophages, 
the medium was replaced with 250 µl of this supernatant. 
The medium in each well was changed every 3 days, and 
the cultures were fixed with 4% paraformaldehyde (PFA) on 
day 8. The cultures were viewed using an inverted Olympus 
CKX41 microscope, and images were captured using a DP70 
digital camera (Olympus, Tokyo, Japan).

ImageJ (NIH, Bethesda, MD) was used to quantify the 
sprouting area [31]. The sprouting area was selected using the 
software and measured after the choroid tissue was excluded. 
The background (a control well in each plate containing 
medium only) was subtracted from each sample. For each 
well, the ratio between the experimental group and its respec-
tive control sample from the same eye was calculated, and 
replicates were averaged. Although we did not label the 
sprouting cells in the CSA, previous works have suggested 
that these sprouts are mostly composed of endothelial cells 
[2-4].

Laser-induced CNV: For the LI-CNV model, Long-Evans rats 
(8–12 weeks old) were anesthetized with an intraperitoneal 
injection of a mixture containing 85% ketamine (Bedford 
Laboratories, Bedford, OH) and 15% xylazine (InoVet, 
Arendonk, Belgium). Topical anesthesia (Oxybuprocaine 
HCL 0.4%; Fisher Pharmaceuticals, Tel-Aviv, Israel) was 
applied to each eye 10 min before intravitreal injection and 
laser photocoagulation.

Laser photocoagulation burns (five to seven spots per 
eye) were applied as previously described [32]. Two days 
later, the respective compounds were administered by 
intravitreal injection using a PLI-100 Pico-Injector (Medical 
System Corp., Greenvale, NY) to induce CNV [33]; these 
injections were repeated every 2 days for a total of 10 days. 

Where applicable, macrophages were injected only once (2 
days after laser photocoagulation). The entire procedure, 
including evidence showing lack of a xenograft-induced 
immune response, has been published previously [11].

The following control group and five experimental 
groups were included in this study: PBS (4 µl, control); 
infliximab (1 µl of a 100 µg/µl solution); aflibercept (1 µl of a 
100 µg/µl solution); infliximab plus 105 M1 macrophages (1 µl 
and 4 µl, respectively); aflibercept plus 105 M1 macrophages 
(1 µl and 4 µl, respectively); and 105 M1 macrophages (4 µl). 
The concentration of each compound injected was based on 
previous studies [34]. For each group, both eyes in four rats 
were injected (for a total of eight eyes per group). After each 
injection, antibiotic ointment (5% chloramphenicol) was 
applied to each eye. After the final injections (i.e., 10 days 
after laser photocoagulation), choroid-RPE and retinal flat 
mounts were prepared as previously described [11,35] and 
analyzed as described below.

Quantification of CNV: Choroid-RPE flat mounts were fixed 
for 1 h in 4% PFA and suspended overnight in Isolectin 
GS-IB4 Alexa Fluor 594 staining solution (Molecular Probes, 
Eugene, OR) containing 200 mM NaN3 and 1 mM CaCl2. The 
flat mounts were then washed six times for 20 min each in 
PBS and mounted on a slide using mounting medium. The 
area of CNV surrounding each laser injury was measured 
using ImageJ as previously described [11].

Basic statistical analyses: Data were analyzed using the 
biostatistics software package InStat (GraphPad, San Diego, 
CA). Differences with a p-value <0.05 were considered statis-
tically significant. Outliers (±2 SD) were excluded from the 
statistical analysis (less than 5%) [39]. Appropriate statistical 
tests were used based on the results of a test for normality, the 
sample distribution, and parameters.

Analysis of macrophage modulation: Using data from the 
present study and a previous study [11], we examined the role 
of age, gender, disease status (nvAMD versus control), and 
macrophage subtype (M0 versus M1 versus M2) on mRNA 
levels, protein levels, and proangiogenic properties in the 
CSA and LI-CNV models. We included in the analysis the 
protein levels of PDGF, TNF-α, VEGF, MCP1 (i.e., CCL2), 
and ICAM (measured using ELISA), as well as the mRNA 
levels of PDGF (Gene ID 5154, OMIM 173430), TNF-α (Gene 
ID 7124, OMIM 191160), and VEGF (Gene ID 3383, OMIM 
147840) measured using qPCR) of all patient-derived polar-
ized human macrophages. These data were obtained from 
our previous study [11] and included 34 patients with nvAMD 
(21 women and 13 men) with a mean (± standard error of the 
mean [SEM]) age of 75.9±1.50 years (range: 59–93 years) and 
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25 age-matched unaffected controls (ten women and 15 men) 
with a mean age of 72.3±1.70 years (range: 59–89 years).

