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Abstract This paper presents an unsupervised cluste-
ring random-forest-based metric for affinity estimation
in large and high-dimensional data. The criterion used
for node splitting during forest construction can handle
rank-deficiency when measuring cluster compactness.
The binary forest-based metric is extended to contin-
uous metrics by exploiting both the common traversal
path and the smallest shared parent node.

The proposed forest-based metric efficiently estimates
affinity by passing down data pairs in the forest using a
limited number of decision trees. A pseudo-leaf-splitting
(PLS) algorithm is introduced to account for spatial
relationships, which regularizes affinity measures and
overcomes inconsistent leaf assign-ments. The random-
forest-based metric with PLS facilitates the establish-
ment of consistent and point-wise correspondences. The
proposed method has been applied to automatic phrase
recognition using color and depth videos and point-wise
correspondence.  Extensive experiments demonstrate
the effectiveness of the proposed method in affinity
estimation in a comparison with the state-of-the-art.

Keywords affinity estimation; forest-based metric;

unsupervised clustering forest; pseudo-
leaf-splitting (PLS)

1 Introduction

Affinity estimation is an essential step in various
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computer vision and image processing tasks. Affinity
of motion trajectories, for example, is utilized in
motion segmentation [1, 2] and action recognition
[3]. Automatic phrase recognition employs trajectory
affinity to define motion patterns in color and
depth videos [4]. Point-to-point affinity and shape
correspondence are essential for attribute transfer
and data reuse [5-9], as well as shape comparisons
in morphological studies [10, 11]. It is, however,
time consuming to estimate pairwise affinities
for large-scale datasets, where the complexity
grows quadratically with the size of the dataset.
Some distance metrics, such as the earth mover’s
distance, have higher computational costs for
higher-dimensional data. This paper presents an
unsupervised random-forest-based metric for efficient
affinity estimation, and demonstrates its efficacy
on automatic phrase recognition and point-wise
correspondence of a shape corpus.

Random forests have been popular in computer
vision for decades, and are well-known for their
scalability and real-time evaluation as well as pro-
viding good generalization to unseen data [12-18]. A
clustering random forest works in an unsupervised
fashion [19-25] to estimate the underlying data
distribution and affinity without prior labels.
Alzubaidi et al. [26] utilized a density forest [20]
with a Gaussian distribution assumption for tree
nodes, where clustering compactness was measured
by the covariance matrix. However, the zero-valued
determinant in the case of rank-deficiency causes
the criterion to become invalid. The combinatorial
node splitting criterion which integrates trace-based
distribution measurement and scatter index [4] can
handle rank-deficiency for optimal node splitting.

Recent research addressed forest-based metrics for
affinity estimation. The cascaded clustering forest
(CGF) was proposed to refine voxel-wise affinity
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by iteratively updating geodesic coordinates [27]
using a set of clustering models. The mixed metric
random forest (MMRF) utilized self-learning of data
distributions for matching consistencies between
images [28], taking advantage of the weak labeling
and classification criterion to optimize node splitting.
The oblique clustering forest (OCF) [29] extended
the splitting criterion from traditional orthogonal
hyperplanes to oblique hyperplanes, reducing the tree
depth and model complexity. The spatially consistent
(SC) clustering forest employed a data-dependent
learning guarantee for unsupervised clustering of
randomized trees [30]. The above clustering forests
introduce additional computation, such as cascaded
clustering models [27], fine-tuning with penalized
weighting of the classification entropy [28], dominant
principal component and regression [29], and data-
dependent learning guarantee for tree pruning [30],
to improve data clustering and affinity estimation. In
contrast, our work here does not introduce additional
computational costs to construct the clustering forest.
Instead, we extend the binary forest-based metric to
a continuous one for affinity estimation. As training
an unsupervised clustering forest is typically more
time-consuming than a supervised classification forest
due to entropy estimation for the high-dimensional
data, the decremental covariance matrix evaluation
technique is introduced to avoid assessment of
covariance matrices from scratch and reduce the
learning complexity.

Affinities are measured efficiently by hierarchical
clustering forests, in contrast to the learning-based
feature fusion for the affinity graph using iterative
optimization of convex problems [31]. Two points
are intuitively assumed to be similar if they are
placed in the same leaf. The generalized forest-
based metric is derived from the average affinities
of individual trees; it has been used to measure data
similarity [20, 24]. A continuous affinity measure
has been proposed based on the common traversal
path from the root to leaf nodes as well as the node
cardinality on the path [25]. To relieve the weight
computation on the traversal path, we present a forest-
based metric as a linear combination of normalized
common-traversal-path-based and smallest-shared-
parent-based metrics. The proposed metric takes
into account both the unbalanced data distribution
and partial similarity. Given the pairwise affinities of
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a dataset, it is straightforward to compute the low-
dimensional embedding. Ganapathi-Subramanian
et al. [32] constructed a joint latent embedding
function combining diffusion embedding and a linear
mapping for descriptor transport in a shape corpus,
where the nonlinear embedding function relied on the
predefined feature descriptors. The paper addresses
the forest-based metric and affinity estimation. The
embedding is conducted by the multi-dimensional
scaling (MDS) algorithm [33]; it is computed based
on affinity estimation without explicit representation
learning.

