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a b s t r a c t

Covid-19 is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Given the seriousness of the situation, the World Health Organization declared a global
pandemic as the Covid-19 rapidly around the world. Among its applications, chest X-ray images are
frequently used for an early diagnostic/screening of Covid-19 disease, given the frequent pulmonary
impact in the patients, critical issue to prevent further complications caused by this highly infectious
disease.

In this work, we propose 4 fully automatic approaches for the classification of chest X-ray images
under the analysis of 3 different categories: Covid-19, pneumonia and healthy cases. Given the
similarity between the pathological impact in the lungs between Covid-19 and pneumonia, mainly
during the initial stages of both lung diseases, we performed an exhaustive study of differentiation
considering different pathological scenarios. To address these classification tasks, we evaluated 6
representative state-of-the-art deep network architectures on 3 different public datasets: (I) Chest X-
ray dataset of the Radiological Society of North America (RSNA); (II) Covid-19 Image Data Collection;
(III) SIRM dataset of the Italian Society of Medical Radiology. To validate the designed approaches,
several representative experiments were performed using 6,070 chest X-ray radiographs. In general,
satisfactory results were obtained from the designed approaches, reaching a global accuracy values
of 0.9706 ± 0.0044, 0.9839 ± 0.0102, 0.9744 ± 0.0104 and 0.9744 ± 0.0104, respectively, thus
helping the work of clinicians in the diagnosis and consequently in the early treatment of this relevant
pandemic pathology.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Representative examples of chest X-ray images. 1st row, chest X-ray images from healthy patients. 2nd row, chest X-ray images from patients with pneumonia.
3rd row, chest X-ray images from patients with Covid-19.
1. Introduction

A new coronavirus SARS-CoV-2, which causes the disease
ommonly known as Covid-19, was first identified in Wuhan,
ubei province, China at the end of 2019 [1]. In particular,
oronaviruses are a family of viruses known to contain strains
apable of causing severe acute infections that typically affect
he lower respiratory tract and manifests as pneumonia [2], and
herefore, being potentially fatal in humans and a wide variety
f animals, including birds and mammals such as camels, cats or
ats [3,4].
On 11 February 2020, the World Health Organization (WHO)

eclared the outbreak of Covid-19 as a pandemic, noting the more
han 118,000 cases of coronavirus disease reported in more than
10 countries, resulting in 4291 deaths worldwide [5] by that
xtremely early moment, numbers that were deeply worsened
osteriorly. In particular, this disease, among its consequences,
lso manifests as relevant respiratory disease, being considered a
erious public health problem because it can kill healthy adults,
s well as older people with underlying health problems or other
ecognized risk factors, such as heart disease, lung disease, hyper-
ension and diabetes, among others [6]. Furthermore, the Covid-
9 virus is transmitted quite efficiently, since an infected person
s capable of transmitting the virus to 2 or 3 other people, an
xponential rate of increase [7].
Over the years, X-ray examination of the chest plays an im-

ortant clinical role in detecting or monitoring the progression
f different pulmonary diseases, such as emphysema, chronic

ronchitis, pulmonary fibrosis, lung cancer or pneumonia, among

2

others [8–10]. Today, given the severity of the coronavirus pan-
demic, radiologists are asked to prioritize chest X-rays of pa-
tients with suspected Covid-19 infection over any other imaging
studies, allowing for more appropriate use of medical resources
during the initial screening process and excluding other potential
respiratory diseases, a process which is extremely tedious and
time-consuming. In this context, the visibility of the Covid-19 in-
fection in the chest X-ray is complicated and requires experience
of the clinical expert to analyze and understand the information
and differentiate the cases from other diseases of respiratory
origin with similar characteristics such as pneumonia, as illus-
trated in Fig. 1. For that reason, a fully automatic system for the
classification of chest X-ray images between healthy, pneumonia
or specific Covid-19 cases is significantly helpful as it drastically
reduces the workload of the clinical staff. Complementary, it
may provides a more precise identification of this highly infec-
tious disease, reducing the subjectivity of clinicians in the early
screening process, and thus also reducing healthcare costs.

Given the relevance of this topic, several approaches were
recently proposed using chest X-ray images for the classification
of Covid-19. As reference, Narin et al. [11] proposed an approach
based on deep transfer learning using chest X-ray images for the
detection of patients infected with coronavirus pneumonia. In the
work of Hassanien et al. [12], the authors proposed a method-
ology for the automatic X-ray Covid-19 lung classification using
a multi-level threshold based on Otsu algorithm and support
vector machine for the prediction task. In the work of Hammoudi
et al. [13], the authors proposed a deep learning strategy to
automatically detect if a chest X-ray image is healthy, pneumonia
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bacterial or viral), assuming that a patient infected by the Covid-
9, tested during an epidemic period, has a high probability
f being a true positive when the result of the classification is
virus. In the work of Feki et al. [14], the authors proposed
collaborative federated learning framework allowing multiple
edical institutions screening Covid-19 from Chest X-ray im-
ges using deep learning. Khattak et al. [15] proposed a deep
earning approach based on the multilayer-Spatial Convolutional
eural Network for automatic detection of Covid-19 using chest
-ray images and Computed Tomography (CT) scans. Similarly,
aygili [16] proposed an approach for computer-aided detection
f Covid-19 from CT and X-ray images using machine learning
ethods. In the work of Saiz et al. [17], the authors proposed a
ystem to detect Covid-19 in chest X-ray images using deep learn-
ng techniques. Sait et al. [18] proposed a deep-learning based
ultimodal framework for Covid-19 detection using breathing
ound spectrograms and chest X-ray images. Das et al. [19] pro-
osed an automated deep learning-based approach for detection
f Covid-19 in X-ray images by using the extreme version of
he Inception (Xception) model. In the work of Singh et al. [20],
he authors proposed a CNN architecture to classify Covid-19 pa-
ients using X-ray images. In addition, a multi-objective adaptive
ifferential evolution (MADE) strategy was used for the hyper-
arameters of the CNN architecture. Ucar et al. [21] proposed
deep SqueezeNet-based strategy with Bayes optimization for
ovid-19 screening in X-ray images. Wang et al. [22] proposed
deep convolutional neural network, called COVID-Net, design

