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Background. CpG island methylator phenotype (CIMP), featured with concurrent and widespread hypermethylation of a cluster
of CpGs, has been reported to play an important role in carcinogenesis. Limited studies have investigated the role of CIMP in
pancreatic cancer (PC). *e aim of this study was to explore the CIMP in PC patients and its impact on the immune response of
the tumor microenvironment and prognosis.Methods. DNA methylation, somatic mutation, mRNA, and corresponding clinical
data of PC patients were downloaded from TCGA (184 patients) and the ICGC (264 patients). Univariate and multivariate
regression analyses were used to identify prognosis-related CpGs. Consensus clustering analysis was used for identification of the
CIMP in PC patients. ESTIMATE and CIBORORT were used for estimation of the tumor microenvironment (TME) in PC
patients. Results. In the TCGA PC cohort, 22,450 differential CpGs, including 12,937 hypermethylated CpGs and 9,513
hypomethylated CpGs, were identified between 184 PC patients and 10 normal controls. Univariate and multivariate Cox analysis
further screened out 72 OS-related CpGs, and three distinct CIMP groups with distinctly different prognosis and molecular
features, including the CIMP-L subgroup, CIMP-M subgroup, and CIMP-H subgroup, were identified based on unsupervised
consensus clustering analysis of these CpGs. Patients of the CIMP-H subgroup had poorer OS and RFS, while patients of the
CIMP-L subgroup had better OS and RFS. *e CIMP status was also an independent prognostic factor for OS and PFS. In
molecular features, significantly higher somatic mutation burden and tumor mutational burden were found in patients of the
CIMP-H subgroup compared to those of the CIMP-L subgroup. Besides, lower stromal score, immune score, and higher cancer
stemness indices and tumor purity were also found in patients of the CIMP-H subgroup compared to those of the CIMP-L
subgroup. Correspondingly, significant total T cells, total B cells, CD8 T cells, memory CD4 T cells, and higher regulatory T cells
were found in patients of the CIMP-H subgroup. Moreover, significantly lower expression of immune checkpoint genes, such as
PD-1, CTLA4, CD86, VTCN1, and LAG-3, was also found in patients of the CIMP-H subgroup compared to those of the CIMP-L
subgroup. In the end, we validated the CIMP status in PC patients of the ICGC dataset. Conclusion. *e CIMP may modulate the
immune response of the tumor microenvironment and influence the prognosis of pancreatic cancer patients, which may help to
make an assertion to provide specific and efficient treatment options for patients of different subtypes.

1. Introduction

Pancreatic cancer (PC) is the fifteenth most common cancer
and the seventh leading cause of cancer-related death
worldwide, which is reported to have poor prognosis and

high mortality rate [1]. Lots of effort was put into under-
standing the underlying mechanisms of PC and new
treatments were investigated, but marginal improvement of
survival was observed in PC patients [2]. Neureiter et al.
reported the median survival of PC patients to be 6 months
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and the 5-year survival rate to be as low as 6%, attributing the
cause to the lack of reliable early diagnostic markers and the
nature of high aggressiveness and drug resistance of the
disease itself [3]. Of note, only about 10% of PC patients
were reported with family histories [4], indicating the eti-
ology of PC to be more likely sporadic than genetic and
suggesting epigenetic alterations might take part in the
development and progression of PC.

DNA methylation is one of the main epigenetic modi-
fications and plays an important role in the development and
progression of various sorts of malignant tumors [5]. During
the process of oncogenesis, aberrant DNA methylation of
CpG islands occurs in the promoter regions of genes, such as
hypermethylation surrounding the promoters of tumor
suppressor genes (TSGs) and hypomethylation of promoters
of oncogenes, resulting in transcriptional silence of TSGs
and overexpression of oncogenes [6]. Aberrant DNA
methylation of nonpromoter genes also contributes to the
formation of intratumoral heterogeneity [7]. To date, many
gene mutations with deregulated DNA methylation have
been identified in PC patients. Treatments targeting these
genes were reported to significantly improve the overall
survival in PC mice models [8, 9].

*e CpG island methylator phenotype (CIMP), first
discovered and validated in colorectal cancer, is featured
with concurrent and widespread hypermethylation of a
cluster of CpGs in distinct cancer subtypes. CIMP affects
the intergenic regions of the whole genome and leads to
chromosomal instability, which is thought to play an
important role in carcinogenesis [10]. To date, the CIMP
phenotype has been identified in many kinds of tumors,
including PC [11]. Subtypes with different CIMP patterns
showed distinct epidemiological, clinical-pathological, and
genomic characteristics [12, 13]. However, the limitation of
earlier studies on the CIMP of PC patients was obvious for
the limited patient samples or CpG sites used in these
studies [5, 14]. Few of these studies validated their findings
in independent cohorts and further explored the associa-
tion of CIMP status with the tumor microenvironment
(TME) in PC patients [11]. In the present study, we
identified and validated three distinct methylation sub-
groups of PC patients, termed the CIMP-L subgroup,
CIMP-M subgroup, and CIMP-H subgroup, with data
downloaded from *e Cancer Genome Atlas (TCGA) and
the International Cancer Genome Consortium (ICGC),
and further investigated their impact on the immune re-
sponse of the tumor microenvironment and prognosis. As
identification of clinically relevant cancer subtypes based
on DNA methylation patterns is an important computa-
tional problem in medicine, CIMP might help to make an
assertion to provide specific and efficient treatment options
for patients of different subtypes.

2. Methods and Materials

2.1. Ethics Statement. All the data analyzed in the present
study were obtained from TCGA and the ICGC. Informed
consent had already been obtained from the patients before
the present study.

2.2.DataAcquisition fromTCGA. Level-3 DNAmethylation
data of 184 PC patients and 10 normal controls were
downloaded from TCGA (https://cancergenome.nih.gov/,
2020-04-20).

