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guided mRNA vaccine development for kidney 
renal clear cell carcinoma
Hang Xu1,2†, Xiaonan Zheng1,2,3†, Shiyu Zhang1,2†, Xianyanling Yi1,2†, Tianyi Zhang1,2, Qiang Wei1,2, 
Hong Li1,2 and Jianzhong Ai1,2*   

Abstract 

Current treatment strategy for kidney renal clear cell carcinoma (KIRC) is limited. Tumor-associated antigens, espe-
cially neoantigen-based personalized mRNA vaccines represent new strategies and manifest clinical benefits in solid 
tumors, but only a small proportion of patients could benefit from them, which prompts us to identify effective 
antigens and suitable populations to facilitate mRNA vaccines application in cancer therapy. Through performing 
expression, mutation, survival and correlation analyses in TCGA-KIRC dataset, we identified four genes including 
DNA topoisomerase II alpha (TOP2A), neutrophil cytosol factor 4 (NCF4), formin-like protein 1 (FMNL1) and docking 
protein 3 (DOK3) as potential KIRC-specific neoantigen candidates. These four genes were upregulated, mutated 
and positively associated with survival and antigen-presenting cells in TCGA-KIRC. Furthermore, we identified two 
immune subtypes, named renal cell carcinoma immune subtype 1 (RIS1) and RIS2, of KIRC. Distinct clinical, molecular 
and immune-related signatures were observed between RIS1 and RIS2. Patients of RIS2 had better survival outcomes 
than those of RIS1. Further comprehensive immune-related analyses indicated that RIS1 is immunologically “hot” and 
represent an immunosuppressive phenotype, whereas RIS2 represents an immunologically “cold” phenotype. RIS1 and 
RIS2 also showed differential features with regard to tumor infiltrating immune cells and immune checkpoint-related 
genes. Moreover, the immune landscape construction identified the immune cell components of each KIRC patient, 
predicted their survival outcomes, and assisted the development of personalized mRNA vaccines. In summary, our 
study identified TOP2A, NCF4, FMNL1 and DOK3 as potential effective neoantigens for KIRC mRNA vaccine develop-
ment, and patients with RIS2 tumor might benefit more from mRNA vaccination.
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Background
Kidney renal  clear cell  carcinoma (KIRC) occupies 
about 85% of renal cell carcinoma (RCC) [1]. The prog-
nosis of KIRC, compared to other histological subtypes, 

was generally worse before adjustment of tumor stage 
and grade [2, 3]. Therefore, the need of new strategies 
treating KIRC has become necessary and urgent. The 
use of mRNA-based vaccine has been proposed as a 
promising approach of combatting tumors two dec-
ades ago, and has again become a hotspot under the 
background of coronavirus disease-2019  (COVID-19) 
pandemic [4–7]. However, the application of mRNA 
vaccine in KIRC is somehow lagged. Although a cer-
tain degree of immune response was observed, only a 
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limited number of studies have investigated mRNA vac-
cine in KIRC [8, 9] and their results were still far from 
satisfactory. Hence, the present study aims to explore 
novel candidate tumor antigens for KIRC mRNA vac-
cine development. Additionally, immune subtypes of 
KIRC will be classified and patients suitable for mRNA 
vaccination will be identified. Taken together, this 
study may pave an avenue for the development of KIRC 
mRNA vaccine and the identification of KIRC patients 
suitable for mRNA vaccination.

Results and discussion
Screening of candidate antigens in KIRC
The workflow of our study was presented in Fig. S1. A 
total of 1098 aberrantly expressed genes were identi-
fied (Fig. S2a-b) and the chromosomes distribution 
of these genes were showed in Fig.  1a. Next, we identi-
fied 11,162 genes that mutated in KIRC (Fig. S2c) and 
the top 30 mutated genes were showed in Fig.  1b. The 
altered genome fraction and mutation counts in indi-
vidual samples were demonstrated in Fig. 1c-d. Of note, 
PBRM1, TTN and VHL were also the most frequently 
mutated genes considering both altered genome fraction 
and mutation counts (Fig. 1e-f ). Combining the expres-
sion and mutation data of KIRC, 572 genes that were 
highly expressed and mutated in KIRC were identified as 
potential candidate antigens (Fig.  1g). The Gene Ontol-
ogy (GO) analysis demonstrated that these 572 genes 
involved in immune response-related pathways (Fig. 1h, 
Fig. S2d-f ). The results indicated that these genes were 
aberrantly highly expressed and mutated in KIRC, which 
might stimulate tumor-specific immune response. Thus, 
the 572 genes were the potential candidates for mRNA 
vaccine development.