ailored for the detection of Covid-19 cases from chest radiogra-
hy images. Afshar et al. [23] proposed a Capsule Network-based
ramework, referred to as the COVID-CAPS, for diagnosis of Covid-
9 from X-ray images. In the work of Chowdhury et al. [24], the
uthors proposed a strategy for automatic detection of Covid-
9 pneumonia from chest X-rays using pre-trained models. Khan
t al. [25] proposed a deep CNN model called CoroNet to au-
omatically detect Covid-19 infection from chest X-ray images.
imilarly, Sahinbas [26] proposed a deep approach for COVID-19
iagnosis, applying a deep CNN technique based on chest X-ray
mages of COVID-19 patients. Apostolopoulos et al. [27] proposed
study on the possible extraction of representative biomarkers of
ovid-19 from X-ray images using deep learning strategies. In the
ork of Zulkifley et al. [28], the authors proposed a lightweight
eep learning model for Covid-19 screening that is suitable for
he mobile platform.

Despite the satisfactory results obtained by these works, most
f them only partially address this recent and relevant problem
f global interest, limiting their practical utility for usage and
nterpretation for support in clinical decision scenarios such as
mergency triage for example.
Therefore, in order to provide a more complete methodology,

e propose 4 complementary fully automatic approaches for the
lassification of Covid-19, pneumonia and healthy chest X-ray im-
ges. The proposed approaches allow to make predictions using
omplete chest X-ray images of arbitrary sizes, which is very rel-
vant considering the great variability of X-ray devices currently
vailable in health centers. For this purpose, we considered 6 rep-
esentative deep network architectures, including DenseNet-121,
enseNet-161, ResNet-18, ResNet-34, VGG-16 and VGG-19. For
ach network architecture, we evaluate the separability among
ovid-19, pneumonia and healthy chest X-ray images. All the
roposed approaches are designed to distinguish Covid-19 not
nly from normal patients, but also to differentiate them from
atients with lung conditions other than Covid-19. To validate our
roposal, representative and comprehensive experiments were
erformed using chest X-ray images compiled from 3 different
ublic image datasets.
The manuscript is organized as follows: Section 2 describes

he materials and methods that were used in this research work.
3

Section 3 presents the results and validation of the proposed
approaches. Section 4 includes the discussion of the experimental
results. Finally, Section 5 presents the conclusions about the
proposed systems as well as possible future lines of work in this
enormous topic of interest.

2. Materials and methods

A schematic representation of the proposed paradigm of the
different approaches can be seen in Fig. 2. The proposed sys-
tems receive, as input, a chest X-ray radiography. During the
acquisition procedure, the patient is exposed to a small dose
of ionizing radiation to produce images of the interior of the
chest. The technician will usually be behind a protected wall or
in an adjacent room to activate the X-ray machine. The proposed
system then uses advanced artificial intelligence techniques to
classify chest X-ray images into 3 different clinical categories:
healthy, pneumonia or Covid-19. As a result, the system provides
useful clinical information for the initial screening process and for
subsequent clinical analyses.

2.1. Computational approaches for pathological X-ray image classi-
fication

Given the similarity between the pathological impact in the
lungs between Covid-19 and common types of pneumonia, mainly
during the initial stages of both lung diseases, we performed
an exhaustive analysis of differentiation considering different
pathological scenarios. In this line, we proposed 4 different and
independent computational approaches for the classification of
Covid-19, pneumonia and healthy chest X-ray radiographs. These
computational approaches allow us to make complementary pre-
dictions using complete chest X-ray images of arbitrary sizes,
which is very relevant considering the great variability of X-
ray devices currently available in health centers. Each of these
approaches is explained in more detail below:

2.1.1. 1st approach. Healthy vs Pneumonia, tested with Covid-19
Using as reference a consolidated public image dataset for the

identification of pneumonia subjects with a considerable amount
of image samples [29], we firstly used, as baseline, a trained
model for the differentiation of healthy and pneumonia chest X-
ray images taking advantage of this large amount of available
information. Subsequently, we tested the potential of this ap-
proach to classify chest X-ray radiographs of patients diagnosed
with Covid-19 and measure their similarity with both situations.
In this way, we can analyze the percentage of chest X-ray images
of patients with Covid-19 that may be classified as pneumonia,
giver their relation in the pathological pulmonary impact.