*e somatic mutation data of 177 PC patients measured
by whole-exome sequencing were downloaded from TCGA,
and maftools package was used to analyze these data [15].
Patients harboring missense mutations, nonsense muta-
tions, multiple hits, splice-site mutations, frameshift inser-
tions, frameshift deletions, in-frame insertions, or in-frame
deletions were considered as positive for mutation. More-
over, tumor mutational burden (TMB), regarded as a
promising biomarker for immunotherapy responses, was
also calculated with the method described in the previous
study [16].

mRNA expression data of 178 PC patients were also
obtained from TCGA. *e average gene expression was
adopted in case of duplicates, and the gene expression data
were normalized with the scale method [17]. Besides, more
than 20% of the samples with missing gene expression were
removed.

Meanwhile, corresponding clinical-pathological data of
184 PC patients, including gender, age, T stage (T), N stage
(N), M stage (M), TNM stage, overall survival (OS) status
and time, and progression-free survival (PFS) status and
time, were also downloaded.

2.3. Methylation Data Processing and Identification of the
CIMP inPCPatients. β value for those CpG probes that were
either mapped against chromosomes X and Y were removed
so as to avoid gender biases, and more than 20% of samples
with missing β value were also removed. Besides, those
probes mapped to SNP within 10 bp of interrogated CpG
sites were also removed [18]. *e Wilcoxon test was per-
formed to identify differential CpGs between PC patients
and normal controls. With P< 0.05, a CpG would be
considered differentially methylated between primary tumor
and normal samples.

To evaluate the CIMP phenomenon in PC patients, first,
OS-related CpGs were selected by univariate Cox regression
analysis on the basis of the differential CpGs between 184 PC
patients and 10 normal samples. *en, multivariate Cox
regression analysis was further performed to identify these
most OS-related CpGs. After that, consensus clustering
analysis for the unsupervised class of 184 PC patients based
on the expression similarity of OS-related CpGs was per-
formed with the ConsensusClusterPlus packages. Besides,
principal component analysis (PCA) was also performed to
examine whether the clusters of PC patients were suitable
with the “limma” package.

2.4. Estimation of Stromal and Immune Cells in Malignant
Tumor Tissues Using Expression Data (ESTIMATE).
ESTIMATE was a tool used for predicting tumor purity, the
presence of infiltrating stromal/immune cells in tumor
tissues with mRNA expression data. Based on single sample
Gene Set Enrichment Analysis (ssGSEA), ESTIMATE could
generate three scores: stromal score (that captured the
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presence of stroma in tumor tissue), immune score (that
represented the infiltration of immune cells in tumor tissue),
and estimate score (that negatively correlated with tumor
purity) [19].

2.5. Cancer Stemness Indices of PC Patients. Previously,
Malta et al. extracted transcriptomic and epigenetic feature
sets derived from nontransformed pluripotent stem cells and
their differentiated progeny using an innovative one-class
logistic regressionmachine learning algorithm (OCLR). As a
result, they identified four cancer stemness indices, in-
cluding mRNAsi, epigenetically regulated mRNAsi (EREG-
mRNAsi), mDNAsi, and EREG-mDNAsi, for assessing the
degree of oncogenic dedifferentiation [20]. Based on their
study, we could attain the four stemness indices of each PC
patient in the TCGA database.

2.6. CIBORORT. 22 kinds of tumor-infiltrating immune
cells of each PC patient were calculated with CIBERSORT
(https://cibersort.stanford.edu), an online tool designed for
estimating the abundances of tumor-infiltrating immune
cells with transcriptomic data [21].

2.7. Gene Set Enrichment Analysis (GSEA). To explore the
underlying mechanism exploited by the CIMP status to
influence the prognosis of PC patients, GSEA analysis
(Version: 4.2; http://software.broadinstitute.org/gsea/index.
jsp) was performed. As a result, the difference of KEGG
pathways between PC patients with distinct CIMP status was
identified [22].

2.8. Validation of CIMP Status in PC Patients of the ICGC
Dataset. To independently test the CIMP status in PC pa-
tients, DNA methylation data of 264 PC patients, somatic
mutation data of 264 PC patients, mRNA expression data of
175 PC patients, and clinical-pathological parameters of 264
PC patients were downloaded from the ICGC (https://dcc.
icgc.org/, 2020-04-20). Processing of methylation data, so-
matic mutation data, and mRNA expression data were
similar to those in TCGA.

2.9. Data Analysis Flow Chart. To make our study better
understood, a workflow of the study is depicted and shown
in Figure 1.

2.10. Statistical Analysis. GraphPad Prism 6 (GraphPad
Software) and R software (version 3.5.1) were used for
statistical analysis and plotting graphs. *e association be-
tween CIMP status and clinical-pathological features was
analyzed with the chi-square test. One-way ANOVA analysis
was carried out to compare the difference of TMB, stromal
score, immune score, estimate score, tumor-infiltrating
immune cells, expression of chemokines, and immune
checkpoint genes among PC patients with different CIMP
statuses. Univariate and multivariate Cox regression ana-
lyses were performed to analyze the prognostic value of

CIMP status. Kaplan–Meier analysis with a log-rank test was
performed to analyze the difference of OS or PFS among
patients with different CIMP statuses. P< 0.05 was con-
sidered as statistically significant.

3. Results

3.1. Identification of the CIMP in PC Patients. To identify the
CIMP in PC patients, we first screened out the differential
CpGs between PC samples and normal samples with the
DNA methylation data of 184 PC patients and 10 normal
controls downloaded from TCGA. In total, 22,450 differ-
ential CpGs were identified (P< 0.05). Among these CpGs,
12,937 were hypermethylated CpGs (log2FC> 0), while
9,513 were hypomethylated CpGs (log2FC< 0) (Supple-
mentary Material 1). *e most significant 25 hyper-
methylated CpGs and the 25 most hypomethylated CpGs are
shown in Supplementary Figure 1 between PC patients and
normal controls. Next, 3102 CpGs were found to be related
with OS in PC patients by univariate Cox analysis (P< 0.05,
Supplementary Material 2). Among these CpGs, 2858 CpGs
were found to be associated with worse OS of PC patients
(HR> 1), while 244 were found to be associated with better
OS of PC patients (HR< 1). *e most significant 25 worse
OS-related CpGs and the 25 better OS-related CpGs in PC
patients are shown in Supplementary Figure 2. *en, in
order to identify the most OS-related CpGs, only 1073 out of
3102 OS-related CpGs with P< 0.01 were used for multi-
variate Cox analysis, and 72 CpGs were found to be the most
OS-related CpGs (Supplementary Material 3). Based on the
unsupervised consensus clustering analysis, 184 PC patients
were clustered into three distinct groups (Figures 2(a)–2(c)),
namely, the CIMP-L subgroup (n� 46), CIMP-M subgroup
(n� 82), and CIMP-H subgroup (n� 56). *e methylation
level of the CIMP-L subgroup was low, while patients of the
CIMP-H subgroup had widespread hypermethylated CpGs.