This work introduces a pseudo-leaf-splitting (PLS)
algorithm to handle inconsistent leaf assignments,
since the random forest built upon independent data
points cannot accommodate global data structures.
The random-forest-based metric with PLS regularizes
The proposed PLS
technique differs from existing methods [9, 34—36]

point-wise correspondences.

in that it bridges the gap between separate point-
wise correspondence and consistency refinements.
Deep learning-based methods have been used for
shape correspondence [5, 37-39], learning from
prior ground truth correspondences or metric space
alignment. 3DN [39] and 3D-coded [38] were
unsupervised end-to-end networks to infer global
displacement fields between a shape and a template,
utilizing chamfer and earth mover’s distance-based
FMNet [37] optimized a feature
extraction network via a low-dimensional spectral
map. ADD3 used anisotropic diffusion-based spectral
feature descriptors [5]. FMNet [37] and ADD3
[5] learn in a supervised manner, requiring prior

loss functions.

ground truth correspondence. Unlike deep neural
network-based descriptor learning, this work exploits
unsupervised forest-based metric learning for point-
wise correspondence.

This paper presents a combined forest-based metric
and a PLS regularization scheme to improve the
forest-based metric for affinity estimation, as shown
in Fig. 1. The main contributions of this work are:
(i) a continuous forest-based metric exploiting both
the common traversal path and the cardinality of
the smallest shared parent node, enabling efficient
and effective affinity estimation in large and high-
dimensional data, (ii) a PLS scheme to regularize the
forest-based metric to account for global spatial and
structural relationships, overcoming inconsistent leaf
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Fig. 1 Our proposed unsupervised random forest-based metric for affinity estimation. The forest-based continuous metric is defined using
both the length of the common traversal path and the cardinality of the smallest shared parent node. A pseudo-leaf-splitting algorithm is
proposed to account for spatial relationships, regularising affinity measures and inconsistent leaf assignments. Decremental covariance matrix

evaluation is used to reduce learning complexity.

assignments, and (iii) experimental demonstrations
and comparisons with the state-of-the-art indicating
successful affinity estimation for facial trajectories and
3D points, enabling efficient and automatic phrase
recognition and consistent correspondences for a 3D
shape corpus.

2 Unsupervised random forest

Given an unlabeled dataset T' = {t;|i = 1,..., N},
comprising a set of trees trained independently,
the unsupervised density forest estimates the
underlying data distribution using a Gaussian
distribution assumption [20]. The combinatorial
node splitting criterion integrates a trace-based

distribution measurement and a scatter index [4].

The objective function I of the j-th node with data

T} is defined as follows.
My j [l — por oo
I=— “ln (tr (o(TF)) ) + N\
gl;r mr; ( ( ’ )) izt (T, i)
| (1)
where tr(-) is the matrix trace, T} denotes the data
assigned to the i-th child node from parent node

j, o denotes the covariance matrix of the Gaussian

distribution, m;: denotes the size of the left or the
J

right child nodes, and my, the parent node size.

(T ‘7,%) tillso- 1 and p, are the
centroids of the left and right child nodes respectively.

= MaXer: llt —

The constant A is set to 50 empirically.

The covariance matrices need to be repeatedly
evaluated when given randomly selected parameters;
it is time-consuming to evaluate the covariance matrix
o from scratch for the optimal splitting parameters

when building the forest. This work introduces a
decremental covariance matrix evaluation technique
(see Appendix A). The complexity of covariance
matrix evaluation is reduced from O(mp?) to O(p) b

the decremental technique, where m is the cardinality
of the node, and p denotes the data dimensionality.
The trace evaluation complexity is reduced to O(kp)

given k randomly selected parameters.

3 Forest-based affinity estimation

3.1 Binary forest-based metric

The forest leaves L define a partition of the training
data. When feeding an instance t to a tree, it will
finally reach a leaf £(t) € L, after a sequence of binary
tests stored in the branch nodes. Instances assigned
to the same leaf node are assumed to be similar and
their pairwise affinity is set to 1; it is 0 otherwise. The
symmetric affinity matrix A is defined as a weighted
combination of Ay from independent trees.

1 &
= > A (2)

k=1
where np is the number of trees. Since only points
within a leaf node are considered to be similar, the
affinity matrix from the random forest automatically
accounts for neighboring relationships. Thus, A can
be viewed as a geodesic affinity matrix of the original
dataset. However, when using the Lo distance metric,
there is no prior on local neighbor relationships. A
kNN-like algorithm is needed to find neighbors from

the pairwise distance matrix with additional time
cost.
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The affinity matrix obtained by the binary metric
is often relatively sparse since only point pairs in the
same leaf node are assumed to be similar. Generally
speaking, the leaf node should not be too small to
account for the affinity of the dataset: randomized
trees should provide sufficient similar candidate points
in leaf nodes.

3.2 Continuous forest-based metric

Aside from the binary affinity,
continuous forest-based metric based on the common

we propose a

path P;; of two instances ¢; and t; as they traverse
from the root to leaves £(¢;) and £(t;). The distance
dep(ti, t;) is computed by the common path as follows:

dep(ti tj) = —— = (3)
i

where v;; = max(v;,v;) is the maximum depth of
{(t;) and £(t;), and | - |, is the cardinality of a set. If
two instances reach the same leaf node, the distance is
zero. Otherwise, the distance is set to 1 when the two
instances lack a common path. The binary affinity
definition is a special case of Eq. (3) by setting the
common path to null for instances not in the same
leaf. However, there is no guarantee that the decision

vij — |Pijlo

tree is balanced for an arbitrary dataset. In this case,
similarity is defined based on the cardinality of the
data stored in the smallest shared parent (SSP) node
Ty, of £(t;) and £(t;).

