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A B S T R A C T

Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes,
depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine
Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in
Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus
providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for
the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post
infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and
chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of
TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and
paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different
CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and
viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results
demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding
TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of im-
mune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic
background.
1. Introduction

Neurological diseases such as Amyotrophic Lateral Sclerosis (ALS)
(Fang et al., 2015), epilepsy (Michael and Solomon 2012), Multiple
Sclerosis (MS) (Steelman 2015), and Parkinson's disease (PD) (Woulfe
et al., 2014) can, in some cases, stem from antecedent exposure to viral
infections. Predisposing genetic risk factors for neurological dysfunction
following viral infection will vary among individuals in a genetically
LS); Multiple Sclerosis, (MS); Pa
; Collaborative Cross, (CC); phos
ptor for IL-1 α, (Il1r1); Epstein-B
of Toxicology, College of Veterin

omez).

5 October 2021; Accepted 21 No

vier Inc. This is an open access ar
diverse population, leading to a range of outcomes from complete lack of
symptoms to death. Immune responses to neurotropic viruses can also
vary among individuals depending on several factors including age, sex,
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result, infection by a single virus can evoke diverse immune responses
and neurological outcomes depending on the host's genetic background.

Theiler's murine encephalomyelitis virus (TMEV), a neurotropic sin-
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to model human neurological conditions associated with prior viral in-
fections (Lipton 1975, 1980; Procaccini et al., 2015). Depending on the
genetic background of the mouse strain, TMEV infection can cause varied
pathogenic responses that model heterogenous infections associated with
human diseases such as ALS, epilepsy, MS, and PD (Brinkmeyer-Langford
et al., 2017). In susceptible mouse strains such as SJL/J, intracranial
inoculation of TMEV results in a biphasic disease, comprising an early
acute phase lasting up to 14 days post-infection (dpi) followed by a late
chronic phase after day 35 dpi (Oleszak et al., 2004; Steelman 2015).
Early acute disease encompasses a mild encephalomyelitis with pre-
dominant neuronal degradation and replication of the virus in the central
nervous system (CNS) (Murray et al., 1998; Oleszak et al., 1995). Sus-
ceptible strains are unable to clear the virus and a persistent CNS infec-
tion leads to progressive spinal cord atrophy and axonal loss causing
disrupted motor coordination, limb paralysis, spasticity, and ataxia
(DePaula-Silva, Tyler J. Hanak et al., 2017; McGavern 2000; Rodriguez
et al. 1991). In contrast, some resistant mouse strains, such as C57BL/6,
are able to clear the virus completely within 3 weeks post infection and
do not develop severe demyelinating disease, but instead exhibit
epileptic seizures within the first few days post-infection and hippo-
campal lesions (Bijalwan et al., 2019; Br€oer et al., 2016; Gerhauser et al.
2007; Libbey et al., 2008; Stewart et al., 2009).

TMEV susceptibility and disease symptoms have been associated with
several genetic risk factors (Tsunoda et al., 2016), and differences in
immune response play a role in determining strain differences in viral
load and clearance, or persistence in the chronic phase of the infection
(Aubagnac et al. 1999; Mi et al., 2006). Cytokines play a major role in
propagating antiviral responses even during the chronic phase of the
infection. For example, in the CNS of TMEV-susceptible SJL mice, IL-1,
IL-6, IL-10, IFN-γ, and TNF-α are expressed highly during the chronic
stage of infection (Chang et al., 2000; Gilli et al. 2016).

Inbred strains of mice allow for phenotypic reproducibility and in-
depth analyses of specific aspects of neurotropic viral infections. How-
ever, the limited genetic diversity present in common inbred strains does
not allow representation of the heterogeneous phenotypic outcomes seen
in human populations from viral infections. The Collaborative Cross
(CC), a large panel of recombinant inbred mouse lines established from
eight genetically diverse founder strains overcomes these genetic di-
versity limitations (Churchill et al., 2004; Threadgill et al. 2002; Zou
et al., 2005). The founder strains (A/J, C57BL/6J, 129S1/SvImJ,
NOD/LtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were bred
using a combinatorial funnel design to yield uniform genome wide ge-
netic variation, via recombination and chromosomal assortment,
Table 1
Collaborative Cross strains investigated in this study.

Strain Sham Infected Total

CC002/Unc 4 3 7
CC005/TauUnc 4 4 8
CC006/TauUnc 3 3 6
CC011/UncJ 4 4 8
CC015/UncJ 3 3 6
CC017/UncJ 3 2 5
CC023/GeniUncJ 5 2 7
CC027/GeniUncJ 4 4 8
CC032/GeniUncJ
X
CC013/GeniUncJ

2 8 10

CC036/UncJ 2 4 6
CC037/TauUnc 3 4 7
CC041/TauUnc
X
CC012/GeniUncJ

2 11 13

CC043/GeniUncJ 2 3 5
CC046/Unc 2 2 4
Total Mice 43 57 100
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randomized across a large, heterogeneous and reproducible population
(Phillippi et al., 2014; Threadgill et al., 2011). The CC resource thus
provides a model of human heterogeneity where each CC strain can be
considered as a unique individual in a population, resulting in a pheno-
typically distinct and reproducible diverse outbred population. The CC is
useful for characterizing how the genetic backgrounds of individuals
contribute to diverse neurological responses after TMEV infection
(Brinkmeyer-Langford et al., 2017).