Next, the associations between CIMP status and clinical
characteristics were analyzed. As shown in Table 1, there
were more patients with advanced Tstage and TNM stage in
the CIMP-M subgroup and CIMP-H subgroup compared to
those in the CIMP-L subgroup (all P< 0.05, Table 1). Be-
sides, Kaplan–Meier analysis showed that there were sig-
nificant differences in OS and PFS among PC patients from
different CIMP statuses. *e patients of the CIMP-H sub-
group had poorer OS and RFS, while the patients of the
CIMP-L subgroup had better OS and RFS (all P< 0.05,
Figures 2(d) and 2(e)). Moreover, univariate Cox analysis
indicated that CIMP status was significantly related with OS
and PFS, and multivariate Cox analysis also suggested that
CIMP status was an independent prognostic factor for OS
and PFS of PC patients after adjusting for gender, age, T
state, N stage, M stage, and TNM stage (all P< 0.05, Table 2).

3.2. Mutational Landscapes of PC Patients with Different
CIMP Statuses. A number of mutated genes with deregu-
lated DNA methylation had been identified to play im-
portant roles in the development and progression of PC [8].
*e association of CIMP status with gene mutations was

Journal of Oncology 3

https://cibersort.stanford.edu
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://dcc.icgc.org/
https://dcc.icgc.org/


cg14356919
Age
Sex
Pathologic stage

Age

Sex

Pathologic stage
Stage I
Stage II
Stage III
Stage IV

Female
Male

<=65
>65

0.8

CIMP

T stage

N stage

M stage

CIMP–H
CIMP–L
CIMP–M

T1
T2
T3
T4
TX

N0
N1
NX

M0
M1
MX

0.6

0.4

0.2

M stage
N stage
T stage
CIMP

cg04926881
cg25799109
cg06788267
cg05398036
cg07541559
cg27471192
cg13454226
cg15754548
cg00498024
cg14290616
cg16210842
cg10536999
cg06197966
cg13891978
cg19326876
cg26249873
cg00854817
cg00596508
cg15889913
cg22131234
cg11936688
cg16001495
cg14712186
cg23217126
cg14353137
cg03111498
cg06629130
cg16945312
cg22392666
cg08305436
cg01381846
cg14473102
cg26115633
cg06304097

cg21012296
cg07268058
cg03609960
cg10824063
cg22605415
cg17713613
cg13371839
cg07104209
cg24454144
cg04475027
cg02300154
cg20311863
cg10175795
cg25191628
cg03574723
cg17098147
cg01532168
cg18026588
cg11073773
cg20611911
cg11308643
cg24127719
cg21135135
cg20266316
cg26013553
cg04904331
cg10811045
cg10143811
cg13944175
cg10659886
cg05678749
cg15060599
cg19125370
cg07160746
cg18961681
cg07317062
cg04415176

(a)

consensus matrix k=3

1
2
3

(b)

group

clusterCIMP-H

clusterCIMP-L

clusterCIMP-M

-10

-4

0PC
A

2

4

8

0

PCA1

10 20

(c)

0

0

50

100

CIMP-H vs CIMP-M vs CIMP-L: p=0.019

20 40

CIMP-H

CIMP-L

CIMP-M

overall survival time(months)

Pe
rc

en
t o

ve
ra

ll 
su

rv
iv

al

60 80 100

(d)

CIMP-H vs CIMP-M vs CIMP-L: p=0.005

CIMP-H

CIMP-L

CIMP-M

progression free surviva time(months)

Pe
rc

en
t p

ro
gr

es
sio

n
fre

e s
ur

vi
va

l

0

0

50

100

20 40 60 80 100

(e)

Figure 2: Identification of the CIMP in 184 PC patients. Heat map of expression of 72 overall survival-related CpGs in three methylation
clusters (a); three methylation clusters (CIMP-L subgroup (n� 46), CIMP-M subgroup (n� 82), and CIMP-H subgroup (n� 56)) were
generated via k-means consensus clustering (b); principal component analysis of 184 PC patients clustered as 3 subgroups (c); and
Kaplan–Meier analysis of OS and PFS time among patients with different CIMP statuses (d-e).

DNA methylation profile from the TCGA-PC cohort
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Figure 1: *e workflow chart of the present study.

4 Journal of Oncology



analyzed with somatic mutation data of 177 PC patients
downloaded from TCGA. As shown in Figure 3, there were
significantly higher somatic mutation burdens among pa-
tients with different CIMP statuses. All the PC patients of the
CIMP-H subgroup (n� 54) had genemutation, and 79 out of
81 PC patients of the CIMP-M subgroup had gene mutation,
while only 31 out of 41 PC patients of the CIMP-L subgroup
had gene mutation. Significantly higher somatic mutation
burdens in KRAS, TP53, SMAD4, CDKN2A, and TTN were
observed in patients of the CIMP-H group (Figures 3(a)–
3(c)), which had been shown to be major driver genes in PC
[23]. Similarly, a significant difference of tumor mutational
burden (TMB), serving as a biomarker of immunotherapy
responses, was also found among patients with different
CIMP statuses. Higher TMB was found in patients of the
CIMP-H subgroup, while lower TMB was observed in pa-
tients with CIMP-L status (Figure 3(d)).