2.1.2. 2nd approach, Healthy vs Pneumonia/Covid-19
Given the pathological similarity between pneumonia and

Covid-19 subjects, subsequently we designed an screening pro-
cess that analyzes the degree of separability between healthy
and pathological chest X-ray radiographs, considering these both
pathological scenarios. In this sense, we include the chest X-ray
images of patients diagnosed with pneumonia or Covid-19 under
the same class in a training of the model to predict 2 different
categories: pathological and healthy cases.

2.1.3. 3rd approach, Healthy/Pneumonia vs Covid-19
Additionally, we adapted and trained a model to specifically

identify Covid-19 subjects, measuring the capability of differ-
entiation not only from healthy subjects, but also from those
pathological cases with a significant similarity, as patients suffer-
ing from pneumonia. With this in mind, our system was designed
to identify two different classes, including healthy and patients
with pneumonia in the same category.
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Fig. 2. Representative scheme of the proposed methodology.
2.1.4. 4th Approach, Healthy vs Pneumonia vs Covid-19
Finally, we designed another approach to simultaneously de-

termine the degree of separability between the 3 categories of
chest X-ray images considered in this work. To this end, we
trained a model with a set of chest X-ray radiographs of the
3 different classes: healthy subjects, patients diagnosed with
pneumonia, patients diagnosed with Covid-19.

2.2. Network architectures

The use of deep learning architectures has been rapidly in-
creasing in the field of medical imaging, including computer-
aided diagnosis system and medical image analysis for more
accurate screening, diagnosis, prognosis and treatment of many
relevant diseases [30,31]. In this context, the present study an-
alyzes the performance of 6 different deep network architec-
tures such as: 2 Dense Convolutional Network Architectures (a
DenseNet-121 and a DenseNet-161) [32], 2 Residual Network
Architectures (a ResNet-18 and a ResNet-34) [33] as well as
2 VGG network architectures (a VGG-16 and a VGG-19, both
with batch normalization) [34]. These architectures were chosen
for their simplicity and adequate results for many similar clas-
sification tasks in different lung diseases [35–37]. In addition,
these architectures have proven to be superior in both accuracy
and predictive efficiency compared to classical machine learning
techniques [38]. For each network architecture, we evaluate the
separability among Covid-19, pneumonia and healthy chest X-
ray images. All network architectures were initialized with the
weights of a model pre-trained on ImageNet [39] dataset. On one
hand, we benefit from the pre-trained model weights making
the learning process much more efficient, in other words, the
model converges fast given that his weights are already stabilized
initially. On the other hand, it significantly reduces the amount of
labeled data that is required for the model training. In addition,
we have adapted the classification layer of each deep network
architecture used to support the output according to the specific
requirements of each proposed approach, which is to catego-
rize the chest X-ray images into 2 or 3 different clinical classes
considering healthy, pneumonia and Covid-19.
4

2.3. Training

Regarding the training stage of the different approaches, con-
sidering the limited amount of Covid-19 subjects, we decided
that the employed chest X-ray radiographs dataset was randomly
divided into 3 smaller datasets, specifically with 60% of the cases
for training, 20% for validation and the remaining 20% for testing.
Additionally, the classification step was performed with 5 repeti-
tions, being calculated the mean cross-entropy loss [40] and the
mean accuracy to illustrate the general performance and stability
of the proposed approaches. All the architectures were trained
using Stochastic Gradient Descent (SGD) with a constant learning
rate of 0.01, a mini-batch size of 4 and a first-order momentum
of 0.9. In particular, SGD is a simple but highly efficient approach
for the discriminative learning of classifiers under convex loss
functions [41].

2.4. Data augmentation

Data augmentation is a widely used strategy that enables
practitioners to significantly increase the diversity of data avail-
able for training models, reducing the overfitting and making
the models more robust [42,43]. This is especially significant in
our case, given the limited amount of positive Covid-19 cases
that were used in the different approaches. For this purpose, we
applied different configurations of affine transformations only on
the training set to increase the training data and improve the
performance of the neural network architectures that was used
to classify chest X-rays images. In particular, we automatically
generate additional training samples through a combination of
scaling with horizontal flipping operations, considering the com-
mon variety of possible resolutions as well as the symmetry of
the human body.

2.5. Dataset

The training and evaluation of the deep convolutional models
were performed with chest X-ray radiographs that were taken
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Table 1
Mean precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy vs Pneumonia cases.
Architecture Class Precision Recall F1-score

DenseNet-121 Healthy 0.9156 ± 0.0643 0.9153 ± 0.0139 0.9142 ± 0.0298
Pneumonia 0.9684 ± 0.0050 0.9670 ± 0,0291 0.9675 ± 0,0134

DenseNet-161 Healthy 0.9456 ± 0.0193 0.9257 ± 0.0146 0.9353 ± 0.0057
Pneumonia 0.9720 ± 0.0059 0.9798 ± 0.0074 0.9759 ± 0.0024

ResNet-18 Healthy 0.9377 ± 0.0137 0.9271 ± 0.0208 0.9322 ± 0.0103
Pneumonia 0.9730 ± 0.0090 0.9774 ± 0.0050 0.9752 ± 0.0047

ResNet-34 Healthy 0.9401 ± 0.0208 0.9243 ± 0.0124 0.9319 ± 0.0078
Pneumonia 0.9718 ± 0.0040 0.9777 ± 0.0085 0.9747 ± 0.0030

VGG-16 Healthy 0.9479 ± 0.0141 0.9426 ± 0.0248 0.9449 ± 0.0070
Pneumonia 0.9789 ± 0.0101 0.9812 ± 0.0051 0.9800 ± 0.0032

VGG-19 Healthy 0.9396 ± 0.0162 0.9380 ± 0.0089 0.9387 ± 0.0117
Pneumonia 0.9761 ± 0.0029 0.9769 ± 0.0053 0.9765 ± 0.0036
V
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from 3 different chest X-ray public datasets of reference: the
Chest X-ray (Pneumonia) dataset [29], the (Covid-19) Image Data
Collection dataset [44] and the (Covid-19) SIRM dataset [45].