In the current study, CC strains were used to evaluate neurological
and immunological responses during the chronic phase of Theiler's virus
infection, modeling the long-term outcomes of neurotropic viral in-
fections in humans. These findings provide insight into the complex roles
of immune response and viral clearance associated with persistence in
the pathogenesis of virus-associated neurological diseases, such as in MS.
We compare chronic immunological responses to viral persistence and
long-term neurological outcomes. Ultimately, our findings will be useful
for developing models of post-viral infection neurological conditions in
humans.

2. Materials and methods

2.1. Ethics statement

All animal care protocols were approved by the Texas A&M Univer-
sity Laboratory Animal Care and Use Committee (AUP 2017-0082) and
were compliant with NIH Guidelines for Care and Use of Laboratory
Animals.

2.2. Mice

Female and male mice of 14 CC strains were randomly assigned to
two separate groups (sham-infected and TMEV-infected) (Table 1). Strain
and mouse numbers were dependent on the availability of our in-house
breeding system and strain-specific fertility and fecundity.

2.3. TMEV infection

Mice were anesthetized at 4 weeks of age by isoflurane inhalation
(MWI, Meridian, ID). Anesthetized mice in sham-infected groups (22
females and 21 males) were injected intracerebrally with phosphate
buffered saline (PBS) into the fenestra at a depth of ~1.5 mm. Mice in
TMEV-infected group (29 females and 28 males) were injected similarly
with 5.0 � 104 plaque-forming units (PFU) of BeAn strain of TMEV
(American Type Culture Collection [ATCC] VR 995, Manassas, VA) in 20
μl of PBS.

2.4. Qualitative neurological phenotyping

After infection, mice were evaluated twice daily for the first 2 weeks
during the acute stage of infection, and once a week thereafter, during
the chronic stage (14-90dpi). Individual limbs were observed for clinical
signs of paralysis and scored on a scale of 0–4, with 0 consisting of mice
being able to walk with no signs of weakness to 4 consisting of a lack of
grip function and flaccid limb extension (Johnson et al., 2004; Lawley
et al., 2021; McCarthy et al. 2012). Other qualitative phenotypes, such as
piloerection, hunching, seizures, limb clasping, etc., were measured as
described previously (Eldridge et al., 2020).

2.5. Serum collection and Euthanasia

Mice were euthanized at 90 dpi by intraperitoneal (IP) injection of
Beuthansia (Schering-Plough Animal Health) and perfused with a 1x PBS
solution through the left ventricle after blood samples were acquired for
serum collection.
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2.6. Cytokine assay

To evaluate long-term effects of TMEV, we measured cytokine and
chemokine levels at the chronic stage of infection, using serum collected
90 dpi from genetically diverse mice. Bio-Plex Pro™Mouse Cytokine 23-
plex Assay kits (Bio-Rad, Hercules, CA) were used to determine the
concentrations of 23 cytokines and chemokines in serum (IL-1α, IL-1β, IL-
2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17 α,
IFN-γ, CCL11 [Eotaxin], G-CSF, GM-CSF, CXCL1 [KC {keratinocyte-
derived chemokine}], CCL2 [MCP-1 {monocyte chemotactic peptide
1}]), CCL3 [MIP-1α {macrophage inflammatory protein 1α}], CCL4
[MIP-1β], CCL5 [RANTES {regulated upon activation, normal T-cell
expressed and secreted}], and TNF-α). Serum was thawed at room tem-
perature before following the Bio-Plex Pro kit protocol. Instrument
calibration was performed for each procedure and all samples were
assayed in triplicate using Bio-Plex (Luminex) 200 system (Bio-Rad,
Hercules, CA). Data was collected with the Bio-Plex Manager software
program (Bio-Rad version 4.1.1).
2.7. RNA isolation and sequencing

TMEV is known to affect the thoracic spinal cord and hippocampus
of infected mice, depending on mouse strain; therefore we collected
RNA from these tissues at 90dpi to compare gene expression and
presence of TMEV among the CC strains (Brinkmeyer-Langford et al.,
2017; Gerhauser et al., 2019a; Lawley et al., 2021). RNA was extracted
using Maxwell® 16 automated equipment with LEV simplyRNA tissue
kit (Promega, Sunnyvale, CA). Samples were quantified with the Qubit
Fluorometer (Life Technologies) with a broad range RNA assay and
concentrations were normalized for library preparation. RNA quality
was verified on the Agilent TapeStation with an RNA ScreenTape.
Messenger RNA sequencing libraries were prepared and analyzed as
described previously (Eldridge et al., 2020). For all samples, including
those analyzed earlier (Eldridge et al., 2020), we used DESeq2 to
identify Differentially Expressed Genes (DEG) between sex-matched
Fig. 1. Comparison between 90dpi sham and TMEV infected mice. P value was
calculated for differences between control and infected mice (****P < 0.0001).
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infected and uninfected mice of each strain (Love et al. 2014). Next,
to determine if TMEV RNA was present within the tissue, we measured
the expression (fold change) of RNA encoding the TMEV polyprotein
AA47930.1.