|Tp~v o Cz‘j
dplti,1y) = L1220 ()
P / |Tr|0 - gij
where (;; = min(|4(t;)]o, [¢(t;)]o) is the minimum

leaf size of ¢(t;) and ¢(t;). When ¢; and t; go into
the same leaf node, the SSP node T),,; is the leaf
itself, and distance dg, is zero. On the other hand,
when the shared parent node is at the highest level,
i.e., the root node T, dg, is set to 1. When the
leaf size n; is selected as the termination criterion of
the tree growth, the above SSP-based metric can be
simplified to dsp(ts,t;) = 9(|Tp,;lo — 7)), where the

(b)

normalization constant ¥ = (|T,|, — n;)~!. For an
unbalanced data distribution, the distance between
two instances in a small cluster is shorter than in
a large cluster, using the definition in Eq. (4): two
instances are likely to be far apart in the large cluster.
Compared to the adaptive forest-based metric in
Ref. [25], here the cardinality of the SSP node is used
to determine affinity without weight computation in
the shared traversal path. The combined forest-based
metric df is defined as a linear combination of the
common path-based d, and the SSP-based dgp,.

df = wcpdcp + wspdsp (5)
where the constant weight wep+wsp = 1. The entry in
the affinity matrix A is defined as A;; = 1—d(t;, ;).

Proposition 1. The functions defined in Eqs. (3)-
(5) are non-negative metrics with following properties:
o Identity: d(t;,t;) = 0.

e Positivity: d(t;,t;) > 0.

o Symmetry: d(t;,t;) = d(t;,t;).

o Triangle inequality: d(t;,ty) < d(t;, t;)+d(t;,tr).

The proof of Proposition 1 is given in Appendix B.
The above binary, the common-path-based, the SSP-
based, and the combined distance metrics are applied
to a set of toy data in Figs. 2 and 3. The difference
e4 between the affinity matrices A computed by the
clustering forest-based metrics and Ay, by the Lo
norm and the kNN is shown in Fig. 4.

Ad Ap 2
na
where @ is the zor operator of matrix entries. n4
is the size of A. || - ||g is the Frobenius norm. The

combined random-forest-based metric achieves lower
e 4 than the binary, the common-path-based, and the
SSP-based metrics. All metrics display a reduced
difference e4 when enlarging the forest size. The
Dice similarity metric [40] e; is used to compare the
k nearest neighbors obtained by the proposed metrics

Fig. 2 Toy datasets: (a) punctured sphere, (b) 3D clusters, (c) twin peaks, and (d) corner.
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(b)

Fig. 3 Affinity matrices obtained by the proposed forest-based metric
and the La-norm followed by kNN on (a) corner and (b) 3D clusters
datasets.

with those from the Lo norm in Fig. 5. The nearest
neighbors obtained by the combined random-forest-
based metric are more consistent with the Lo metric
than other metrics. We observe that consistency
increases with increasing forest size. Moreover, on
enlarging the forest size, the performance of the
binary random-forest-based metric approaches that
of the combined metric (see Figs. 4(a) and 5(a)),
because a large number of randomized decision trees
tend to provide sufficient neighboring candidates.
The look-up of feature values and comparison
with thresholds when traversing trees are very fast
and take negligible time. Although the cost of
pairwise distances for small subsets or sampled point
pairs is much lower than dense pairwise distance

computation, any kNN-graph-based method is time-
consuming for a high-dimensional dataset. The
proposed forest traversal and leaf assignments have
linear complexity with respect to the data size. More
importantly, the time complexity of our method is
independent of dimensionality, which is desirable for
high-dimensional data. In the extreme case of a
forest-based metric, the binary metric, there are no
multiplication operations in the affinity estimation.
Since the instances in the same leaf node are assumed
to be similar, the complexity depends on the number
of the leaf nodes, and there is no pairwise distance
computation by the binary forest-based metric. For
the continuous metrics, such as dgp, there are just
normalization operations in the affinity estimation.

4 Pseudo leaf splitting

It is efficient to acquire the pairwise affinity matrix
between datasets by the random-forest-based metric.
However, there is no regularization for point-
wise correspondence because the random forest is
built upon independent feature descriptors without
considering the relationship. For instance, when
establishing correspondence C' between datasets X
and Y, the forest-based metric can be used to produce
a candidate matching pair {(x;,v;) € Clx; € X, y; €
Y'}. The above correspondence does not guarantee
relationship preservation, i.e., g(z;, z;) o< g(yi,y;)
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Fig. 4 Affinity matrix difference e 4 for the combined forest-based metric (Fuse), the binary metric (Bin), the common-path-based metric
(Path), and the SSP-based metric for four toy datasets: (a) corner, (b) punctured sphere, (c) twin peaks, and (d) 3D clusters.
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Fig. 5 Dice similarity e; of nearest-neighbors obtained by the combined forest-based metric (Fuse), the binary metric (Bin), the common-
path-based metric (Path), and the SSP-based metrics for four toy datasets: (a) corner, (b) punctured sphere, (c) twinpeaks, and (d)

3D clusters.
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when (z;,y;) € C and (z,y;) € C. gis some function
to measure the relationship, e.g., the geodesic distance
on a 3D mesh surface. This work introduces PLS
to handle the lack of affinity regularization in the
forest-based metric.
To begin with, the leaf node ¢* with the largest
span is located as the starting leaf, and we set
0* = argmax g (x;, ;) (7)