3.3. Landscape of TME in PC Patients with Distinct CIMP
Status. Consisting of cancer cells, stromal cells, and ex-
tracellular components, the TME has been demonstrated to
play indispensable roles in tumorigenesis, progression,
metastasis, recurrence, and drug resistance of PC [24]. *e
difference of TME in patients with distinct CIMP status was
also analyzed. As shown in Figure 4, significantly lower
stromal score, immune score, and estimate score were found
in patients of the CIMP-H subgroup, while significantly
higher stromal score, immune score, and estimate score were
found in patients of the CIMP-L subgroup (Figures 4(a)–
4(c)). Similarly, a significantly higher tumor purity score was
also observed in patients of the CIMP-H subgroup
(Figure 4(d)).

Cancer stem cells (CSCs) were cancer cells that possessed
the ability to give rise to all tumor cell types, and CSCs were
considered to be responsible for tumor growth, metastasis
and recurrence, and resistance to chemotherapy and radi-
ation therapy. *e association of CIMP status with cancer
stemness indices was explored. As expected, significantly
higher tumor stemness indices, including mRNAsi score,
mDNAsi score, and EREG-mDNAsi score, were found in
patients of the CIMP-H subgroup compared to patients of
the CIMP-L subgroup (Figures 5(a), 5(c), and 5(d)).

Next, we analyzed the difference of tumor-infiltrating
immune cells among patients with distinct CIMP statuses.
As shown in Figure 6, significantly lower total T cells, total
B cells, naive B cells, CD8 T cells, CD4 T cells, resting
memory CD4 T cells, and activated memory CD4 T cells

were found in patients of the CIMP-H subgroup compared
to patients of the CIMP-L subgroup (Figures 6(a)–6(f)).
Besides, significantly higher M0 macrophages were found in
patients of the CIMP-H subgroup, and significantly higher
regulatory T cells were found in patients of the CIMP-M
subgroup compared to patients of the CIMP-L subgroup
(Figures 6(g)–6(h)). It has been reported that different kinds
of immune cell subsets are recruited into the TME via in-
teractions between chemokines and their chemokine re-
ceptors [25]. We further analyzed the difference of
expression of 58 kinds of chemokines among patients with
different CIMP statuses. As summarized in Table 3, in line
with the results of tumor-infiltrating immune cells, 31 kinds
of chemokines, such as CCL2, XCL2, CCR2, CCL5, and
CCR5, were found to be overexpressed in patients of the
CIMP-L subgroup, while only 7 kinds of chemokines, such
as CXCL14 and CXCL16, were found to be increased in
patients of the CIMP-M and CIMP-H subgroup. Taken
together, these results suggest that CIMP modulates the
immune response of the tumor microenvironment of PC
patients.

3.4. Expression of Immune Checkpoint Genes in PC Patients
with Different CIMP Statuses. *e advent of immunother-
apy, especially checkpoint inhibitor-based immunotherapy,
has revolutionized cancer treatments, especially for patients
with advanced tumors.*ese treatments functioned through
the blockade of immunosuppressive checkpoints, so the
expression of these immune checkpoint genes was necessary
for checkpoint inhibitor immunotherapy [26]. *e differ-
ence of expression of 10 immune checkpoint genes (in-
cluding PD-1, PD-L1, CTLA4, PD-L2, CD86, CD80, CD276,
VTCN1, Tim-3, and LAG-3) in PC patients with different
CIMP status was further analyzed. As shown in Figure 7, the
expression of PD-1, CTLA4, CD86, VTCN1, and LAG-3 of
PC patients of the CIMP-H subgroup was significantly lower
than that of patients of the CIMP-L subgroup (Figures 7(a),
7(c), 7(e), 7(h)–7(j)). *ese results may indicate that
checkpoint inhibitor immunotherapy is less effective in
patients of the CIMP-H subgroup as they showed less ex-
pression of immune checkpoint genes.

3.5. Potential Mechanism by Which CIMP Status Influences
the Prognosis of PC Patients. GSEA analysis was performed
to explore the underlying biological mechanism by which
CIMP influenced the prognosis of PC patients. As shown in
Figure 8, KEGG pathways, such as the “p53 signaling

Table 1: Demographic and clinical characteristics of PAAD patients with different CIMP statuses from TCGA.

Variables CIMP-L CIMP-M CIMP-H P value
Number of patients 46 82 56
Gender (male/female) 21/25 48/34 32/24 0.343
Age (years, ≤65/>65) 27/19 43/39 26/29 0.466
T stage (T1/T2/T3/T4/NA) 5/10/30/0/1 0/8/70/3/1 2/5/48/1/0 0.008∗
N stage (N0/N1/NX+NA) 14/29/3 17/64/1 19/36/1 0.13
M stage (M0/M1/MX+NA) 22/1/23 34/2/46 28/2/26 0.829
TNM stage (I/II/III/IV/NA) 12/32/0/1/1 4/71/4/2/1 5/48/1/2/0 0.014∗
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pathway,” “notch signaling pathway,” “calcium signaling
pathway,” “DNA replication,” and “base excision repair,”
were found to be significantly enriched in patients of the
CIMP-H subgroup compared to patients of the CIMP-L
patients (Figure 8(a)). Similarly, the “p53 signaling path-
way,” “base excision repair,” and “proteasome” were found
to be significantly enriched in patients of the CIMP-M
subgroup compared to patients of the CIMP-L subgroup
(Figure 8(b)).*ese results may suggest that the CIMP status
may influence the prognosis of PC patients by regulating the
aforementioned biological process.