2.8. Statistics

GraphPad Prism version 9.0.2 for Mac (GraphPad Software, San
Diego, CA) was used for nonparametric Mann-Whitney U tests when
comparing paralysis frequency scores between sham and TMEV-infected
mice, cytokine and chemokine levels among sham and TMEV-infected
mice within the same CC strain, and between TMEV-infected CC strains
and TMEV-infected SJL mice. All reported p values are based on two-
tailed statistical tests with a significance level of 0.05.

Statistical analysis for stepwise regression was performed using R
software (version 4.0.2) to determine relationships among cyto/chemo-
kine measurements with paralysis progression scores.

We adapted the “stepwise” function in R to perform the stepwise
regression using the progression score of the phenotype as the response
and the sham-infected status as well as the twenty-three cytokine levels
as covariates. An important parameter of the stepwise regression pro-
cedure is called alpha, which acts as a stopping criterion that prevents
further variables from being included or excluded. Following (Li et al.,
2018), we chose alpha to be 0.05 as the inclusion and exclusion criteria.
The stepwise regression procedure involves a forward selection mecha-
nism that starts with the intercept only model and proceeds according to
the optimal stopping criterion to choose the final model.

3. Results

3.1. CC strains respond differently to TMEV infection resulting in paralysis

Over the course of 90 days, CC strains showed variable response to
TMEV infection. Multiple phenotypes such as sickness, dystonia, reflex,
weakness, and paralysis were observed throughout the infection
(Eldridge et al., 2020). One of the most profound phenotypes observed
within the infected CC strains was paralysis (Fig. 1).

Eight out of the 14 studied strains developed paw or limb paralysis
during the infection. Paralysis affected at least one mouse from each of
the affected strains. However, for strains CC005, CC017, and CC023, all
infected mice developed paralysis. In affected mice, paralysis was seen
before the end of the acute phase with the exception of a single
CC041xCC012 mouse. Limb paralysis was persistent and progressive for
CC005 and CC023, worsening over the 90dpi period, with CC023 being
the most severely affected. Contrastingly, the paralysis frequency score
for CC017 slightly decreased between 14 and 90dpi, indicating symptom
improvement (Fig. 2, panels A and B).

3.2. The immune responses in CC strains during chronic TMEV infection
are unlike “TMEV-susceptible” SJL mice

Cytokine and chemokine levels were measured for all 14 CC strains to
identify potential connections between immune response and TMEV-
induced paralysis at the chronic stage of infection. The TMEV 90dpi
“immunological snapshots” differed amongst all infected CC strains. For
each cyto/chemokine, serum levels were measured in sham and infected
mice of the same strain to gauge strain-specific responses to TMEV
infection (Fig. 3). Responses of SJL mice were considered as the proto-
type TMEV “susceptible” strain.

Cytokine levels produced by the CC mouse strains were first
compared to those produced by TMEV-infected SJL mice (Fig. 3). Most
cyto/chemokines were produced at similar levels in SJL mice, regardless
of infection status, although IL-6 and IFN-γwere produced at lower levels
in the infected SJLs compared to sham. IL-6 concentration levels in SJL
infected mice were significantly lower than those measured for sham-
infected SJLs at 90dpi (p ¼ 0.0012).



Fig. 2. Proportions of days for which paralysis was observed over the 90-day
infection period varied by strain. A) Frequency scores indicate the proportion
of days for which paralysis was recorded by 14dpi and 90dpi. Each pair of
connected points represents a different CC strain. The direction of the con-
necting line shows the relative increase or decrease in the paralysis frequency
score between 14 and 90dpi. B) The mean differences between frequency scores
at 90dpi and 14dpi are shown as individual dots for each CC strain.
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SJL cyto/chemokine levels were next compared with those of the CC
strains which developed paralysis most consistently (CC005, CC017, and
CC023). Significant differences compared to SJL mice included IL-1β
levels of CC017 mice (p ¼ 0.0278) and IL-10 levels of CC005 mice (p ¼
0.0061). Furthermore, CC005 infected mice produced TNF-α at signifi-
cantly higher levels compared to CC005 sham (p ¼ 0.0286), while no
significant difference was found between sham and infected SJL mice.
Interestingly, no significant differences were found for any cyto/che-
mokine levels measured for the severely paralyzed strain CC023 and
those of SJLs. Infected CC023 cyto/chemokine levels were typically
below the sham threshold line (defined here as the total average con-
centration for sham mice; Fig. 3).