;2L
The span of starting node ¢* is denoted n* =

max, g (xi,x;). Generally speaking, the leaves of
Ti,xjel”

extreme points can be identified in this way, e.g., the
leaf node of the toe in a 3D human mesh dataset. A
Gaussian mixture model (GMM) is used to fit the
point distribution in the leaf node. For simplicity, the
dominant mode acquired by the mean shift method
[41] is used to represent the leaf. Let pj denote the
center of the dominant mode in ¢*. Point z* € £* is

selected as the seed satisfying
*

v = J(X) = argmin [}z — i | (8)

J(X) returns the seed point of dataset X. The point
set belonging to X and £* is split according to the seed
selection. In our system, the seed point is assigned
to the left leaflet. The binary test for leaf splitting is
defined as

1, if * 5t
¢*(w)—{ AT SRAT )
0, otherwise

Given the starting leaf node and the seed selection,
the leaf splitting is propagated to other leaves. The
unprocessed leaves are sorted by distance to the seed
point x* € £* and propagation begins from the nearest
leaf node. Let ¢) be the current leaf node. For point
x € {, the binary test for leaf splitting of dataset X

is defined as

7 *

o () = { 1, if 9(%? ) < 0.5(my + 7g2) (10)
0, otherwise

where 7, = min g(z,z*), and 7, = maxg(z,z*).
zely, xELy

Only leaf nodes with ambiguous correspondence need

to be split, which can be determined simply by

checking the span of the leaf node. When the span is

greater than the predefined threshold, set to 10% of

the largest span of dataset X in our experiments, the

leaf nodes are split. The pseudo-leaf-splitting process

is given in Algorithm 1.

PLS is a general technique to regularize the pairwise
affinity obtained from a forest. Here the function g is
used to measure the point-wise relationship between

EN?VIEIISSIQYI_I!I}égAS @ SPringer

Algorithm 1 Pseudo leaf splitting

Input: Random forest R, dataset X.
Output: Pseudo leaf splitting.
for Each tree in R do
Locate starting leaf £* with the largest span (Eq. (7));
Compute the centroid of the dominant mode in £*;
Get a seed point z* € £* (Eq. (8));
Split leaf node £* using Eq. (9);
Sort unprocessed leaves by distance to z*;
for Each inconsistent leaf node do
Perform leaf splitting using Eq. (10);

end for
end for

points inside a dataset, where the leaflet splitting tests
are set according to the span of the dataset. There
are no requirements that two sets share the same
span when using the forest-based metric and PLS
regularization to establish point-wise correspondence.
The proposed scheme can handle non-isometrically
deformed datasets by using the data-dependent
binary tests in Eqs. (9) and (10).

It is computationally complex to find consistent
correspondences in a shape corpus. Existing
techniques do so by minimizing overall distortion
using dynamic programming [36], positive semi-
definite matrix decomposition [34], and functional
map networks [35]. Additional refinement is required
for consistent correspondence when given an initial
pairwise mapping. The gap between the point-
wise correspondence of shapes and the consistency
refinement can be avoided by taking into account
point distribution in the shape corpus. Unlike
the example-based classification forest for shape
correspondence [9], there is no need for labeled
training data using the proposed forest-based metric.

The correspondence function between surface
meshes X? and X7 is denoted 7,,,(x}) = 7, where
affinity A7} = Max,s ¢xa A7Y.. When given a group
of surface meshes, point-wise correspondence using
PLS is consistent and satisfies cycle constraints: when
Tpo(7) = 2§ and 7,.(2%) = x, 7,.(27) = .
It can be ascribed to the seed selection based on
the Gaussian fitting of the dominant mode in £*.
The mapping between starting seed points of X,
and X, is 7,,(zP*) = J JH(aP*) = 29", It is
obvious that correspondence of seed points satisfies
cycle constraints, where 7, (zP*) = J . J; ' J J ! =
Jypdy 1 — g7, Taking into account the similarity prop-
agation nature of PLS, the point-wise correspondence
satisfies the cycle constraints.
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5 Experiments
5.1 Datasets and metric

The proposed method is applied to affinity estimation
of various datasets, including KinectVS [4], OULUVS
[42], and OuluVS2 [43]. KinectVS consists of twenty
subjects uttering twenty phrases six times [4]. Color
and depth video data were obtained by Kinect with
a resolution of 640 x 480. The OULUVS dataset [42]
consists of color videos of twenty subjects uttering
ten phrases five times with a resolution of 720 x 576.
OuluVS2 [43] consists of color videos of 53 subjects
uttering ten phrases three times with a resolution of
1920 x 1080.

The AAM algorithm [44] is used to extract 35
patch trajectories around the lips and jaw following
Ref. [4], where the shape and texture features of
patches are concatenated to represent the trajectories.
In our experiments, the affinity matrix obtained
by the forest-based metric is sorted, and r nearest
neighbors are viewed as matching candidates of
probe trajectories. r is set to 1 (Top-1), 5 (Top-
5), and 10 (Top-10) in the affinity evaluation. If the
trajectory with the same label as the probe occurs
in the candidate set, there is a hit. The trajectory
labeling accuracy is computed as nnit/Nprobe, Where
Nhit and Nprobe denote the numbers of hits and probe
trajectories respectively.