To explore the key genes that functioned as best can-
didates for mRNA vaccine targets, we further identified 
37 genes which were associated both OS and RFS from 
the 572 genes (Fig.  1i-j). Given the pivotal role of anti-
gen-presenting cells (APCs) in the function of mRNA 
vaccines, we analyzed the association of these 37 genes 
with APCs using single sample gene set enrichment 
analysis (ssGSEA)  [10] (Fig. 1k). Finally, 4 genes includ-
ing TOP2A, FCN4, FMNL1 and DOK3 that were closely 

associated with APCs were identified (spearman cor-
relation coefficient > 0.3; Fig.  1l). All of these four genes 
were positively associated with APCs and could serve as 
potential tumor antigens that can be recognized and pro-
cessed by the APCs to T cells, finally triggering strong 
immune response against tumor cells. More importantly, 
the survival analysis demonstrated that the high expres-
sion of these four genes were associated with decreased 
survival in KIRC (Fig. 1m), suggesting the four genes were 
of importance in KIRC development and progression. 
Taken together, TOP2A, NCF4, FMNL1 and DOK3 were 
significantly upregulated, mutated and positively associ-
ated with APCs infiltration in KIRC. Therefore, mRNA 
vaccines encoding these 4 genes might induce anti-tumor 
immune response and eliminate malignant cells.

Immune subtypes identification
Tumor immune microenvironment might impact the effi-
cacy of immunotherapy and immune subtypes might be 
helpful to identify patients who can response to mRNA 
vaccination. We analyzed the expression profiles of 1621 
immune-related genes in KIRC samples to construct con-
sistent clusters. We selected k = 2 (Fig. S3a-b) for stable 
clustering of immune-related genes and obtained two 
immune subtypes, named kidney renal cell carcinoma 
immune subtype 1 (RIS1) and RIS2, respectively (Fig. 2a). 
The principal component analysis (PCA) validated that 
these two subtypes could be well distinguished (Fig. S3c). 
Survival analysis revealed that RIS1 had significant worse 
prognosis than RIS2 (Fig.  2b) and RIS1 had significant 
higher pathological T, N and M stages than RIS2 (Fig. 2c). 
Overall, our immune subtyping was well distinguished 
and could be applied to identify KIRC patients with bet-
ter pathological and survival outcomes.

Immune subtypes with tumor mutation burden (TMB)
As TMB  was associated with immunotherapy response 
[11], we assessed the TMB, mutation counts and copy 
number alteration (CNA) status between RIS1 and RIS2. 
Our results showed that there was no difference between 
groups regarding TMB (Fig. 2d), while RIS1 had signifi-
cantly higher mutation number than RIS2 (Fig. 2e). The 
waterfall diagrams of different subtypes were showed in 

(See figure on next page.)
Fig. 1  Identification of potential antigens in KIRC. a Chromosomal distribution of up- and down-regulated genes in KIRC; b Waterfall diagram of 
the top 30 mutant genes; c Distribution of mutation frequency; d Distribution of mutation number; e Distribution of mutation number of the top 
10 genes; f Distribution of mutation frequency of the top 10 genes. g Overlapped genes identified through intersection; h GO enrichment analysis 
of 572 genes after intersection of overexpressed and mutated genes; i-j Univariate Cox regression analysis of the 37 potential antigens for OS (i) 
and RFS (j). k Correlation analysis of 37 genes with immune infiltrating cells, red box indicates genes closely related to APCs (threshold: spearman 
correlation coefficient > 0.3); l Association of TOP2A, MCF4, FMNL1 and DOK3 with B cell, macrophage, and dendritic cells; m Kaplan-Meier curves 
of the association of TOP2A, MCF4, FMNL1 and DOK3 with OS and DSS. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; OS, 
overall survival; RFS, recurrence-free survival; DSS, disease specific survival. * p < 0.05 and ** p < 0.01
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Fig. 2f. The CNA was found to be significantly higher in 
RIS1 than in RIS2 (Fig. S3d-f ). These findings suggested 
that RIS2 might be more likely to respond for mRNA vac-
cines. Furthermore, we found that RIS2 had significantly 
lower immunity activity than RIS1 (Fig.  2g), suggesting 
the mRNA vaccine targeting RIS2 might reinforce its 
immune response.