The Chest X-ray (Pneumonia) dataset of the Radiological Soci-
ty of North America (RSNA) [29] is composed by of 5863 chest
-ray radiographs. This public dataset was labeled into 2 main
ategories: healthy patients and patients with different types of
neumonia (viral and bacterial) presenting, therefore, a high level
f heterogeneity.
Currently, public chest X-ray datasets of patients diagnosed

ith Covid-19 are very limited. Despite this important restriction,
e have built a dataset composed of 207 radiographs, 155 were
aken from (Covid-19) Image Data Collection dataset [44] and 52
ere taken from the (Covid-19) SIRM dataset of the Italian Society
f Medical Radiology [45].

.6. Evaluation

In order to test its suitability, the designed paradigm of the
ifferent approaches was validated using different statistical met-
ics commonly used in the literature to measure the performance
f computational proposals in similar medical imaging tasks.
ccordingly, Precision, Recall, F1-score and Accuracy were calcu-
ated for the quantitative validation of the classification results.
n particular the first three metrics are calculated for each one of
he considered classes in the different experiments are they are
ore meaningful in that way.
Mathematically, these statistical metrics are formulated as

ndicated in Eqs. (1), (2), (3) and (4), respectively. These perfor-
ance measures use as reference the True Negatives (TN), False
egatives (FN), True Positives (TP) and False Positives (FP):

recision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 · TP

2 · TP + FP + FN
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

3. Experimental results

To evaluate the suitability of the different proposed approaches
in the pathological classification related to Covid-19 in chest X-
ray images, we conducted different complementary experiments,
taking as reference the available datasets. In particular, for each
experiment, we performed 5 independent repetitions, each time
 r

5

with a different random selection of the samples splits, specifi-
cally with 60% of the cases for training, 20% for validation and
the remaining 20% for testing. Additionally, the training stage
was stopped after 200 epochs given the lack of significant further
improvement in both accuracy and cross-entropy loss results.

3.1. 1st experiment: Healthy vs Pneumonia, tested with Covid-19

Given the availability of a public image dataset of reference
with a significant number of healthy and pneumonia chest X-
ray images [29], we trained a model to obtain a consolidated
approach to distinguish between healthy patients and different
pathological cases of pneumonia.

In this line, we designed an experiment with a total of 5856
X-ray images, being 1583 from healthy patients and 4273 from
patients with pneumonia. Fig. 3(a) and Fig. 3(b) show the per-
formance that was obtained using the deep learning architec-
tures after, as previously indicated, 5 independent repetitions in
the training and validation stages, respectively. Furthermore, in
Fig. 3(c) and (d) we can observe that the models converge rapidly
in the training and validation steps in terms of the loss cross-
entropy function, demonstrating in all the cases an adequate
behavior.

In Table 1, we can see the precision, recall and F1-score results
obtained at the test stage, providing a mean accuracy values:
a 0.9529 ± 0.0185 for the DenseNet-121, a 0.9648 ± 0.0033
for the DenseNet-161, a 0.9636 ± 0.0065 for the ResNet-18, a
0.9631 ± 0.0041 for the ResNet-34, a 0.9706 ± 0.0044 for the
GG-16 and a 0.9660 ± 0.0054 for the VGG-19. In general, all the
esults that were obtained show the robustness of the proposed
ystem in the classification of the different pathological cases
f pneumonia and healthy patients. In particular, the VGG-16
rchitecture obtained slightly higher values than those obtained
ith the other analyzed architectures.
In addition to measure the capability of the adapted architec-

ure to this pathological analysis, another relevant goal of this
xperimentation was to conduct a comprehensive analysis about
he potential similarity of the Covid-19 subjects with pneumonia
cenarios, that is, the percentage of chest X-ray images of pa-
ients with Covid-19 that are classified as pneumonia with the
reviously trained network.
Thus, we extended the experiments of this case using an

dditional blind test dataset. In particular, this dataset consisted
f the used 207 X-ray images of patients diagnosed with Covid-
9. For this experiment, we analyzed the behavior of the trained
odels that obtained the best validation values among the 5

andom repetitions for each deep learning architecture. As we
an see in Table 2, the proposed system achieves satisfactory

esults in terms of precision, recall and F1-score, considering
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Fig. 3. Results of the first experiment after 5 independent repetitions. (a) Mean ± standard deviation training accuracy. (b) Mean ± standard deviation validation
ccuracy. (c) Mean ± standard deviation training loss. (d) Mean ± standard deviation validation loss. A logarithmic scale has been set to correctly display the loss

values for a better understanding of the results.
0

Covid-19 cases correctly classified as pneumonia in opposition
to healthy cases. In this scenario, the system provided accuracy
values of 71.50%, 71.98%, 74.88%, 80.19%, 75.36% and 78.74% for
the DenseNet-121, DenseNet-161, ResNet-18, ResNet-34, VGG-
16 and VGG-19, respectively, demonstrating that the system is
capable of correctly screening X-ray images of Covid-19 patients
in the pathological pneumonia category.