We then evaluated the contribution of the patient 
(“Cell Origin”) and the laboratory manipulation of cultured 
macrophages (“Environment”) to the protein and mRNA 
levels measured in the macrophages. These contributions 
were compared using an analysis of variance (ANOVA) 
with the software program R (and R studio) together with 
the “reshape2” package. We then calculated the percentage 
of variance that was due to age, gender, disease status, and 
environment (and the interaction between cell origin and 
environment), as well as any unexplained variance, using a 
mixed-design ANOVA with repeated measures in R.

RESULTS

TNF-α and anti-TNF-α therapy increases and decreases, 
respectively, the proangiogenic effects of human M1 macro-
phages on choroid sprouting in an ex vivo model: First, using 
an ex vivo choroid sprouting assay, we examined whether 
the addition of exogenous cytokines affects neovasculariza-
tion. We found that addition of TNF-α to the culture medium 
statistically significantly increased sprouting compared to the 
untreated wells (Figure 1A). Specifically, the mean (± SEM) 
ratio of the relative sprouting area between the TNF-α-treated 
and untreated wells was 1.6±0.2 (n = 8; p=0.01, Student t 
test). In contrast, addition of either IL-6 or IL-8 statistically 
significantly decreased the sprouting area (Figure 1A), with a 
relative ratio between treated and untreated wells of 0.64±0.1 
(n = 9; p=0.01, Student t test) and 0.47±0.14 (n = 8; p=0.007, 
Student t test), respectively. Addition of either IL-1β or VEGF 
had no effect on choroid sprouting (Figure 1A). The lack of an 
effect of VEGF in this model may have been due to the high 
levels of VEGF present in the growth medium [29], which 
may have obscured any possible effect of VEGF added to 
the medium.

Next, we examined whether supernatant collected 
from cultured M1 macrophages affects choroid sprouting 
and found that addition of this supernatant statistically 
significantly increased the sprouting area to 1.33±0.12 (n = 7, 
p=0.04, Student t test) relative to the untreated wells (Figure 
1B). Moreover, this increase was prevented by adding either 
anti-TNF-α or anti-VEGF to the M1 supernatant, although 
treatment with either anti-TNF-α or anti-VEGF alone had no 
statistically significant effect on choroid sprouting (Figure 
1B).

Taken together, these findings suggest that TNF-α—and 
possibly VEGF as well—mediates the proangiogenic effect of 
M1 macrophages in choroid sprouting. Moreover, the increase 

in sprouting induced by M1 supernatant, but not VEGF alone, 
suggests that macrophages can induce choroid sprouting via 
a VEGF-independent pathway.

Anti-TNF-α therapy prevents the proangiogenic effect of 
human MI/L macrophages in an in vivo model: Next, we used 
an in vivo model of LI-CNV to examine whether intravit-
real injections of anti-TNF-α can reduce the proangiogenic 
effects of M1 macrophages. We found that intravitreal adop-
tive transfer of M1 macrophages statistically significantly 
increased the CNV area compared to controls (Figure 2). 
Moreover, this increase was eliminated by coinjecting either 
anti-TNF-α or anti-VEGF together with M1 macrophages. 
Consistent with the ex vivo results, we also found that 
injecting anti-TNF-α alone had no effect on CNV (Figure 2). 
Interestingly, and in contrast with the ex vivo results, we also 
found that intravitreal injection of anti-VEGF alone statisti-
cally significantly reduced the CNV area (Figure 2).

Cell origin and environment can explain part of the variance 
in TNF-α expression at the mRNA and protein levels: Next, 
we examined our previous data regarding the expression 
profile of activated macrophages obtained from patients and 
controls [11] to determine whether cell origin, or the environ-
ment, or both can explain the variance in the expression of 
TNF-α and other cytokines in macrophages, thus indicating 
that expression is modifiable. At the mRNA level (Figure 
3A), we found that 29% of the variance in the expression of 
TNF-α, VEGF, and PDGF measured in three macrophage 
subtypes cultured from patients with nvAMD (n = 7) and 
age-matched controls (n = 9) was explained by cell origin 
(i.e., patient-derived factors). However, 16%, 20%, and 9% of 
the variance in the TNF-α, VEGF, and PDGF mRNA levels, 
respectively, was explained by environmental factors (i.e., 
the cell culture conditions used to generate the macrophage 
phenotypes). Finally, 55%, 51%, and 62% of the variance in 
the TNF-α, VEGF, and PDGF mRNA levels, respectively, 
was either unexplained or was explained by the interaction 
between the cell origin and the environment.