We also evaluate the proposed method on 3D
shape corpora, including TOSCA [45], Scape [46],
SHRECO07-NonSym [34, 45], and Faust datasets [47].
The wave kernel signature (WKS) [48] and normalized
geodesic distance vector are used as 3D point feature
descriptors. The geodesic distance vector of point z
is composed of the geodesic distance between x and
all other points on the surface meshes, computed by
the fast marching algorithm. The correspondence
accuracy of 3D surface meshes X and Y is defined as

exy = =3 glre) P (1)

where 7 and 7’ are the estimated and ground truth
point-wise mapping functions, nx is the number of
points in X, and ¢ is the geodesic distance function.
The percentages of correct matches with a set of
geodesic errors, including 0.02, 0.05, 0.10, and 0.16,
are reported in our experiments.

5.2 Affinity estimation

The proposed method is applied to affinity estimation
on the facial trajectories and 3D points. We compare
the proposed criteria with the classical Gini index [25],
the determinant of the covariance matrix [20], and
the variance of feature differences [23] on the facial
trajectories (Figs. 6(a)-6(c)) and 3D shape datasets
(Figs. 6(e)-6(g)). The node splitting criterion based
on the determinant of the covariance matrix [20]
fails for all datasets due to rank deficiency of the
covariance matrices. The forests built by the Gini
index of the dummy set [19, 24, 25] depend on the
construction of synthetic data, being limited to locate
the data clusters effectively. The node splitting
criterion tries to find a feature pair to produce the
largest variance of feature difference [23], which does
not model the data distribution of child nodes. On
the other hand, our splitting criteria handle the data
distribution and produce the best results with the
Fuse metric. The numbers of trees are set to 17 and
50 for the visual utterance datasets and 3D shape
datasets respectively.

Comparisons of binary (Bin), common-path (Path),
SSP, and combined distance metrics (Fuse) on the
facial trajectories and 3D points are shown in
Figs. 6(a)—6(c) and Figs. 6(e)—6(g). The Fuse metric
shows better performance than the binary one, and
produces an improvement relative to the Path and
the SSP-based metrics. For two pairs with common
paths of the same length, the one with the smaller
SSP is more similar than the other. Both the Path
and SSP metrics contribute to affinity estimation
based on tree traversal in forests.

Figures 6(d) and 6(h) show the labeling accuracies
of the facial trajectories for KinectVS, OuluVs, and
OuluVS2, as well as the 3D point matching accuracies
on TOSCA, Scape, and Shrec-NonSym datasets with
and without PLS regularization. The labeling results
with PLS regularization are better than those without
for all datasets. Because the shape feature defined as
the difference of patch positions in adjacent frames
possesses motion information, the symmetric facial
trajectories on the left and right half faces are less
likely to be confused. Thus, improvements using PLS
regularization are limited for the facial trajectory
datasets compared to those for the 3D shape datasets.

The facial tracker is designed for frontal faces,
and tracking performance deteriorates when given

() TRNGHYA € Springer
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Fig. 6 Labeling accuracies for the combined random-forest-based metric (Fuse), the binary (Bin), common-path-based (Path), and SSP-based
metrics, random forests with node splitting criterion using the determinant of the covariance matrix [20], the variance of feature differences [23],
and the Gini index [25] on (a) KinectVS, (b) OuluVs, (¢) OuluVS2, (e¢) TOSCA, (f) Scape, and (g) Shrec-NonSym datasets. The Top-5 and
£0.02 accuracies with and without PLS on facial trajectories and 3D points are shown in (d) and (h) respectively.

profile facial images in the OuluVS2 phrase dataset
[43]. Figure 7 shows the effects of facial landmark
tracking on affinity estimation for trajectories. The
less accurate facial landmark tracking in the profile
views makes it harder to locate the correct facial
trajectories. The facial trajectory labeling accuracy
of the frontal view is better than for the profile views
in the Top-1, Top-5, and Top-10 experiments.

5.3 Dense correspondence between shapes

An unsupervised random forest-based metric with
PLS regularization is employed to estimate the
point distribution (see Fig. 8). A comparison of
the pairwise correspondence found by the proposed
method and functional maps (FM) [6], blended in-
trinsic maps (BIM) [7], a coarse-to-fine combinatorial
method [8], and a classification random forest (CRF)
[9], are shown in Table 1. Like Ref. [9], we only
conduct experiments on the classes with more than
six objects to ensure sufficient training data for the

forest. Here all shapes except the query are used to

1 . . .
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081 |Ell° |
> 60°
S06¢ 1
3
o - 4
g 0.4
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0 ]
Top-1 Top-5 Top-10

Fig. 7 Labeling accuracies for facial trajectories on OuluVS2 of
different camera views including 0°, 30°, and 60°.
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Fig. 8 Pairwise shape correspondence between (a) reference and
target shapes (b) without and (c) with the PLS regularization. (d) and
(e) are the affinity matrix for the cat and the dog without PLS.

train the forest. Our method can achieve more than
96% correct matching within 0.05 geodesic error. In
the experiments, the WKS and the geodesic distance
vectors are used as the point descriptor.