3.2. 2nd experiment: Healthy vs Pneumonia/Covid-19

Under the results of the analysis of the first approach, we
designed another scenario with a screening context including
Covid-19 cases by separating the pathological pneumonia and
Covid-19 subjects with respect to healthy images

With this in mind, in this case, the designed experiment in-
cluded a total of 1242 X-ray images, being 828 from healthy
patients whereas 207+207 from Covid-19 and pneumonia pa-
tients, respectively. In this case, we randomly selected the 828
healthy images and the 207 pneumonia images from the total
amount of the used image dataset [29]. Having the limiting factor
of 207 Covid-19 images, we balanced the amount of the other
cases to obtain a proportion of 2

3 and 1
3 between the negative

nd positive classes. Fig. 4(a) and (b) show the performance
hat was obtained from the training and validation stages using
6

the proposed dataset through 5 independent repetitions. More-
over, as we can see in Fig. 4(c) and Fig. 4(d), the proposed
approach reached stability in the cross-entropy loss function after
the epoch 75 and after the epoch 50 for training and validation
stages, respectively.

Table 3 shows the performance measures obtained in the test
stage, in terms of precision, recall and F1-score for each class.
As we can see, satisfactory results were provided, reaching a
mean accuracy values of 0.9807 ± 0.0121 for the DenseNet-121,
a 0.9839 ± 0.0102 for the DenseNet-161, a 0.9694 ± 0.0119 for
the ResNet-18, a 0.9807 ± 0.0043 for the ResNet-34, a 0.9783 ±

.0078 for the VGG-16 and a 0.9694 ± 0.0119 for the VGG-
19. The results that were obtained can be considered statis-
tically equivalent for some architectures with values between
96.94% and 98.39%, demonstrating that this screening approach
is capable of successfully separating the pathological cases under
consideration from the healthy ones.

3.3. 3rd experiment: Healthy/Pneumonia vs Covid-19

The third scenario was designed to evaluate the performance
of the proposed approach to specifically distinguish between
cases of patients with Covid-19 from other similar cases such
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Fig. 4. Results of the second experiment after 5 independent repetitions. (a) Mean ± standard deviation training accuracy. (b) Mean ± standard deviation validation
accuracy. (c) Mean ± standard deviation training loss. (d) Mean ± standard deviation validation loss. A logarithmic scale has been set to correctly display the loss
values for a better understanding of the results.
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Table 2
Precision, recall and F1-score results obtained at the test stage for the classi-
fication of the chest X-ray images from Covid-19 patients between Healthy vs
Pneumonia cases.
Architecture Class Precision Recall F1-score

DenseNet-121 Healthy – – –
Pneumonia 1.0000 0.7150 0.8338

DenseNet-161 Healthy – – –
Pneumonia 1.0000 0.7198 0.8371

ResNet-18 Healthy – – –
Pneumonia 1.0000 0.7488 0.8564

ResNet-34 Healthy – – –
Pneumonia 1.0000 0.8019 0.8901

VGG-16 Healthy – – –
Pneumonia 1.0000 0.7536 0.8595

VGG-19 Healthy – – –
Pneumonia 1.0000 0.7874 0.8811

as pneumonia or also from healthy patients. Thus, we mea-
sure the potential separability between those potentially similar
pathological cases of Covid-19 from pneumonia.

To do so, we used a total of 621 X-ray images, being 207
rom Covid-19, 207 from patients with pneumonia and 207 from
ealthy patients. Once again, those subjects from pneumonia and
7

healthy patients were randomly selected to obtain a proportion
of 2

3 and 1
3 between negative and positive classes, respectively.

ig. 5(a) and Fig. 5(b) show the performance that was obtained
rom all the architectures after 5 independent repetitions in the
raining and validation stages, respectively. In particular, our
odels achieve high stability after 75 epochs and 50 epochs in

he training and validation stages, respectively. Complementary,
n Fig. 5(c) and (d) we can observe a similar behavior with the
ross-entropy loss function.
In Table 4 we present the quantitative performance of the pro-

osed system in the test dataset, in terms of precision, recall and
1-score. Our method shows an suitable performance for both
ategories, providing a mean accuracy value of 0.9584 ± 0.0285
for the DenseNet-121, a 0.9712 ± 0.0145 for the DenseNet-
161, a 0.9744 ± 0.0104 for the ResNet-18, a 0.9744 ± 0.0153
for the ResNet-34, a 0.9728 ± 0.0121 for the VGG-16 and a
0.9504 ± 0.0249 for the VGG-19, demonstrating the robust-
ness of the proposed system to distinguish between cases of
patients with Covid-19 from other cases such as pneumonia or
health. In this experiment, as we can see, no significant dif-
ferences were observed between the results obtained by the
DenseNet-161, ResNet-18, ResNet-34 and VGG-16 architectures.
This result is specially significant considering the separation of
similar pathological scenarios as pneumonia and Covid-19.
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Table 3
Mean precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy vs Pneumonia/Covid-19 cases.
Architecture Class Precision Recall F1-score