Using a mixed-design ANOVA with repeated measures, 
we combined non-modifiable factors, such as the patient’s 
age, gender, and disease status, and found that the interaction 
between the environment and the cell origin and the environ-
ment alone explained 58%, 65%, and 21% of the variance in 
the TNF-α, VEGF, and PDGF mRNA levels, respectively. 
Finally, 13%, 6%, and 50% of the variance in the TNF-α, 
VEGF, and PDGF mRNA levels, respectively, was unex-
plained (Figure 3A). These results suggest that more than 
50% of the variance in the expression of TNF-α and VEGF 
at the mRNA level can be modified by factors such as cell 
origin and environment.
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With respect to the variance in protein levels (based on 
13 patients with nvAMD and 13 age-matched controls), we 
found that only 19% of the variance in the TNF-α protein was 
explained by cell origin, whereas 59% of the variance was 
explained by the environment (Figure 3B). In contrast, 58%, 

95%, 56%, and 61% of the variance in VEGF, PDGF, ICAM, 
and MCP1, respectively, was explained by cell origin (Figure 
3B). These results suggest that among these five cytokines, 
the expression of TNF-α is the most modifiable in activated 
macrophages.

Figure 1. Select cytokines and 
M1 macrophages affect choroid 
sprouting. Sprouting was measured 
using an inverted microscope and 
is expressed relative to control. 
A: Example images and summary 
of choroid sprouting measured 
in the presence of the indicated 
recombinant cytokines previously 
identified in the culture medium of 
macrophages activated with IFN-γ 
and LPS. B: Example images and 
summary of choroid sprouting 
measured under the indicated 
conditions; where indicated, the 
culture medium supernatant from 
M1 macrophages was applied. 
n = 7–8/group. *p<0.05 versus 
the corresponding control group; 
#p<0.05 versus M1 supernatant 
alone.
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Figure 2. Anti-TNF-α and anti-
VEGF therapy reduced the 
proangiogenic effects of M1 
macrophages in an in vivo rat 
model of laser-induced CNV. Fluo-
rescence images and summary of 
the choroidal neovascularization 
(CNV) area (in square millimeters) 
measured following the indicated 
treatments in the laser-induced 
CNV (LI-CNV) model (see Mate-
rials and Methods for details). The 
laser injury sites are indicated with 
arrows, and the optic disc is indi-
cated with a “+.” n = 8 eyes in four 
rats/group. *p<0.05 versus PBS; 
#p<0.05 versus eyes injected with 
M1 macrophages alone.

Figure 3. Summary of the factors that explain the variance in cyto-
kine expression at the mRNA and protein levels. A: A mixed-design 
ANOVA with repeated measures was used to evaluate the effect of 
cell origin (blue), environment (red), and the interaction between 
cell origin and environment (yellow) on the mRNA levels of the 
indicated cytokines. B: A mixed-designed ANOVA with repeated 
measures on the protein levels of the indicated cytokines. Unex-
plained variance is shown in green. The thick black boxes are used 
to highlight the total variance explained by Environment and the 
interaction between cell origin and environment.
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Macrophage function in two models of CNV is modifiable: 
Using a mixed-design ANOVA with repeated measures, we 
found that macrophage function was modifiable in the in vivo 
and ex vivo models of CNV. Specifically, we found that cell 
origin explained only 17% and 35% of the variance in the 
effect of the three macrophage subtypes in the LI-CNV and 
CSA models, respectively (eight patients with nvAMD and 
nine age-matched controls), whereas 55% and 50%, respec-
tively, was explained by environment and the interaction 
between the cell origin and the environment (Figure 4).

DISCUSSION

We previously reported that activated macrophages—particu-
larly M1 macrophages derived from patients with nvAMD—
are proangiogenic in ex vivo and in vivo models of CNV. 
In addition, we reported that TNF-α is upregulated in these 
macrophages [11]. In this report, we show that TNF-α is asso-
ciated with increased choroid sprouting in an ex vivo model. 
Furthermore, we found that anti-TNF-α therapy abolished the 
proangiogenic effects of M1 macrophages in the ex vivo and 
in vivo models, whereas anti-VEGF therapy was effective in 
vivo and only partially effective in the ex vivo model. Finally, 
we found that the expression of TNF-α and the proangiogenic 
effects of M1 macrophages are largely modifiable in both 
models.