The levels measured for the six cytokines shown in Fig. 3 were all
statistically significantly different between SJL and at least one CC strain.
Most notably, levels of cytokine IL-10 were significantly lower for eight
out of 14 CC strains compared to SJLs. Infected CC041xCC012 produced
IL-1β at significantly lower levels than sham-infected CC041xCC012 (p¼
0.0256), while IL-1β levels were virtually the same for both infected and
sham SJL mice. In summary, CC strains demonstrated an immunological
heterogeneity in response to TMEV infection, unlike the responses of
susceptible SJL mice.
3.3. IL-1α and RANTES levels are significantly correlated with degree of
paralysis

We used stepwise regression to identify significant relationships be-
tween cyto/chemokine measurements and paralysis progression scores
(calculated as the difference between how many limbs were paralyzed at
90dpi compared to 14dpi for mice of a given strain) for the 14 CC strains
(Table 1). Of the 23 cyto/chemokines evaluated, IL-1α (p ¼ 0.000174)
and RANTES (p ¼ 0.00628) were identified as being significantly asso-
ciated with paralysis (Table 2). The regression model returned a p <

0.001, demonstrating the overall significance of the selected model
describing the association between the selected cyto/chemokines and the
progression score of paralysis.
4

3.4. Complex interactions, rather than simple associations, underlie
paralysis in TMEV-infected mice

IL-1α and RANTES are under complex regulation. Consequently, the
downstream effects of these proteins are also complicated and multi-
faceted. This is especially apparent across genetically diverse individuals
such as mice of the CC strains. Rather than depending on a linear
explanation for the roles of these two cyto/chemokines in relation to
TMEV paralysis, a tiered perspective was developed using 1) haplotypes
of genomic regions previously connected with TMEV pathogenesis and
viral clearance or persistence, 2) levels of other cytokines and chemo-
kines, and 3) TMEV-relevant gene expression to better understand the
complex interactions of IL-1α and RANTES associated with paralysis
scores.

3.4.1. Haplotypes previously associated to TMEV pathogenesis and viral
clearance/persistence

3.4.1.1. H2. The major histocompatibility region, known as H2 in mice,
of many species contains genes that encode proteins involved in immune
response. TMEV persistence and resulting phenotypes have previously
been described in relation to H2 haplotypes (Clatch et al., 1985; Rodri-
guez and David 1985; Rodriguez et al. 1986).

H2 haplotypes were assigned for each strain used in this study based
on the founder strains from which these haplotypes were inherited
(Fig. 4). In keeping with previous observations (Brinkmeyer-Langford
et al., 2017; Eldridge et al., 2020), H2 haplotype alone was not sufficient
to explain TMEV persistence or phenotypic severity. However, strains
with haplotype H2g7 showed substantially less paralysis, while those
strains with H2z haplotypes had more severe paralysis. Heterozygosity of
the H2 region was also more common in strains with less paralysis.
Finally, the H2b haplotype – previously associated with TMEV resistance
– was associated with reduced paralysis when inherited from the
C57BL/6J founder, and greater paralysis when inherited from the
129S1/SvImJ founder.

3.4.1.2. Viral clearance or persistence in the chronic phase of infection. The
expression of TMEV RNA from hippocampal and thoracic spinal cord
tissue was evaluated at 90dpi to identify associations between viral
persistence and paralysis. Fig. 4 shows presence or absence of TMEV RNA
for each strain, using data from (Eldridge et al., 2020) plus new data for
strains CC036, CC043, and CC046. While the strains could be grouped
based on viral persistence or absence, both groups includedmouse strains
at opposite ends of the phenotypic spectrum (paralyzed vs
non-paralyzed). For example, some strains with measurable levels of
TMEV RNA at 90dpi included CC006, CC011, CC037, CC043, and CC046;
these strains did not develop paralysis. These findings demonstrate that
viral persistence or absence alone did not predict the presence or fre-
quency of TMEV-induced paralysis.

3.4.1.3. TMEV-related loci previously connected to differences in immune
response and paralysis. The TMEV quantitative trait loci Tmevp2 and
Tmevp3 are located in close proximity on mouse Chromosome (Chr) 10
(Bihl et al. 1999) and have been associated with viral persistence. The
genes Ifnγ and Il-22 are also located in this region, and key roles in TMEV
persistence and pathogenesis/mortality have been suggested for these
genes (Brahic and Bureau 1998; Fiette et al., 1995; Levillayer et al.,
2007). Tmevp3 also contains a long non-coding RNA called NeST (nettoie
Salmonella pas Theiler's [“cleanup Salmonella not Theiler's”]), which
contributes to epigenetic regulation of Ifnγ (Gomez et al., 2013; Vigneau
et al., 2003). Strains that inherited this region from the A/J or C57BL/6J
founders showed below-average paralysis (Fig. 5). TMEV demyelination
loci Tmevd6, Tmevd9, and Tmevd7 have previously been associated with
TMEV-induced demyelinating disease, particularly in relation to sex