Immune subtypes with immune checkpoints (ICPs) 
and immune infiltrating cells
Given the pivotal role of ICPs in immune response reg-
ulation, which might impact the anti-tumor efficacy 
of mRNA vaccines, we analyzed the expression of ICPs 
between two subtypes (Fig.  2h). Our results demon-
strated that 35 (77.8%) of ICPs, such as CD274, CTLA4, 
PDCD1, IDO1 and TIGIT, were significantly higher in 
RIS1 than RIS2, suggesting mRNA vaccines might func-
tion better in RIS2  for its relatively low ICPs expressions. 
Moreover, we showed that RIS1 had markedly higher 
immune score, higher stromal score and lower tumor 
purity (Fig. 2i) than RIS2. In addition, we also conducted 
cytolytic activity (CYT) analysis and the results showed 
that RIS1 had higher CYT than RIS2 (Fig.  2i). Further-
more, we analyzed the differences of 28 immune infil-
trating cells between groups (Fig. 2j). The results showed 
that plasma cells, CD8 T cells, memory CD4 T cells were 
markedly higher in RIS1 than RIS2 (Fig. S4). Therefore, 
RIS1 is immunologically “hot” and represent an immu-
nosuppressive phenotype, whereas RIS2 represents an 
immunologically “cold” phenotype. Previous study [12] 
had identified six pan-cancer subtypes, including C1 
(Wound Healing), C2 (IFN-γ Dominant), C3 (Inflamma-
tory), C4 (Lymphocyte Depleted), C5 (Immunologically 
Quiet) and C6 (TGF-β Dominant). The distributions of 
these six types in RIS1 and RIS2 were analyzed as well. As 
exhibited in Fig. 2k, RIS1 had significantly higher propor-
tion of C2 than RIS2, while RIS2 had significantly higher 
proportion of C4 than RIS1. This result further validated 
the “hot” phenotype of RIS1 and the “cold” phenotype of 
RIS2. Therefore, mRNA vaccine administration in RIS2 
might stimulate the immune response, namely turning 
“cold” tumor to “hot”.

Immune landscape of KIRC
The expression profile of immune-related genes in each 
KIRC sample was selected to construct the immune 
landscape of KIRC. We found that the point distribu-
tion in RIS1 and RIS2 is relatively discrete (Fig.  2l). 
Principal component 1 (PC1, horizontal axis) was most 
negatively correlated with plasma cells, CD8 T cells and 
T follicular helper cells, and most positively correlated 
with resting NK cells and resting mast cells. On the con-
trary, principal component 2 (PC2, vertical axis) was 
most negatively correlated with resting memory T cells 
and most positively correlated with Tregs (Fig.  2m). 
The correlation of different immune cells between PC1 
and PC2 further indicated the accuracy of our classifi-
cation. Moreover, heterogeneities in each cluster can 
be observed from Fig.  2l that even RIS1 and RIS2 also 
exhibited opposing distribution. Therefore, we further 
divided RIS1 and RIS2 into two subgroups accord-
ing to the distribution location of immune cell groups 
(Fig. 2n). RIS1B and RIS2A had significantly lower CD8 
T cells compared with their counterparts, suggesting 
mRNA vaccines might be viable in RIS1B and RIS2A 
(Fig. S5a-b). In addition, by comparing the prognosis 
of samples with extreme distribution in the immune 
landscape, we found that patients in group 8 had best 
survival outcomes and patients in group 7 had worst 
survival outcomes (Fig.  2o-p). Taken together, con-
struction of immune landscape of KIRC enabled us to 
accurately identify the immune cell components of each 
KIRC patients and predict their survival outcomes, 
finally assist the development of personalized mRNA 
vaccines.

Identification of immune gene co‑expression modules 
and immune hub genes of KIRC
The immune gene co-expression module clustered 
the KIRC samples through weighted gene  coexpres-
sion network analysis (WGCNA, Fig. S6a-d). We sub-
sequently analyzed the distribution of characteristic 
genes of the RIS1 and RIS2 in these 9 modules (Fig. 
S6e). RIS1 showed the higher eigengenes in black, 
brown, magenta, pink, red and turquoise modules than 