3.6. Validation of CIMP Status in PC Patients of the ICGC
Dataset. To independently test the CIMP status in PC pa-
tients, DNA methylation data of 264 PC patients, somatic
mutation data of 264 PC patients, mRNA expression of 175

PC patients, and clinical-pathological parameters of 264 PC
patients were downloaded from the ICGC (https://dcc.icgc.
org/). Unsupervised consensus clustering analysis was also
performed for 264 PC patients based on the expression of
these 72 OS-related CpGs. Similarly, these 264 PC patients
were also clustered into three distinct groups (Figure 9(a)).
*ere were 58 PC patients in the CIMP-L subgroup, 171 PC
patients in the CIMP-M subgroup, and 35 PC patients in the
CIMP-H subgroup. Besides, significant associations between
CIMP status and clinical-pathological characteristics, in-
cluding age, T state, N stage, M stage, and TNM stage, were
also observed (Table 4). Moreover, Kaplan–Meier analysis
showed that there were significant differences in OS among
PC patients with different CIMP statuses. Patients of the
CIMP-H subgroup had poorer OS, while the patients of the
CIMP-L subgroup had better OS (P � 0.003, Figure 9(a)).
Univariate and multivariate Cox analyses also suggested that
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the CIMP status was significantly related with OS and was
also an independent prognostic factor for OS of PC patients
after adjusting for gender, age, T stage, N stage, M stage, and
TNM stage (P � 0.012, Table 5).

*e association of CIMP status with gene mutations was
further analyzed. In line with the results in TCGA, all the 35
PC patients of the CIMP-H subgroup (100%) had gene
mutation and 168 out of 171 PC patients of the CIMP-M
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Table 3: Expression of 59 kinds of chemokine among PC patients with different CIMP statuses.

Gene
CIMP-L (N� 46) CIMP-M (N� 76) CIMP-H (N� 56)

P value
Mean Sd Mean Sd Mean Sd

CCL1 0.019 0.034 0.021 0.037 0.020 0.045 0.941
CXCR6 2.238 1.739 1.344 1.406 0.669 0.483 <0.001∗∗∗
CCL2 35.294 33.754 19.973 17.815 11.123 9.482 <0.001∗∗∗
CCL19 89.272 118.604 52.134 78.701 16.316 27.712 <0.001∗∗∗
XCL2 1.092 0.904 0.696 0.675 0.446 0.439 <0.001∗∗∗
CX3CL1 11.107 6.235 14.391 10.037 15.302 17.829 0.207
CCR10 0.616 1.214 0.360 0.212 0.298 0.183 0.033∗
CCL25 0.224 0.518 2.914 14.716 0.225 1.103 0.188
CXCR4 86.490 125.355 57.819 71.923 31.478 18.115 0.003∗∗
CCL28 7.608 8.420 7.050 6.102 6.124 4.299 0.483
CXCL2 13.775 24.638 9.186 7.417 7.984 24.495 0.284
CCR2 2.095 1.697 1.318 1.272 0.603 0.563 <0.001∗∗∗
CCL5 32.342 26.573 23.419 21.406 13.148 10.918 <0.001∗∗∗
CCR9 0.185 0.186 0.248 0.333 0.248 0.225 0.402
XCR1 0.636 0.602 0.341 0.432 0.148 0.224 <0.001∗∗∗
CCL8 1.405 1.377 1.051 1.784 0.751 1.491 0.123
CXCL11 2.560 3.744 3.279 6.261 2.675 4.345 0.697
CXCL1 18.895 26.105 16.609 12.493 15.503 28.623 0.742
CXCL17 26.545 34.664 62.098 85.526 64.257 86.579 0.022∗
CXCR5 0.229 0.490 0.120 0.292 0.028 0.051 0.007∗∗
CCL16 0.141 0.109 0.084 0.065 0.038 0.041 <0.001∗∗∗
CCR5 3.709 2.898 2.485 2.357 1.251 0.993 <0.001∗∗∗
CXCL8 18.044 18.167 25.857 27.721 16.058 16.663 0.031∗
CXCL14 62.254 72.601 97.927 80.887 132.875 168.641 0.009∗∗
CCR8 0.536 0.583 0.446 0.435 0.307 0.366 0.040∗
CCL15 1.298 1.478 1.786 2.572 1.556 2.122 0.491
CCL21 108.128 193.077 72.864 195.196 24.227 43.603 0.034∗
CCL23 1.964 1.921 1.821 3.553 0.828 1.388 0.049∗
CCR7 8.640 15.561 4.779 12.140 1.401 1.492 0.006∗∗
CCL3 3.676 3.275 2.509 1.904 1.737 1.501 <0.001∗∗∗
CCL7 0.290 0.598 0.386 0.491 0.529 0.928 0.203
CXCL10 10.127 15.566 11.441 24.734 9.581 13.448 0.854
CCL24 3.600 3.986 23.088 85.332 20.610 94.433 0.372
CX3CR1 1.521 1.261 1.015 0.941 0.576 0.733 <0.001∗∗∗
CCL4 4.747 3.162 2.978 2.468 1.757 1.277 <0.001∗∗∗
CCL22 4.591 5.368 3.777 3.472 2.011 1.733 0.002∗∗
CXCL13 21.519 45.303 14.589 37.830 4.694 11.043 0.046∗
CXCR2 0.684 0.870 0.648 0.801 0.217 0.310 0.002∗∗
CXCL6 11.406 16.524 10.446 13.190 5.032 4.956 0.015∗
CCL14 1.066 0.998 0.577 0.508 0.162 0.145 <0.001∗∗∗
CCL26 3.888 9.430 3.928 16.757 1.956 3.101 0.606
CCR4 2.337 2.796 1.304 1.546 0.520 0.547 <0.001∗∗∗
CCL17 10.386 19.405 8.800 11.544 3.906 5.125 0.025∗
CXCR1 0.662 0.839 0.646 0.819 0.288 0.357 0.008∗∗
CCR1 5.030 3.568 3.859 3.112 2.588 1.995 <0.001∗∗∗
CXCL5 38.527 64.259 81.274 124.396 36.474 49.043 0.008∗∗
CXCL9 18.918 42.376 14.706 50.569 9.541 19.449 0.511
XCL1 0.452 0.345 0.409 0.472 0.377 0.674 0.766
CXCR3 2.298 2.170 2.379 2.067 1.941 1.557 0.424
CCL18 21.990 42.000 29.714 29.962 15.548 23.234 0.041∗
CCL13 4.006 5.276 4.984 4.601 4.791 7.459 0.655
CCR6 0.141 0.194 0.098 0.117 0.049 0.057 0.002∗∗
CCR3 0.086 0.101 0.110 0.159 0.147 0.449 0.522
CXCL16 38.590 19.162 48.610 16.384 49.334 14.780 0.002∗∗
CCL20 8.951 12.180 25.344 41.318 19.521 29.584 0.027∗
CCL11 3.908 3.675 3.800 3.876 1.647 1.317 <0.001∗∗∗
CCL27 0.000 0.003 0.000 0.000 0.001 0.005 0.300
CXCL3 4.555 9.367 5.720 6.384 5.472 13.359 0.811
CXCL12 25.525 16.445 12.292 10.336 4.826 3.670 <0.001∗∗∗
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subgroup (98%) had gene mutation, while only 35 out of 58
PC patients of the CIMP-L subgroup (58.66%) had gene
mutation. Obviously, higher somatic mutation burdens in
KRAS, TP53, CDKN2A, and TTN were found in patients of
the CIMP-H group compared to patients of the CIMP-L
group (Figure 9(b)). Besides, higher TMB was also found in
patients of the CIMP-H subgroup, while lower TMB was
observed in patients with CIMP-L status (Figure 9(b)).