Fig. 3. Cytokine protein levels were measured from serum collected at 90dpi. Six out of 23 cytokines and chemokines (IL-1α, IL-1β, IL-6, IL-10, TNF-α, and IFN-γ) are
highlighted here to focus on the varied protein levels produced by the CC strains and SJL mice. Cytokine levels in CC mouse strains were often dissimilar to those
measured for the TMEV susceptible strain, SJL. The dashed line (–) represents the total average cytokine concentration measurements for sham mice to determine a
control baseline. Sham mice are represented by � and infected mice by▴. P values were calculated for differences between sham and infected mice from the same strain
(*) and between infected SJL and infected CC strains (#) using the Mann-Whitney U test. */#P < 0.05 **/##P < 0.01 ###P < 0.001 ####P < 0.0001. IFN-γ outlier
was removed from CC043 sham column due to its concentration value of 3447.03 pg/ml. Data for the other 17 cyto/chemokines evaluated can be found in sup-
plemental A1.
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Table 2
Statistically significant associations between cytokine levels and paralysis. As-
sociations were identified following stepwise regression analysis. B: Estimated
coefficients of regression. SE: Standard Error.

Variables B SE p-value

IL-1α �0.0120 0.0031 0.0002
RANTES 0.0080 0.0028 0.0063
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effects and gait dysfunction (Butterfield et al., 2003). In the current
study, strains carrying the NOD/ShiLtJ haplotype for Tmevd6 and
Tmevd9, both located on mouse Chr 1 (Butterfield et al., 2003),
Fig. 5. TMEV-related loci and their link to CC founder strains. TMEV-related loci, sort
coded by strain as shown in the key on the far right). CC strains evaluated in this stud
BioRender.com). (For interpretation of the references to color in this figure legend,

6

experienced no paralysis throughout infection. Strains carrying the
129S1/SvImJ founder haplotype at Tmevd7 on Chr 5 showed little to no
paralysis, but those strains with WSB/EiJ founder haplotype exhibited
higher-than-average levels of paralysis.

3.4.2. Levels of other cytokines and chemokines in relation to IL-1α and
RANTES

3.4.2.1. IL-1α. IL-1α is known to contribute to pathogenesis of experi-
mental autoimmune encephalitis (EAE) (Jacobs et al., 1991; Mannie et al.
1987; Matsuki et al., 2006). Both IL-1α and IL-1β are connected with
development of autoimmunity; specifically, a disruption of the balance
Fig. 4. CC strains and their respective H2 haplo-
types and TMEVpresence/absence are categorized
according to observed paralysis scores. CC strains
are arranged by increasing paralysis frequency
scores (green to red gradient). We identified the H2
haplotypes for each strain based on the founder
strains from which the H2 complex was inherited,
to demonstrate that H2 haplotype alone does not
influence phenotypic severity. TMEV RNA presence
was measured via relative levels of the TMEV pol-
yprotein sequence AAA47930 within sham and
infected mice. Those strains with detectable TMEV
RNA within the CNS tissue are denoted with “þ”;
“-” denotes those strains with no detectable TMEV
RNA. A complete RNA sequencing report of relative
TMEV RNA levels are found in B1. *strains not
included in (Eldridge et al., 2020). (For interpre-
tation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)

ed by position on the left, were inherited from different CC founder strains (color
y are listed along the bottom in order of increasing paralysis levels (Created with
the reader is referred to the Web version of this article.)

http://BioRender.com
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between IL-1 and its receptor, IL-1Rα, can lead to a loss of self-tolerance
(Matsuki et al., 2006). Much is known about IL-1β in relation to EAE
autoimmunity and neuroinflammation (reviewed in (Hauptmann,
2020)), but the role(s) of IL-1α are less well-known.

Levels of IL-1α did not directly correlate with paralysis in the current
study. Similarly, expression of the Il1α gene, and the gene encoding the
receptor for IL-1α (Il1r1), did not correlate with each other, or with IL-1α
levels, or with paralysis.

3.4.2.2. RANTES. During viral infection, the chemokine RANTES traf-
fics macrophages to the CNS (Lane et al. 1999), and during chronic viral
infection RANTES has been found to regulate CD8 T-cell responses
(Crawford et al., 2011). RANTES did not correspond directly with TMEV
disease severity in this study: RANTES protein levels were highest in
CC005 and lowest in CC023, both strains with high levels of paralysis and
persistent TMEV infection. Furthermore, CNS expression of Ccl5, the
gene encoding RANTES, did not correlate with either paralysis, TMEV
persistence, or RANTES serum protein levels.