In the clinical setting, anti-VEGF therapy alone is often 
not sufficient to suppress CNV in nvAMD over either the 
short- or long-term [36]. Liyanage et al. reported that VEGF 
expression in inflammatory macrophages is not involved in 
the development of laser-induced CNV [13]. Moreover, Wang 
et al. reported that TNF-α can increase the release of VEGF 
from RPE cells [37]. Taken together, these findings suggest 
that additional macrophage-derived cytokines and growth 
factors may underlie the proangiogenic properties of these 
cells in the context of nvAMD.

Previous studies yielded inconsistent results regarding 
the effect of anti-TNF-α therapy in nvAMD, including 
improved anatomic and visual outcomes, a lack of effect, and 
even the development of intraocular inflammation [38-40]. In 
addition, the release of TNF-α has been suggested to charac-
terize activated monocytes in nvAMD, and differences in this 
release may underlie differences in the development of CNV 
[41]. The present results suggest that TNF-α may underlie 
the pathophysiological role of inflammatory macrophages 
in nvAMD and suggest that anti-TNF-α therapy may reduce 
macrophage-CNV. Thus, a therapeutic window of opportu-
nity may exist for using anti-TNF-α in nvAMD, particularly 
given that macrophages play a major role in the development 
of CNV.

Targeting inflammatory macrophages using anti-TNF-α 
compounds may complement anti-VEGF-based treatment 
strategies for nvAMD. The putative benefits of targeting 
macrophages have been examined in other diseases, including 
cancer [42-44], lupus nephritis [45], and other inflammatory 
diseases [46]. Moreover, Zandi et al. suggested that inhibiting 
Rho-associated kinases, which have been implicated in acti-
vating macrophages, might also serve as a viable strategy in 
nvAMD [47].

We previously examined the effects of cross-species 
cytokine transplantation [11] based on the high degree of 
homology between human and rodent cytokines (ranging 
from 64% to 97% similarity) [48]. In addition, we found that 
human macrophages transplanted into the rat eye not only 
survive but also migrate across the retina to the lesion area 
and even can cross the retina to the RPE [11]. Importantly, 
ophthalmoscopy, immunostaining, and FACS analysis 
showed that rat eyes do not appear to develop an immune 
response to transplanted human cells, possibly because the 
eye is an immune-privileged organ.

This study has several caveats that warrant discussion. 
First, the rat model of LI-CNV involves a wound-healing 
reaction induced by damage at the level of Bruch’s membrane; 
thus, the response relies heavily on inflammation [6,7] and 
therefore, may not directly reflect the precise pathogenesis 
of nvAMD. In addition, because the rodent eye lacks a 
defined macula, this model may not fully mimic the complex 
pathology present in patients [49]. Nevertheless, this model 

Figure 4. Summary of the factors that explain the variance of the 
effect of inflammatory macrophages obtained using the LI-CNV 
and CSA models. A mixed-design ANOVA with repeated measures 
was used to evaluate the effect of cell origin (blue), environment 
(red), and the interaction between cell origin and environment 
(yellow). Unexplained variance is shown in green. The thick black 
boxes are used to highlight the total variance explained by the 
environment and the interaction between the cell origin and the 
environment.
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has been found to be suitable for testing the efficacy of new 
drugs delivered either systemically or locally (i.e., by intra-
ocular injection) and has been used to predict drug effects in 
patients with AMD (e.g., aflibercept) [50,51]. Furthermore, 
although we found that anti-VEGF abolished the develop-
ment of CNV in the LI-CNV model, anti-VEGF has been 
reported to prevent angiogenesis in human CNV [12]. This 
may explain why we found similar results with respect to the 
CNV area between the group that received anti-VEGF alone 
and the group that received macrophages and anti-VEGF.

In conclusion, the present results indicate that targeting 
TNF-α may serve as a viable therapeutic strategy for nvAMD. 
Such approaches may involve the use of anti-TNF-α therapy 
or modulation of the production of TNF-α by macrophages 
or both. Therefore, future studies should focus on identifying 
the therapeutic window during which anti-TNF-α therapy 
would provide the highest benefit with respect to preventing 
the pathogenesis of nvAMD.
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