*e landscape of TME among PC patients with distinct
CIMP status was also explored. As expected, significantly
lower stromal score, immune score, and estimate score were
found in patients of the CIMP-L subgroup. Meanwhile,
significantly lower total Tcells, total B cells, CD8 Tcells, and
memory CD4 T cells were found in patients of the CIMP-H
subgroup, but significantly higher follicular helper T cells
were found in patients of the CIMP-H subgroup
(Figure 9(c)).

Finally, the association of CIMP status with immune
checkpoint genes was also analyzed. Only expression of 4
immune checkpoint genes, including PD-1, PD-L1, CD86,
and CD276, were available. Similarly, lower expression of
PD-1, PD-L1, and CD86 were found in patients of the

CIMP-H subgroup, but the difference was not statistically
significant (Figure 9(d)).

4. Discussion

Identification of clinically relevant cancer subtypes based on
the DNAmethylation pattern is an important computational
problem inmedicine, whichmay help to provide specific and
effective treatment options for patients with different sub-
types. Previously, DNA methylation pattern analysis of PC
patients has been performed but was limited to low sample
size and a small number of CpG sites [5, 11, 14]. Sato et al.
analyzed the genome-scale DNAmethylation patterns in PC
patients, but only 8 genes of methylation-specific sites were
used [14]. *ompson et al. explored the association of DNA
methylation patterns with the survival of PC patients, but the
number of samples used for analysis was small, in which only
11 PC patients, 2 normal controls, and 3 chronic pancreatitis
patients were included [2]. Recently, Nitish et al. identified
three CIMP subtypes of PC patients with distinct clinical
characteristics and gene mutation landscapes by clustering
of differentially methylated sites using the genome-scale
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Figure 7: Expression of 10 immune checkpoint genes in PC patients with different CIMP statuses. Expression of PD-1 (a), PD-L1 (b),
CTLA4 (c), PD-L2 (d), CD86 (e), CD80 (f), CD276 (g), VTCN1 (h), Tim-3 (i), and LAG-3 (j) in PC patients with distinct CIMP status.
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methylome data of PC patients from TCGA; however, they
did not further explore the relationship among CIMP status,
prognosis of PC patients, and TME.*ey also did not validate
the three CIMP subtypes in independent PC cohorts [11]. In
the present study, we identified and validated three distinct
CIMP subgroups (termed CIMP-L, CIMP-M, and CIMP-H
subgroup) in 448 PC patients with the data downloaded from
TCGA and the ICGC. In agreement with previous studies, we
observed that CIMP status was significantly associated with
clinical characteristics, OS, and RFS in PC patients. *ere
were more patients with advanced T stage and TNM stage in
the CIMP-M subgroup and the CIMP-H subgroup. Patients
of the CIMP-H subgroup had the worst OS and RFS.
Moreover, CIMP status was also an independent prognostic
factor for OS and DFS in PC patients.

Accumulation of somatic mutations in oncogenes and
TSGs is common in the development and progression of
cancer [27]. Based on the mutation analysis, significantly
higher somatic mutation burdens in KRAS, TP53, SMAD4,
and CDKN2A were observed in patients of the CIMP-H
subgroup, which have been shown to be major driver genes
in PC [23]. Encoding a small GTPase involved in cellular
proliferation, motility, and cytoskeletal remodeling, KRAS
was the most frequently mutated oncogene in PC.More than
90% of PC patients showed somatic mutations in KRAS [28].
CDKN2A encoded an essential cell-cycle regulator and was
reported to be the most frequently mutated TSG in PC.
Similarly, more than 90% of PC patients exhibited function
defects of CDKN2A because of gene mutation [28]. Besides,
studies have shown that somatic KRAS and CDKN2A

mutations were early events of PC development as they were
the earlier alteration genes in most low-grade pancreatic
intraepithelial neoplasia [29]. TP53 played a vital role in the
cellular stress response. Somatic mutations in TP53 were
also observed frequently in a wide range of tumor types,
including PC. SMAD4 was found to mainly mediate sig-
naling downstream of the TGFβ receptor and was inacti-
vated in about 50% of PC patients. Alterations in TP53 and
SMAD4 were late events in PC, as they often occurred in
pancreatic patients with histologic grade 3 and high inva-
siveness [29]. Moreover, CIMP may also act as a tumor
promoter in PC carcinogenesis by influencing mutation of
major driver genes, and PC patients of different CIMP
subtypes originated from precursor cells might have a
distinct epigenetic background of the cell of origin.