3.4.2.3. Cytokines and chemokines regulated/influenced by IL-1A and/or
RANTES. Higher-than-average paralysis scores correlated with lower-
than-average levels of IL-6 in strains used in this study. Lower paralysis
scores tended to be associated with relatively higher levels of IL-13, an
immunoregulatory cytokine. IL-13 can inhibit production of IL-6 as well
as IL-1α and RANTES, though these effects are likely to be governed by
time point, tissue, and other aspects of the microenvironment. Also,
lower-than-average levels of G-CSF were found in strains with higher
paralysis levels. IL-1α acts by inducing G-CSF, which then coordinates
with IL-6, to mobilize granulocytes and hematopoietic cells from the
bone marrow to mediate the generation of effective immune responses
against infections (Altmeier et al., 2016; Basu et al., 2008; Caldwell and
Emerson 1995).

3.4.3. Expression of genes known to be relevant to TMEV infection
Differentially expressed genes located within H2, particularly previ-

ously implicatedH2-D loci (Clatch et al., 1985; Lipton and Melvold 1984;
Rodriguez and David 1985; Rodriguez et al., 1986), are associated with
susceptibility/resistance to TMEV-induced demyelination. Interestingly,
several class Ib genes (particularly H2-M5 and -Q3) and a nonclassical
class II gene (H2-Ob) showed different expression patterns in the most
paralyzed compared to the least paralyzed mouse strains (Appendix B).
Expression of Class Ib loci in the brain has been previously associated
with potential roles in development and neuronal function (Ohtsuka and
Dalton 2008), while H2-Ob has been linked to responses to viral in-
fections and autoimmunity (Denzin et al., 2017; Welsh et al., 2020).

Expression of Ifng and Il-22, as well as Ifngas1 (NeST locus), located
within the Tmevp2/Tmevp3 QTL region on Chr 10, was not substantially
different between strains with different levels of paralysis.

None of known genes located within the regions of Tmevd6, Tmevd9,
or Tmevd7 were found to have significant expression differences (be-
tween infected and uninfected mice of a given strain, and/or between
different strains), though many pseudogenes are present at each location.
It is possible these loci contain regulatory elements that contribute
collectively to TMEV outcomes. To better discern the roles of these loci in
TMEV infection will require a larger sample size.

4. Discussion

The Collaborative Cross was used to determine profiles of systemic
immune activation during chronic TMEV infection and to identify a hi-
erarchical perspective for understanding cytokine interactions in the
context of TMEV-induced paralysis. Over the course of the infection, mice
in the current study developed disease profiles that varied according to
their genetic backgrounds, similar to our previous findings (Brink-
meyer-Langford et al., 2017; Eldridge et al., 2020). Responses to the same
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viral infection vary according to a host's genetic background, with dif-
ferences in immune response influencing the development of clinical
symptoms.

The current study focused on the TMEV-induced paralysis phenotype
(Fig. 1). Limb paralysis was most dominant in CC005, CC017, and CC023
strains with evidence of progressive paralysis (paralysis scores increased
over the 90-day infection; Fig. 2) in the severely paralyzed strain CC023,
followed by CC005. These findings were compared to those of SJL/J
mice, which are susceptible to TMEV-induced paralysis and have been
studied previously as a paradigm of viral-induced neurological disease
(DePaula-Silva, Tyler J Hanak et al., 2017; Gerhauser et al., 2019b).
While SJL/J mice exhibit loss of limb mobility at the late chronic stage of
the infection, some CC strains developed paralysis starting from the acute
phase of infection.

Aspects of the immune response were analyzed to identify factors
influencing chronic paralysis. SJL/J mice were used as the prototype
strain when evaluating immunological responses among the CC strains to
determine if strains behaved similarly to the SJL/J model of MS. Initially,
TMEV infection prompts a myriad of immunological responses, and
clearance of TMEV from the CNS requires the migration of cells of the
immune system to the site of infection, relying heavily on the action of
cytokines and chemokines (Mi et al., 2004). These responses are active
not only as part of the innate immune system, but can endure and have a
role in the adaptive immune response, during the chronic stage of the
infection.

In contrast to the SJL/J paradigm, little evidence of a dominant
proinflammatory environment was observed in CC strains experiencing
neurological dysfunction (Fig. 3). Despite evidence of CNS viral persis-
tence in the SJL/J strain, most serum cytokine levels for infected SJL/J
mice fell along the sham “threshold line,” indicating lack of cytokine
induction at the chronic stage of injection. The two exceptions were IL-10
and TNF-α. IL-10 production is critical for tissue protection during viral
infection by regulating and suppressing proinflammatory cytokine
expression (Rojas et al., 2017). Failure to reduce inflammation has been
accompanied by poor recovery of motor and sensory function (Siqueira
et al., 2015). TNF-α plays a critical role as a proinflammatory cytokine for
the formation and maintenance of granulomas, leukocyte trafficking, and
other immune cell regulation (Atzeni and Sarzi-Puttini 2013; Steinman
1999). Data suggest that high levels of TNF-α in the spinal cord are
involved in TMEV pathogenesis rather than protection (Katz-Levy et al.,
2000). In the current study, SJL/J mice produced high levels of both
IL-10 and TNF-α (Fig. 3). However, for all infected CC mice (except
CC036), IL-10 was produced at levels below the sham threshold. Simi-
larly, most CC strains produced TNF-α at levels below the sham threshold
line, though infected CC005 mice produced TNF-α at levels significantly
higher than sham-infected CC005.