DenseNet-121 Healthy 0.9915 ± 0.0032 0.9794 ± 0.0207 0.9853 ± 0.0094
Pneumonia/Covid-19 0.9615 ± 0.0381 0.9833 ± 0.0062 0.9719 ± 0.0173

DenseNet-161 Healthy 0.9869 ± 0.0113 0.9891 ± 0.0050 0.9880 ± 0.0076
Pneumonia/Covid-19 0.9783 ± 0.0104 0.9734 ± 0.0235 0.9758 ± 0.0159

ResNet-18 Healthy 0.9806 ± 0.0120 0.9855 ± 0.0071 0.9830 ± 0.0082
Pneumonia/Covid-19 0.9706 ± 0.0141 0.9624 ± 0.0209 0.9663 ± 0.0130

ResNet-34 Healthy 0.9888 ± 0.0092 0.9821 ± 0.0116 0.9853 ± 0.0033
Pneumonia/Covid-19 0.9642 ± 0.0248 0.9798 ± 0.0161 0.9716 ± 0.0071

VGG-16 Healthy 0.9842 ± 0.0078 0.9831 ± 0.0045 0.9837 ± 0.0055
Pneumonia/Covid-19 0.9658 ± 0.0125 0.9688 ± 0.0171 0.9672 ± 0.0131

VGG-19 Healthy 0.9735 ± 0.0065 0.9806 ± 0.0131 0.9770 ± 0.0088
Pneumonia/Covid-19 0.9618 ± 0.0257 0.9477 ± 0.0152 0.9546 ± 0.0182
Fig. 5. Results of the third experiment after 5 independent repetitions. (a) Mean ± standard deviation training accuracy. (b) Mean ± standard deviation validation
ccuracy. (c) Mean ± standard deviation training loss. (d) Mean ± standard deviation validation loss. A logarithmic scale has been set to correctly display the loss
alues for a better understanding of the results.
.4. 4Th experiment: Healthy vs Pneumonia vs Covid-19

In this last scenario, considering the satisfactory results of
he other considered approaches, we also trained another model
o directly analyze the performance of the proposed system to
eparate the chest X-ray radiographs into 3 different categories:
ealthy, pneumonia and Covid-19. To do so, we designed a com-
lete experiment using a total of 621 X-ray radiographs, being
8

207 from Covid-19, 207 from patients with pneumonia and 207
from healthy patients. In this case, again, we randomly selected
the healthy and pneumonia images to balance the amount of
available images for the 3 considered classes. Fig. 6(a) and (b)
show the performance of the proposed system using the training
and validation sets after 5 independent repetitions, where we can
appreciate a good behavior of the deep learning architectures. In
the same line, the proposed system achieved its stability in the
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Table 4
Mean precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy/Pneumonia vs Covid-19 cases.
Architecture Class Precision Recall F1-score

DenseNet-121 Healthy/Pneumonia 0.9740 ± 0.0219 0.9620 ± 0.0444 0.9680 ± 0.0259
Covid-19 0.9380 ± 0.0665 0.9500 ± 0.0374 0.9420 ± 0.0356

DenseNet-161 Healthy/Pneumonia 0.9700 ± 0.0255 0.9880 ± 0.0110 0.9800 ± 0.0100
Covid-19 0.9780 ± 0.0148 0.9360 ± 0.0513 0.9560 ± 0.0251

ResNet-18 Healthy/Pneumonia 0.9740 ± 0.0089 0.9880 ± 0.0130 0.9820 ± 0.0084
Covid-19 0.9780 ± 0.0228 0.9500 ± 0.0071 0.9640 ± 0.0134

ResNet-34 Healthy/Pneumonia 0.9720 ± 0.0239 0.9900 ± 0.0000 0.9820 ± 0.0084
Covid-19 0.9760 ± 0.0055 0.9500 ± 0.0469 0.9620 ± 0.0277

VGG-16 Healthy/Pneumonia 0.9840 ± 0.0134 0.9760 ± 0.0230 0.9780 ± 0.0084
Covid-19 0.9520 ± 0.0455 0.9660 ± 0.0207 0.9580 ± 0.0205

VGG-19 Healthy/Pneumonia 0.9660 ± 0.0167 0.9680 ± 0.0277 0.9660 ± 0.0167
Covid-19 0.9180 ± 0.0705 0.9140 ± 0.0351 0.9180 ± 0.0497
Fig. 6. Results of the fourth experiment after 5 independent repetitions. (a) Mean ± standard deviation training accuracy. (b) Mean ± standard deviation validation
ccuracy. (c) Mean ± standard deviation training loss. (d) Mean ± standard deviation validation loss. A logarithmic scale has been set to correctly display the loss

values for a better understanding of the results.
loss cross-entropy function after the epoch 100 for training and
after the epoch 50 for validation, as we can see in Fig. 6(c) and
(d).