KEGG pathways, such as the “p53 signaling pathway”
and “base excision repair,” were all found to be significantly
enriched in patients of the CIMP-H subgroup and CIMP-M
subgroup. As a well-known tumor suppressor, p53 is also
one of the most common mutant genes in PC. On one hand,
it could block the cell cycle and maintain the genomic
stability; increasing number of evidence have proved that
mutation in p53 leads to the loss of tumor inhibition
function of p53 and, thus, helps the tumor cells of PC to
acquire the carcinogenic activity and promote the growth of
tumors [30]. On the other hand, p53 could also regulate the
immune microenvironment of PC. Textor et al. have also
found that p53 could promote the antitumor activity of
natural killer cells by transcriptional regulation of the ex-
pression of ULl6-binding protein 1 and ULl6-binding
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Figure 8: Potential mechanism by which CIMP status influences the prognosis of PC patients. Significant KEGG pathways enriched in PC
patients of the CIMP-H subgroup (a); significant KEGG pathways enriched in PC patients of the CIMP-M subgroup (b).
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protein 2 [31]; Gasparini et al. found that p53 could increase
the number of T cells by enhancing the ability of dendritic
cells [32]. p53 could enhance the innate immune response by
promoting the expression of toll-like receptors on the
surface in tumor-associated macrophages and neutrophils
[33]. Besides, Hayashi et al. have also proved that p53 could
regulate TME by facilitating the secretion of vascular en-
dothelial growth factors and activating fibroblasts to pro-
mote angiogenesis [34]. *us, mutation of p53 no doubt
plays an important role in the development andmetastasis of

PC.*e base excision repair pathway has been recognized as
a prognostic factor, therapeutic target, and therapeutic re-
sponse predictor in a variety of cancers, including PC [35].
For example, Jiang et al. have observed that silence of the
base excision repair pathway protein APE1 inhibits the
proliferation/colony-forming ability and increases apoptosis
of PC cells (Panc1 and MiaPaCa2) by increasing DNA
damage [36]. Fishel et al. have also showed that inhibition of
APE1 could reduce tumor growth in PC xenograft mouse
models by reducing proliferation and migration of PC cells

St
ro

m
al

 sc
or

e

-1000

0

1000

2000

-2000
CIMP-L CIMP-M CIMP-H

∗

Im
m

un
e s

co
re

500

1000

1500

2500

2000

0
CIMP-L CIMP-M CIMP-H

∗

∗∗

Es
tim

at
e s

co
re

0

1000

2000

4000

3000

-1000
CIMP-L CIMP-M CIMP-H

∗

To
ta

l T
 ce

lls
 fr

ac
tio

n

0.5

1.0

1.5

0.0
CIMP-L CIMP-M CIMP-H

∗

∗

T 
ce

lls
 C

D
8 

fr
ac

tio
n

0.10

0.15

0.20

0.25

-0.05

0.00

0.05

CIMP-L CIMP-M CIMP-H

∗∗

∗∗

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
 fr

ac
tio

n

0.2

0.4

0.8

0.6

0.0
CIMP-L CIMP-M CIMP-H

∗

∗

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

 fr
ac

tio
n

0.00

0.02

0.04

0.06

-0.02
CIMP-L CIMP-M CIMP-H

∗∗∗

∗∗

(c)

m
RN

A
 ex

pr
es

sio
n 

of
 P

D
-1

2

4

8

0
CIMP-L CIMP-M CIMP-H

NS

m
RN

A
 ex

pr
es

sio
n 

of
 P

D
-L

2

2

3

1

0
CIMP-L CIMP-M CIMP-H

NS

m
RN

A
 ex

pr
es

sio
n 

of
 C

D
86

4

6

8

10

0

2

CIMP-L CIMP-M CIMP-H

NS

m
RN

A
 ex

pr
es

sio
n 

of
 C

D
27

6

6

7

8

4

5

CIMP-L CIMP-M CIMP-H

NS

(d)

Figure 9: Validation of CIMP status in 264 PC patients of the ICGC dataset. Validation of three CIMP subgroups in PC patients of the ICGC
dataset and the association of CIMP status with clinical-pathologic parameters and prognosis (a); mutational landscapes of three CIMP
subgroups and expression of TMB among PC patients with different CIMP statuses (b); expression of stromal score, immune score, estimate
score, and tumor-infiltrating immune cells among PC patients with distinct CIMP status (c); and expression of 4 immune checkpoint genes
in PC patients with different CIMP statuses (d).

Table 4: Demographic and clinical characteristics of PAAD patients with different CIMP statuses from the ICGC.

Variables CIMP-L CIMP-M CIMP-H P value
Number of patients 58 171 35
Gender (male/female/NA) 35/23/0 95/75/1 20/15 0.904
Age (years, ≤65/>65) 28/30/0 77/93/1 11/20/4 0.009∗∗
T stage (T1/T2/T3/T4/NA) 5/3/46/02/2 1/817/145/2/6 0/3/20/1/11 <0.001∗∗∗
N stage (N0/N1/NX+NA) 12/44/2 46/119/6 7/16/12 <0.001∗∗∗∗
M stage (M0/M1/MX+NA) 14/2/42 24/6/141 1/4/30 0.016∗
TNM stage (I/II/III/IV/NA) 6/48/1/2/1 8/150/2/6/5 1/20/0/4/10 <0.001∗∗∗
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and cancer-associated endothelial cells and decreasing the
transcription factor activity of NFκB, AP-1, andHIF-1α [37].
Moreover, Cardoso et al. have showed that the DNA binding
and transcriptional activity of STAT3 is regulated by APE1
and dual targeting of APE1 and STAT3 could synergistically
inhibit the survival andmigration of PC cells, which suggests
that the synergistic effects may have been due to enhance-
ment of STAT3 inhibition by inhibition of APE1 [38]. Taken
together, these results may show that the CIMP status may
influence the prognosis of PC patients by regulation of the
“p53 signaling pathway” and “base excision repair.”