Table 1 gives the correspondence accuracy based on
WKS (RFyks), the geodesic distance vector (RF o),
and feature fusion (RFfug0n). In our experiment,
the accuracy of the dense correspondence given by
RFtusion outperforms those from RFyis and RFgeo.
The fusion of the local shape descriptor WKS and
the contextual geodesic vector facilitates searching
for the optimal node splitting.
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Table 1 Comparison of pairwise correspondences by the proposed
method with and without PLS regularization, and combinatorial [8],
FM (6], BIM [7], and CRF [9] methods on the TOSCA dataset

Correspondence (%)

Method 50.02 20.05 20.10 20.16
Combinatorial [8] 24.8 56.0 80.8 90.5
BIM [7] 44.3 84.6 95.7 97.7
FM [6] 66.5 86.8 94.0 96.7
CRF [9] 65.6 94.5 99.1 99.2
RF zeo 21.9 46.3 717 84.2
RF ke 44.8 84.1 93.1 96.2
RFtusion 67.3 96.5 99.4 100
w/o PLS 35.6 63.3 72.5 79.8

Point-wise matching based on forests with different
numbers of trees is shown in Fig. 9(a). The forest
size is larger than that for the supervised CRF [9].
A relatively large number of randomized decision
trees is needed to estimate the correspondence in
an unsupervised manner. The more the training
data, the more accurately the correspondence can be
obtained (see Fig. 9(b)).

We have applied the proposed method to a motion
dataset [49], where the first 10% shapes are used to

train the forest. There is no requirement that the
training and testing shapes are from the same kind
of motions. Our method can achieve more than 95%
correct matches within 0.05 geodesic error, as shown
in Fig. 9(c).

The proposed method is compared with convex-
optimization-based nonrigid registration (CO) [51]
and a CNN classifier-based method [52] on the
Faust database [47]. Following Refs. [51, 52|, corre-
spondence is computed between pairs of meshes from
the same subject (intra-subject) or different subjects
(inter-subject). Aside from the testing pairs, all other
meshes are used to build the random forest. Our
method outperforms CO and the CNN-based method
in average error, average error of the worst pair, and
10-cm recall: see Fig. 10. CNN followed by non-
rigid registration (CNN-S) produced the best results.
However, CNN and CNN-S were built upon 2D depth
maps, where partial scans and additional registration
operations were required.

Figure 11 and Table 2 show a comparison with
deep learning-based shape correspondence models,
including 3D-coded [38], FMNet [37], and ADD3 [5]
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of training sets for the proposed method (RFfusion) and a classification random forest (CRF) [9]. (¢) Comparison of pairwise correspondence
errors with different feature channels on human motion data [49]. (d) Comparison of consistent correspondence errors on the SHREC-NonSym
dataset by the proposed method, and FMN [35], SDP [34], CFM [50], and OBF [36] methods.
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Fig. 10 Comparison in terms of (a) average error, (b) average error on the worst pair, (¢) 10 cm recall for the proposed method, CO [51],

CNN [52], and CNN-S [52] on the Faust dataset.
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PRTTT

Fig. 11 Comparison with deep learning-based methods. (a) Reference.
(b, ¢) Proposed method without and with the PLS regularization
respectively. (d) 3D-coded [38]. (e) FMNet [37].

Table 2 Comparison of the proposed method to deep learning-based
shape correspondence methods on the Scape dataset

Method ~ 3D-coded [38]
g0.02 0.48

FMNet [37]  ADD3 [5]
0.78 0.27 0.65

Ours

on the Scape dataset The proposed forest-based
metric with PLS regularization outperforms the
supervised and unsupervised deep learning-based
models with a matching accuracy of 0.65 vs. 0.48 (3D-
coded) and 0.27 (ADD3) at g0.02. The supervised
FMNet has the best performance, which is learned
from prior ground truth correspondence and the
mapping in both the spatial and spectral domains. On
the other hand, the proposed approach only requires
unsupervised forest-based metric learning for point-
wise affinity.

5.4 Consistent
corpus

correspondence in shape

Aside from pairwise shape correspondence, the
proposed method is also compared with existing
consistent correspondence methods, including positive
semi-definite matrix decomposition (SDP) [34], an
optimization-based framework (OBF) for distortion
minimization [36], a functional map network (FMN)
[35], and consistent functional maps (CFM) [50]
on the SHREC-NonSym dataset: see Table 3 and
Fig. 9(d). The proposed method takes advantage
of the point distribution modeling by the clustering
forest and the PLS regularization scheme, outper-
forming the compared methods with correspondence
accuracies of 44.2% (g0.02) on the Shrec-NonSym
dataset.

Table 4 gives the correspondence by the proposed
method, SDP [34], OBF [36], and fuzzy correspon-
dence (FC) [53] methods on the TOSCA and Scape
datasets. The proposed method outperforms SDP
[34] and OBF [36] by significant margins in local
matching with 0.02 geodesic errors: the proposed
method has an edge in matching specificity. At 0.16

EN?VIEIISSIQYI_I!I}égAS @ SPringer

Table 3 Comparison of consistent correspondence by the proposed
RFfysion method with and without PLS regularization, and FMN [35],
SDP [34], CFM [50], and OBF [36] methods, on the Shrec-NonSym
dataset

Correspondence (%)

Method £0.02 £0.05 £0.10 £0.16
FMN [35] 42.7 70.9 89.8 95.8
SDP [34] 16.9 45.6 717 85.7
CFM [50] 12.8 36.0 68.3 84.5
OBF [36] 19.5 478 70.2 79.0
RFrusion 44.2 74.3 90.9 97.1
w/o PLS 15.8 30.6 58.9 69.4

Table 4 Comparison of matching at 0.02 (g0.02) and 0.16 (g0.16)
geodesic errors by the proposed RFfysion method with and without
the PLS regularization, and SDP [34], OBF [36], and FC () [53]
methods on the TOSCA and Scape datasets

Error SDP [34] OBF [36] RFfusion w/0 PLS
0.16 100 97.6 100 79.8
TOSCA 40,02 34.1 37.5 60.2 35.6
0.16 100 100 100 77.3
Scape 20.02 41.2  48.64 [53] 65.3 34.8

geodesic errors, the proposed method can realize full
matching as SDP [34] and OBF [36] methods.