In Table 5, we can see the precision, recall and F1-score
results obtained at the test stage, providing a mean accuracy
9

of 0.9632 ± 0.0200 for the DenseNet-121, a 0.9536 ± 0.0143
for the DenseNet-161, a 0.9744 ± 0.0104 for the ResNet-18,
a 0.9664 ± 0.0118 for the ResNet-34, a 0.9504 ± 0.0173 for
the VGG-16 and a 0.9536 ± 0.0207 for the VGG-19. As we can
observe, in this experiment, the best result was obtained using
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Table 5
Mean precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy vs Pneumonia vs Covid-19 cases.
Architecture Class Precision Recall F1-score

DenseNet-121
Healthy 0.9669 ± 0.0397 0.9637 ± 0.0175 0.9647 ± 0.0177
Pneumonia 0.9579 ± 0.0160 0.9545 ± 0.0646 0.9550 ± 0.0294
Covid-19 0.9634 ± 0.0304 0.9773 ± 0.0224 0.9700 ± 0.0196

DenseNet-161
Healthy 0.9535 ± 0.0236 0.9553 ± 0.0341 0.9539 ± 0.0152
Pneumonia 0.9705 ± 0.0084 0.9374 ± 0.0256 0.9534 ± 0.0098
Covid-19 0.9407 ± 0.0453 0.9701 ± 0.0213 0.9546 ± 0.0234

ResNet-18
Healthy 0.9562 ± 0.0183 0.9759 ± 0.0292 0.9656 ± 0.0149
Pneumonia 0.9807 ± 0.0212 0.9763 ± 0.0232 0.9783 ± 0.0169
Covid-19 0.9903 ± 0.0134 0.9683 ± 0.0128 0.9791 ± 0.0065

ResNet-34
Healthy 0.9387 ± 0.0465 0.9765 ± 0.0347 0.9563 ± 0.0247
Pneumonia 0.9645 ± 0.0174 0.9734 ± 0.0220 0.9686 ± 0.0100
Covid-19 0.9884 ± 0.0160 0.9520 ± 0.0176 0.9698 ± 0.0144

VGG-16
Healthy 0.9507 ± 0.0425 0.9412 ± 0.0156 0.9454 ± 0.0203
Pneumonia 0.9374 ± 0.0420 0.9480 ± 0.0397 0.9417 ± 0.0237
Covid-19 0.9662 ± 0.0373 0.9663 ± 0.0237 0.9659 ± 0.0248

VGG-19
Healthy 0.9674 ± 0.0206 0.9450 ± 0.0299 0.9558 ± 0.0179
Pneumonia 0.9480 ± 0.0371 0.9441 ± 0.0350 0.9457 ± 0.0298
Covid-19 0.9436 ± 0.0483 0.9751 ± 0.0257 0.9581 ± 0.0202
the ResNet-18 architecture. However, all the trained models are
able to predict with adequate accuracy values, demonstrating the
robustness of the proposed system in the classification of the 3
categories of chest X-ray images considered in this work.

4. Discussion

The current gold standard for detection of Covid-19 disease
s the reverse transcription-polymerase chain reaction (RT-PCR),
hich is usually performed on a sample of nasopharyngeal and
ropharyngeal secretions. However, RT-PCR is believed to be
ighly specific, but its sensitivity can range from 60%–70% [46]
o 95%–97% [47], making false negatives a very critical problem
n the diagnosis of Covid-19, especially in the early stages of this
ighly infectious disease. On the other hand, chest radiography is
onsidered the first-line imaging study in suspected or confirmed
ovid-19 patients, being recommended by the American College
f Radiology (ACR) [48]. However, one of the main limitations of
hest radiography, like RT-PCR, is the high false-negative rate [4].
n this regard, the chest radiography may be normal in mild cases
r in the early stage of the Covid-19 infection, but patients with
oderate or severe symptoms are unlikely to have a normal chest

adiography. Findings are most extensive 10–12 days after the
nset of symptoms [49].
In this work, we analyzed different and complementary fully

utomatic approaches for the classification of healthy, pneumo-
ia and Covid-19 chest X-ray radiographs. All the experimental
esults demonstrate that the proposed system is capable of suc-
essfully distinguishing healthy patients from different patholog-
cal cases of pneumonia and Covid-19, although in some cases,
he trained models present a more stable behavior during the
raining and validation stages. To accurately explain this behavior,
t would be interesting to perform a more extensive analysis of
hese architectures using a larger and more complete dataset.

Regarding the obtained results, the pathological differentiation
s understandable given the abnormality of the pathological sce-
arios with respect to normal patients and also the pathological
mpact in the lungs of both pneumonia and Covid-19 diseases.
ut also, it is significant the accurate capability of differentiation
lso of Covid-19 patients from other with pneumonia, which were
orrectly separated in the proposed third and fourth approaches,
lso corroborated by the experiments with the first approach.
n addition, the proposed system allows to make accurate pre-

ictions using chest X-ray images of arbitrary sizes, which is

10
very relevant considering the great variability of X-ray devices
currently available in the healthcare centers.

We compared the proposed approaches with the most repre-
sentative state-of-the-art methods on this topic. These methods
were previously introduced and described in Section 1. In this
regard, Table 6 presents the results obtained from state-of-the-
art methods and our proposal. Although many methods were
tested with different image datasets and under different condi-
tions (image size, X-ray devices, pixel-level resolution, different
distribution and balance of data, etc.), our method offers a com-
petitive performance, outperforming in most cases the rest of
the approaches. Another important aspect to take into account
is that most of the works presented by the state of the art only
consider a single scenario (2 or 3 categories), whereas in our
proposal we analyze 4 different scenarios in a comprehensive
way. Particularly, in our proposal, several experiments were con-
ducted considering 6 representative state-of-the-art deep CNN
architectures (DenseNet-121, DenseNet-161, ResNet-18, ResNet-
34, VGG-16 and VGG-19) to analyze the degree of separability
of COVID-19 samples, representing a comprehensive analysis of
this relevant problem. Experimental validation shows accurate
and robust results, obtaining high values (above 97% of global
accuracy) for all computational approaches considered.