Consisting of cancer cells, stromal cells (mainly com-
posed of fibroblasts and immune cells), and extracellular
components, the TME has been found to promote tumor
progression, metastasis niche formation, and therapeutic
resistance in PC [24]. In the present study, we also found that
CIMP status was significantly associated with TME. On one
hand, significantly higher tumor purity and cancer stemness
indices were found in patients of the CIMP-H subgroup.
Research has proven that loss of differentiated phenotype
and acquisition of progenitor and stem cell-like features are
the main hallmarks of cancer progression. It was speculated
that cancer cells might arise from a cell population with self-
renewal ability, which was thought to be CSCs. Pancreatic
cancer stem cells (PCSCs) have been first identified in 2007
and were reported to take part in the resistance to standard
chemotherapy and radiation treatment as they could express
multidrug resistant membrane transporters, aberrantly ac-
tivate proliferation signaling pathways, and increase the
capability of repairing DNA [39]. On the other hand, lower
stromal score and immune score were found in PC patients
of the CIMP-H subgroup. Consistently, lower proportions of
total T cells, total B cells, naive B cells, CD8 T cells, CD4
T cells, memory CD4 T cells, and activated memory CD4
Tcells were also found in patients of the CIMP-H subgroup,
which indicated that patients of the CIMP-H subgroup had a
distinct immune phenotype, characterized by less immune
cell infiltration, lower cytotoxic potential, and immune
activation. Moreover, many kinds of chemokines, such as
CCL2, XCL2, CCR2, CCL5, and CCR5, were also found to be
decreased in patients of the CIMP-H subgroup, which may
in part account for the lower infiltration of immune cells as
many different kinds of immune cell were mainly recruited
into the TME via interactions between chemokines and their
chemokine receptors [25]. Taken together, the higher tumor

purity and cancer stemness indices and lower infiltration of
immune cells in patients of the CIMP-H subgroup may
contribute to their worse OS and DFS.

*e advent of immunotherapy, especially checkpoint
inhibitor-based immunotherapy, has revolutionized cancer
treatments, especially for advanced cancer patients [26].
Currently, monoclonal antibodies targeted against PD-1 and
its ligands have been successfully applied in clinical practice
and have been approved for several cancers (such as mel-
anoma, non-small-cell lung carcinoma, renal cancer, and
bladder cancer) [40]. Besides, research has showed that a
combination of anti-PD-1/PD-L1 antibody and CTLA-4
inhibitor can improve treatment effects of patients with
advanced melanoma, which was approved by the FDA in
treating BRAF V600 E wild-type patients with unresectable
or metastatic melanoma [41, 42]. For example, a recent
phase-II clinical trial proved that the combination of ipili-
mumab (a CTLA-4 inhibitor) and nivolumab (a PD-1 in-
hibitor) significantly improved treatment efficacy in
advanced melanoma patients compared with monotherapy
with ipilimumab [43]. In our study, a significant association
of CIMP status with the expression of immune checkpoint
genes was found. Lower expression of PD-1, CTLA4, CD86,
VTCN1, and LAG-3 was found in PC patients of the CIMP-
H subgroup. Considering the expression of immune
checkpoint genes was necessary for checkpoint inhibitor
immunotherapy. Effective immunotherapy of immune
checkpoint inhibitors depends on the generation of neo-
antigen-specific T cells and their infiltration into the TME.
Immunotherapies were less likely to be efficacious in patients
with the CIMP-H phenotype as lower expression of immune
checkpoint genes and T cell infiltration was found.

As a changeable and possibly heritable genetic alteration,
epigenetic regulation may prove to be a promising clue for
the treatment of various kinds of diseases, including cancers
[44]. In vitro studies have shown that 5-Aza-CdR, a DNA
methyltransferase 1 (DNMT1) inhibitor, could induce cell
death and apoptosis of pancreatic cancer cells by reactivation
of RASSF1A and upregulation of Bax genes [45]. Han et al.
also observed the synergistic effects of the combination of 5-
Aza-CdR and suberoylanilide hydroxamic acid on the an-
ticancer property of PC [46]. More encouragingly, phase I/II
clinical trials of DNMT1 inhibitors (azacitidine, decitabine,
and guadecitabine) in PC patients are currently underway,
the inhibitors which exhibited potential treatment outcomes

Table 5: Univariate and multivariate analyses of overall survival in PAAD patients of the ICGC cohort.

Variables
Univariate analysis Multivariate analysis

Hazard ratio 95% CI P value Hazard ratio 95% CI P value
Gender (male vs. female) 1.268 0.944–1.702 0.114
Age (>65 vs. ≤65) 0.562 0.39–0.81 0.002∗ 0.295 0.102–0.857 0.025∗
T stage (T3 +T4 vs. T1 +T2) 0.779 0.545–1.112 0.169
N stage (N1+Nx vs. N0) 0.796 0.61–1.038 0.092
M stage (M1+Mx vs. M0) 0.985 0.744–1.305 0.981
TNM stage (stage III + IV vs. stage I + II) 0.917 0.642–1.310 0.633
CIMP status
CIMP-M vs. CIMP-L 1.016 0.717–1.439 0.929
CIMP-H vs. CIMP-L 2.01 1.274–3.193 0.003∗ 1.849 1.146–2.984 0.012∗
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[47]. *ere is a promising future in drug design for epi-
genetic targets, while CIMPmay help tomake an assertion to
provide specific and efficient treatment options for patients
with different CIMP statuses.

However, there were some limitations to be addressed in
our study. First, our analysis was performed on the basis of
single-omics (DNA methylation). Patients with the same
CIMP status might have heterogeneity due to the different
characteristics in terms of other omics data. Second, our
analysis was performed on the basis of a retrospective co-
hort. Prospective studies with larger sample sizes should be
performed to validate our findings. Finally, the biological
functions and molecular mechanisms of CIMP status that
influence the prognosis of PC patients should be further
validated in in vitro experiments.

In conclusion, we identified and validated three distinct
CIMP subgroups in PC patients. *e CIMP may modulate
the immune response of the tumor microenvironment and
influence the prognosis of pancreatic cancer patients, which
may help to make an assertion to provide specific and ef-
ficient treatment options for patients of different subtypes.
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