Cytokine responses varied for CC strains that developed limb paral-
ysis, but remained near the average sham threshold line in Fig. 3.
Interestingly, strains that did not develop paralysis produced a similar
immunological response as paralyzed mice, regardless of viral presence
or absence in the CNS. Furthermore, similarities in cytokine profiles did
not translate to similarities in phenotype profiles. For example, CC023
mice developed spastic and flaccid limb paralysis and had the most se-
vere disease symptoms overall. However, the cytokine levels measured
for TMEV-infected CC023 mice were below the sham threshold line. In
fact, the serum cytokine profile seen in CC023 is reminiscent of TMEV-
resistant C57BL/6J mice, that experience seizures but not paralysis
(Gerhauser et al., 2019a; Lipton 1975; Richards et al., 2011).

Viral presence had no correlative relationship with the paralysis seen
at 90dpi. Twelve of the 14 CC strains in this study had detectable
amounts of TMEV RNA present in CNS tissue (Table 2), but not all of
these 12 strains developed paralysis. TMEV clearance was an inadequate
predictor of paralysis severity at 90dpi.

Levels of TMEV RNA in the CNS at 90dpi were also not correlative
with H2 haplotype, in line with previous observations (Eldridge et al.,
2020). This finding contradicts previous data from SJL/J mice, which are
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characterized as TMEV-susceptible due to their severe disease profile and
presence of high levels of TMEV RNA in CNS tissue (Melvold et al., 1987;
Rodriguez et al., 1991; Trottier et al., 2004). None of the 14 CC strains
used in this study share the SJL TMEV-susceptible H2 haplotype (H2s

haplotype). Instead, the H2 haplotypes of the CC strains most susceptible
to paralysis included Hz, HCAST/EiJ, and Hb. CC023 - the strain with the
most severe paralysis - share the same haplotype (H2b) with
TMEV-resistant strain C57BL/6J. While C57BL/6J mice are known to
clear TMEV within the acute phase of infection (Jin et al., 2019; Richards
et al., 2011; Tsunoda and Fujinami 2002), CC023 mice in this study
continued to show evidence of persistent TMEV infection at 90dpi.
Furthermore, despite being at opposite ends of the paralysis spectrum,
CC002 and CC023 share the same H2 haplotype, derived from the same
founder strain (129S1/SvImJ).

Along with H2 haplotypes, CNS expression of individual genes of the
H2 complex was analyzed. Expression of the class Ib gene H2-M5 tended
to be lowest in strains with higher paralysis scores, while another class Ib
gene, H2-Q3, was expressed at lower levels in strains that were not
paralyzed. The class Ib region of H2 has previously been associated with
tissue- and developmental time point-specific expression (Ohtsuka and
Dalton 2008). Brain development and plasticity are intimately tied to
class I expression (Elmer and McAllister 2012), and response to CNS
injury is dependent on expression of class I factors (Cartarozzi et al.,
2019). Therefore, varying degrees of susceptibility to TMEV-induced
paralysis could be influenced by variation in expression of these class I
genes. Expression differences were observed in the H2-Ob gene with
lower expression levels in strains with little to no paralysis. Prior studies
have shown that H2-Ob genotype influenced the production of viral
neutralizing antibodies regardless of overall H2 haplotype (Denzin et al.,
2017); the development of autoimmunity has been associated with this
locus (reviewed in Welsh et al., 2020). Therefore, strain-specific differ-
ences in the expression of this locus likely influence the degree of
response to TMEV and potentially contribute to the paralysis-causing
damage inflicted by the infection.

Potential immunological drivers of neurological phenotypes (e.g.,
paralysis) were identified using stepwise regression analysis, revealing
significant associations between serum levels of IL-1α and RANTES and
the severity of TMEV-induced paralysis. IL-1 is known for creating an
inflammatory environment by regulating multiple immune processes
(Dinarello 2009). There are two IL-1 isoforms produced, IL-1α and IL-1β,
with the latter being the main isoform released (Kaneko et al., 2019). The
roles of IL-1β have been extensively studied in stroke and EAE models
(Matsuki et al., 2006; Salmeron et al., 2019; Sha and Markovic-Plese
2016), but IL-1α is less well-characterized. Despite considering IL-1α as
a pro-inflammatory cytokine, it could have beneficial neuroprotective
effects under appropriate conditions. For example, release of IL-1α by
dying microglia has been identified as a DAMP to induce neuro-
inflammation; deletion of IL-1α resulted in increased levels of survival
factor Tox3, correlating with oligodendrocyte survival after spinal cord
injury (Bastien et al., 2015). However, IL-1α levels did not correspond
linearly to paralysis scores: relatively low IL-1α levels were detected in
both non-paralyzed and severely paralyzed strains. Given the myriad
potential roles of IL-1α and other genes and proteins influenced by (and
influencing) IL-1α in a genetically diverse background, a direct rela-
tionship between IL-1α level and paralysis was not anticipated. Further
investigations are needed to evaluate relevant properties and mecha-
nisms of IL-1α.