Despite the attained satisfactory performance, the proposed
system obtain an acceptably small number of misclassified cases.
In particular, some misclassification is caused by the poor con-
trast of the X-ray images used in this work. Other times, in some
cases, there is a great similarity between Covid-19 and pneumo-
nia, mainly during the initial stages of both diseases. In Fig. 7,
we can see representative examples illustrating the significant
variability of the possible scenarios that are represented in this
research work.

As no exhaustive classification method for X-ray Covid-19 im-
ages has been published to date, we cannot make any comparison
with other state-of-the-art approaches. Instead, we use different
public datasets for the evaluation of our proposed system, validat-
ing their accuracy in comparison with manual annotations from
different clinical experts.

5. Conclusions

Coronaviruses are a large family of viruses that can cause
disease in both animals and humans. In particular, the new coro-

navirus SARS-CoV-2, also know Covid-19, was firstly detected in



J. de Moura, J. Novo and M. Ortega Applied Soft Computing 115 (2022) 108190

a

Table 6
Comparison of performance between state of the art and proposed approaches.
State-of-the-art Methods Computational approaches Accuracy (%)

Das et al. [19] Xception Pneumonia vs Covid-19 vs Other 97.40

Singh et al. [20] MADE-based CNN non-Covid-19 vs Covid-19 94.48

Ucar et al. [21] Deep Bayes-SqueezeNet Healthy vs Pneumonia vs Covid-19 98.26

Wang et al. [22] Covid-net Healthy vs Pneumonia vs Covid-19 93.30

Afshar et al. [23] Covid-caps non-Covid-19 vs Covid-19 95.70

Chowdhury et al. [24] MobileNetv2, SqueezeNet,
ResNet-18, ResNet-101,

Normal vs Covid-19 99.70

DenseNet-201, CheXNet,
Inception-v3 and VGG-19

Normal vs Covid-19 vs Pneumonia
Viral

97.90

Khan et al. [25] CoroNet Covid-19 vs Pneumonia Bacterial
vs Pneumonia Viral vs Normal

89.60

Covid-19 vs Pneumonia vs Normal 95.00

Sahinbas et al. [26] ResNet, DenseNet, InceptionV3,
VGG-16 and VGG-19

non-Covid-19 vs Covid-19 80.00

Apostolopoulos et al. [27] MobileNetv2 non-Covid-19 vs Covid-19 99.18

Zulkifley et al. [28] LightCovidNet Healthy vs Pneumonia vs Covid-19 96.97

Our proposal DenseNet-121, DenseNet-161,
ResNet-18,

Healthy vs Pneumonia, tested
with Covid-19

97.06

ResNet-34, VGG-16 and VGG-19

Our proposal DenseNet-121, DenseNet-161,
ResNet-18,

Healthy vs Pneumonia/Covid-19 98.39

ResNet-34, VGG-16 and VGG-19

Our proposal DenseNet-121, DenseNet-161,
ResNet-18,

Healthy/Pneumonia vs Covid-19 97.44

ResNet-34, VGG-16 and VGG-19

Our proposal DenseNet-121, DenseNet-161,
ResNet-18,

Healthy vs Pneumonia vs Covid-19 97.44

ResNet-34, VGG-16 and VGG-19
Fig. 7. Representative examples of lung regions. 1st row, lung healthy regions. 2nd row, lung regions affected by the pneumonia disease. 3rd row, lung regions
ffected by the Covid-19 disease.
11
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ecember 2019 in Wuhan City, Hubei Province, China. Given its
rastic spread, the WHO declared a global pandemic as the Covid-
9 rapidly spreads across the world. In this context, chest X-ray
mages are widely used for early screening by clinical experts,
llowing for more appropriate use of other medical resources
uring initial screening.
In this work, we proposed complementary fully automatic

pproaches for the classification of Covid-19, pneumonia and
ealthy chest X-ray radiographs. For this purpose, several experi-
ents were performed considering 6 deep network architectures

epresentative of the state of the art. In this way, we exploit the
otential of deep learning architectures and their capabilities to
escribe complex, hierarchically unstructured data at higher lev-
ls of abstraction in the analysis of chest X-rays for the Covid-19
creening task. We evaluated the robustness and accuracy of the
ifferent classification approaches, obtaining satisfactory results
or all the experiments that were proposed using different public
mage datasets of reference. Despite the complex and challenging
cenario, the proposed approaches has proven to be robust and
eliable, facilitating a more complete and precise analysis of the
athological lung regions and, consequently, the production of
ore adjusted treatments of this highly infectious disease.
As future work, we plan to expand the proposed method-

logy with the incorporation of other relevant lung diseases,
uch as chronic bronchitis, emphysema, or lung cancer. In ad-
ition, we plan to perform a comparative analysis of the pro-
osed methodology with other techniques that use sophisticated
mage processing algorithms in combination with classical ma-
hine learning techniques. Finally, further analysis with larger
nd maybe more comprehensive chest X-ray datasets should be
one in order to reinforce the conclusions of this work.
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