Fig. 2  Identification of immune subtypes in KIRC. a Sample clustering heatmap; b Kaplan-Meier curves of the association of immune subtypes 
with overall survival; c Association of immune subtype with pathological T, N, and M stage. RIS, renal cancer immune subtype; d-e Association 
of immune subtypes with TMB (d) and mutation number (e); f Top 30 mutated genes in RIS1 and RIS2; g Distribution of immune activity scores 
in RIS1 and RIS2; h Expression of immune checkpoints between RIS1 and RIS2; i Association of immune subtypes with immune score, estimate 
score, tumor purity, and CYT; j Immune infiltration score heatmap; k Relationship between immune subtypes and existing pan-cancer immune 
subtypes; l Immune landscape in KIRC. Each dot represents one patient, and the immune subtype is color coded. The horizontal axis represents the 
first principal component, and the vertical axis represents the second principal component; m The heatmap of the correlation between the two 
principal components and immune cells; n The immune landscape of subgroup of KIRC immune subtype; o The immune landscape of samples 
from three extreme positions; p The prognosis of three extreme positions. CYT, immune cytolytic activity; RIS, renal cancer immune subtype; ns, not 
significant. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001

(See figure on next page.)
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RIS2. Survival analysis showed that blue, yellow and 
green modules were associated with overall survival 
(OS) in KIRC (Fig. S7a). KEGG analysis showed that 
T cell receptor signaling pathway was enriched in blue 
module, cytokine and cytokine receptor interaction in 
yellow and green module (Fig. S7b-d). The blue mod-
ule was picked up to build the risk score. Firstly, we 
selected the hub genes including RDX、IREB2、UBR1 
and PIK3CA from the module  (MM > 0.9). We found 
that these four hub genes were all mutated in KIRC. A 
risk model was also built (Fig. S8a-b). It was found that 
the  risk score had significant prognostic efficacy (Fig. 
S8c). The expression of these four genes was visualized 
by heatmap (Fig. S8d). Thus, the hub genes identified in 
this study can serve as the prognostic factors for KIRC 
and serve as biomarkers for picking up KIRC patients 
for mRNA vaccines.

Identification of differential expression genes (DEGs) 
between immune subtypes
To explore our immunotyping more deeply, 107 genes 
were identified as the DEGs between RIS1 and RIS2 
(Fig. S9a). Pathway enrichment analyses were showed in 
Fig. S9b-e and they were enriched in immune response 
pathways such as “active immune response”, “lym-
phocyte mediated immunity” and “humoral immune 
response”, further indicating that our immunotyping 
could reflect the antitumor immune response in KIRC. 
We next performed univariate Cox regression analysis 
on these 107 DEGs and 31 genes were significantly cor-
related with decreased survival outcomes (threshold 
P  < 0.01, Fig. S10a). Then we performed lasso regres-
sion analysis on these 31 genes and finally obtained 7 
high-risk genes (CCL19, CCL5, IGLV9–19, IGLV3–27, 
IGLV3–21, IGLC2 and IGHG3, Fig. S10b-d). Of note, 
two of these 7 genes (IGHG3 and IGIC2) were highly 
expressed and mutated genes in KIRC. A risk model 
was built based on the 7 genes according to the median 
of risk score (Fig. S10e-f ) and the survival curves indi-
cated the risk model had prognostic efficacy (Fig. S10g). 
The expression heatmap of these 7 genes was showed 
in Fig. S10h. It can be found that RIS1 had significantly 
higher scores and greater  percentage of high-risk sam-
ples than RIS2 (Fig. S10i-j). The expression of the above 
7 genes in TCGA-SKCM were picked up and calcu-
lated the risk score of each sample to build a model. The 
results showed that high risk group had significantly 
higher anti-CTLA-4 and anti-PD-1 response than low 
risk group (Fig. S10k), indicating that RIS2 had lower 
immune checkpoint efficacy than RIS1. Thus, immune 
checkpoint blockade might not suitable for KIRC 
patients with RIS2 and  mRNA vaccines might be effec-
tive for RIS2 populations.

Conclusions
In summary, our study identified TOP2A, NCF4, FMNL1 
and DOK3 as potential effective neoantigens for KIRC 
mRNA vaccine development, and patients with RIS2 
tumor might benefit more from mRNA vaccination. Our 
study paved a way for future mRNA vaccine development 
and define the suitable population for vaccination.

Methods and availability of supporting data
Methods and materials used in our study are attached as 
supplementary information. All data are freely available 
from the public databases and the other necessary and 
reasonable information could be obtained from the cor-
responding author.
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subtype; SKCM, human skin cutaneous melanoma; CTLA-4, Cytotoxic 
T-Lymphocyte Associated Protein 4; PD-1, programmed cell death protein 
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