As shown in Tables 1, 3, and 4, the proposed
forest-based metric with PLS regularization refines
the forest-based metric and produces an improvement
by a large margin for both pairwise and consistent
correspondence in the shape corpus.

5.5 Phrase recognition

Phrase recognition accuracies for the proposed
method (RFfusion) on the depth and color videos
are given in Fig. 12. The accuracy for subject-
independent (SI) experiments is lower than for
subject-dependent (SD) experiments. The perfor-
mance variations in the SD and SI experiments
can be ascribed to personal speaking characteristics
and person-specific texture differences regarding the
moustache and lip shapes. The SI experiments on
the frontal phrase set of OuluVS2 provide an average
accuracy of 84.8%, comparable to the state-of-the-
art methods [54, 55] (see Fig. 13). In the OuluVS2
dataset, the video data for Subject 29 turned out to
be unusable since his mouth was not seen most of the
time, so Subject 29 was not used in the test data.
Table 5 reports the phrase recognition accuracies
on the frontal phrase set of the OuluVS2 dataset in
SI experiments. The proposed model is compared to
deep CNN-based lipreading models with the long
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Fig. 12 Phrase recognition accuracies for each subject in (a)

KinectVS and (b) OuluVS datasets by the RFfysion in the subject-
dependent (SD) and independent (SI) experiments.
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Fig. 13 Phrase recognition accuracies for each subject from the
OuluVS2 phrase dataset.

Table 5 Phrase recognition accuracies on the OuluVS2 dataset

Method Zhou [54] Lee [55] Chung [56] Ours

Accuracy (%) 73.5 81.1 93.2

Chung [57]
94.1 84.8

short-term memory architecture [55] and parallel
branches [56]. A large-scale dataset was used to learn
the network parameters [57]. The proposed model
achieves an average accuracy of 84.8%, comparable
to a latent variable model [54] and LSTM [55]. The
system based on deep neural networks produces a
large margin improvement [56, 57]; many parameters
need to be learned from annotated training data.
Figure 14 gives phrase recognition accuracies for
each subject in the color videos (RF color) With a patch

Sl

0.6 -RFcoIor
' CIRFdep(h

0.5 L mrwrwrm

0 2 4 6 8 10 12 14 16 18 20
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Accurac

Fig. 14 Phrase recognition accuracies for each subject in the color
videos (RF¢olor) with a patch size of 15 x 15, and the depth videos
(RFdepth) with a patch size of 7 x 7, for the KinectVS dataset.

size of 15 x 15 and the depth videos (RFqeptn) with
a patch size of 7 x 7, for the KinectVS dataset. We
set the patch sizes following Ref. [4]; the patch size
for depth videos is smaller given the relatively low
signal-to-noise ratio of the depth video.

5.6 Comparison with forest-based corres-
pondence

The proposed method utilizes a multivariate Gaussian
distribution and clustering forest-based metrics for
We esti-
mate supervoxel correspondence on bony tissues of
the craniofacial CBCTs, which are divided into two
parts, the mandible and the maxilla. The dataset
consists of 150 clinically obtained cone beam CTs
(CBCTs) [30], each decomposed into 5000 super-
voxels. We compare with recent work on forest-
based metrics, including OCF [29], MMRF [28], SC
forest [30], and the classification forest (CLA) [58],
on supervoxel-wise correspondence; see Table 6.
In experiments, we estimate the supervoxel-wise
correspondence on bony tissues of the craniofacial
CBCTs. The proposed approach extends the binary
forest-based metric to a continuous one, and achieves
a Dice similarity coefficient (DSC) of 0.93 on the
maxilla, outperforming MMRF (0.88), SC (0.89),
and CLA (0.81). MMRF and SC show better per-
formance for the mandible with a relatively small
number of supervoxels than ours, though additional

affinity estimation and correspondence.

classification criteria and tree pruning are required.
Here OCF achieves the best performance with DSC
of 0.93 and 0.95 on the mandible and the maxilla
respectively. However, OCF requires additional
dominant principal component estimation and
regression [29]. The proposed approach does not incur

additional computational cost to forest construction.

Table 6 Comparison on supervoxel-wise correspondence by forest-
based methods

MMRF [28] SC [30] OCF [29] CLA [58] Ours
Mandible 0.91 0.92 0.93 0.88 0.88
Maxilla 0.88 0.89 0.95 0.81 0.93

6 Conclusions

We have presented unsupervised random-forest-based
metrics for affinity estimation for large and high-
dimensional data, taking advantage of both the
common traversal path and the smallest shared parent
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node. The proposed forest-based metric combined
with PLS can account for spatial relationships to
determine consistent correspondences. The proposed
PLS scheme regularizes the forest-based metric and
avoids the gap between point-wise correspondence
and additional consistency refinements inside a shape
corpus. The proposed method has been applied
to phrase recognition using color and depth videos,
as well as point-wise correspondence of 3D shapes,
demonstrating the effectiveness of the proposed
method compared to the state-of-the-art.