A significant association was also identified between serum levels of
RANTES and progression of TMEV-induced paralysis. RANTES acts as a
mediator for inflammatory infiltrates and T cell responses at sites of
tissue damage. Studies have associated RANTES with early formation of
plaques (HVAS et al., 1997; Simpson et al., 1998), spinal cord injury via
activation of NF-κB signaling pathway (Wang et al., 2017), and leukocyte
entry into the CNS (Lane et al., 2000), thus contributing to the patho-
genesis of virus induced inflammation. In the acute stage of infection,
RANTES amplifies the inflammatory process in an attempt to reduce viral
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presence in the CNS. Consequently, a sustained inflammatory environ-
ment has been thought to be enhanced by RANTES in EAE models
(Glabinski et al. 2003; Glabinski et al. 1998). During the chronic stage of
viral infection, RANTES plays a pivotal role by influencing CD4þ and
CD8þ responses. In the absence of RANTES, CD8þ T cells become
exhausted, hindering the ability to control the infection by introducing
an immunological dysfunction within the host (Crawford et al., 2011).
The exact mechanisms of proinflammatory effects modulated by RANTES
during chronic infection remain unclear, but findings from previous
studies suggest it plays a central role in inflammatory CNS disease.

Relevant expression levels of the many constituent proteins and genes
of IL-1α and RANTES signaling pathways are expected to vary across
genetically diverse CC strains. Potential cytokine associations were
identified with the progression of paralysis over time, but these cytokines
and chemokines are part of much larger synergistic relationships that
vary from strain to strain.

Correlation between susceptibility to demyelination and IFN-γ upre-
gulation of MHC Class II expression on murine cerebrovascular endo-
thelial cells derived from SJL and CBA mice (both susceptible to TMEV-
induced demyelination) was previously reported. CVE derived from
TMEV-resistant strains (Balb/c mice) did not express MHC class II
following IFN-γ treatment (Welsh et al., 1993). Also, Theiler's virus
infection induced MHC class I expression in CVE derived from mice that
are susceptible to TMEV-induced demyelination, but not in resistant CVE
(Welsh et al., 1995). These effects may result in increased immune traf-
ficking into the CNS, thereby impacting disease pathology. By reporting
serum cytokine levels, systemic immune differences were compared
rather than focusing only on the environment of the CNS.

Prior studies have shown that severe neurological deficits have been
influenced by the degree of viral spreading within the CNS. For instance,
variability of TMEV infection outcomes in CBA mice are related to viral
spreading in defined structures in the brain leading to persistent infection
and demyelination (Oliver et al. 1997). As supported in this study,
cytokine and chemokine response is one of the many drivers in
TMEV-related disease outcomes. For instance, IL-6 has been shown to
have an important protection response for anterior horn neuronal injury
(Pavelko et al., 2003). Further studies will be required to ascertain the
mechanisms involved in the development of TMEV-induced paralysis.

With larger sample numbers and more data points collected at
different spatial (i.e., CNS vs. serum) and temporal (i.e., acute vs. chronic
infection) conditions, it will be possible to identify key drivers of
neurological symptoms that follow viral infections. Future investigations
will involve characterizing the immunological response during the acute
phase of the infection to follow the cascade of events occurring between
the innate and adaptive immune system. By identifying relevant immu-
nological and genetic factors that contribute to neurological disease, an
enhanced understanding of how the immune system influences suscep-
tibility or resilience to specific virus-induced neurological phenotypes
will be obtained.

5. Conclusion

In this study, we infected mice of both sexes representing 14 CC
strains to characterize the long-term neurological and immunological
responses caused by TMEV. Three strains (CC005, CC017, and CC023)
exhibited pronounced paralysis by the chronic stage of infection. By
evaluating the paralysis frequency scores (which reflect the duration and
severity of the paralysis) in context with the production of cytokines and
chemokines at 90 dpi, we determined that IL-1α and RANTES were
significantly associated with the progression of paralysis. We also eval-
uated relationships between paralysis scores, H2 haplotypes, and
expression levels of known TMEV-relevant genes, all previously impli-
cated in TMEV susceptibility and pathogenesis. We were able to deter-
mine that long-term paralysis progression was the cumulative result of
many interacting factors, and that the same outcome (in this case, pa-
ralysis) resulted from different sets of contributing influences. During
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late-stage TMEV infection, these complicated interactions were likely
coordinated in part by levels of IL-1α and/or RANTES.

In conclusion, synergistic relationships between immune response
and genetic background determined long-term paralysis following viral
infection of a human-relevant mouse model. These findings are novel in
relation to previous paradigms of TMEV-induced paralysis and suscep-
tibility, which were established using inbred mouse strains. Overall,
these findings provide insight into the complex roles of immune response
in relation to long-term virus-induced paralysis within a heterogeneous
population.
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