In future, we will further explore clustering random
forest methods for affinity estimation. The additional
PLS is utilized in the current system to account
for global spatial and structural relationships. This
approach can regularize the forest-based metric but
relies on a heuristic seed selection and propagation
process to optimize the node splitting parameters
We will further study
optimization of unsupervised clustering forests for

and generate the forest.

consistent and point-wise correspondence.

Appendix A Decremental covariance
matrix evaluation

Since the covariance matrices need to be eval-
uated repeatedly when given randomly selected
parameters,
the covariance matrix o from scratch for the
optimal splitting parameters when building the
forest.

it is time consuming to evaluate

Let p be the data dimensionality. The
time complexity of covariance matrix construction
is O(kmin(m7, p, mg, p*) + kmin(m7, p, mg, p?)) for
k randomly selected parameters.
of trace evaluation is O(kmg,p + kmp,p). The
decremental evaluation technique for covariance
matrices is presented using the fact that the data
in each node are a subset of that of the root node.

The complexity

Let 0y, 07, 0, denote the covariance matrices of the
parent and two child nodes respectively. The ¢j-th
entry of o), is defined as oy, = E((t; — pp)(t; — pp)’).
Without loss of generality, here the left child node is
assumed to be larger than the right one. To begin
with, the covariance matrix of the smaller child node,
i.e., the right one, is computed. The entry of o, is
defined as o, = E((t; — p1,)(t; — pr)"). For a point
pair (t;,t;) belonging to both the parent and the right
child nodes, the differences of corresponding entries
in o, and o, are computed as follows.

EN?V%%IGYQ&?S @ SPringer

= —(titt3) (p—pae) Hllp P =l |* (12)

where 7,,, = oy, (m7, — 1) and 7., = o, (m7, —1).

Let o, denote the sub-matrix of o, with columns and

rows corresponding to points in the right child node.
The trace of the covariance matrix o, of the right

child node is derived as

tr(oy)(mr, —1) +2 S tio; —mr, 0,

mr, — 1

Opij —Ori;

tr(o,) =

(13)
where o, is the displacement vector from the centroid
of the right child node to the parent, and o, = p, — fty.
The right child-related constant o, = ||z, ||* — || ||
Given tr(o,), the trace of o; is computed as follows:
tr(op)(mp, — 1) — tr(o,)(mp, — 1) + 0

t =
I‘(O’l) mr, — 1

(14)

where oy = mr, || ppl|* — me, [lpe || — mo, ||l
Given the randomly selected splitting parameters,
the centroids p; and p, of the left and right child
nodes, as well as the norms || and ||| are

I? I?

computed. Next, the trace of the covariance matrix
of the smaller child node is computed based on the
submatrix extracted from the parent node as in Eq.
(13). The trace of the covariance matrix of the other
child node is computed given tr(c,) and tr(o,) as
in Eq. (14). Since just the traces of the covariance
matrices are needed to estimate the information gain
in our system, the complexity of the covariance matrix
evaluation is reduced from O(my,p + mr,p) to O(p).
Given k randomly selected parameters, the trace
evaluation complexity is reduced to O(kp).

Appendix B Proof of Proposition 1

We prove the functions defined in Egs. (3)—(5) are
metrics as follows.

Eq. (3)
Let t;,t;,t; be three input instances and the
corresponding leaf nodes be ((t;),£(t;),¢(t;). The
common paths are denoted IP;;, Pz, and Py.
Identity: dep(ti,ti) = (|Piilo — [Piilo)/vii = 0;
Positivity: Because |P;jl, < v; and |Pjj;, < vy,
Pijlo <wij. Thus, dep(ti, t5) = (vij —[Pijlo) /vi; 2 0;
Symmetry: [Pijlo=[Pjilo,80 dep(ti, t;) =dep(ts ti);
Triangle inequality: Suppose that IP;; is the
longest common path. Then |Pj;|l, > |[Pix|, and
IPijlo = |Pjrlo. It follows that |Pixlo = |Pjxlo
and dep(tj,tr) = dep(tp,ti) = dep(ti,t;). Thus,
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dep(tj,tr) < dep(tisty) + dep(tistr), dep(tite) <
dcp<ti,tj) + dcp(tj,tk), and dcp(ti,tj) < dcp(ti,tk) +
dep(tj, th).

Similarly, when IP;;, or IP;; is the longest common
path, the triangle inequality property holds.
Eq. (4)
Identity:  dsp(tisti) = (|Tpilo — [Tps
|T i |0) = O;

Positivity: Because [T, [o = (i; and |Tr|o = Gy,
dsp(tiatj) 2 0;

Symmetry: [Ty,
dsp(tja ti)%

Triangle inequality:

o)/ (ITr]o =

o = |ij,i oy SO dsp(ti,tj) =
Suppose that T, . is the
smallest shared parent node. It follows that |7}, |, =
|ijk|0 and dSp(tjvtk) = dSp(tlmti) 2 dSp(tiﬂtj)'
ThU.S, dsp(t]‘, tk) g dsp(ti,tj)'f—dsp(ti, tk), dsp(ti,tk) g
dsp(tis t5) + dsp(t; tr), and dsp(ti t5) < dsp(tiste) +
dsp (tj, tk).

Similarly, when T}, or T},
parent node, the triangle inequality property holds.

Eq. (5)

Since the function is a weighted combination of two
metrics as defined in Egs. (3) and (4), it is obvious
that the function defined in Eq. (5) is a metric.

is the smallest shared
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