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ABSTRACT

Autism spectrum disorder (ASD) is typically
characterized by common deficits in social skills and
repetitive/stereotyped  behaviors. It is widely
accepted that genetic and environmental factors
solely or in combination cause ASD. However, the
underlying pathogenic mechanism is unclear due to
its highly heterogeneous nature. To Dbetter
understand the pathogenesis of ASD, various animal
models have been generated, which can be
generally divided into genetic, environment-induced,
and idiopathic animal models. In this review, we
summarize the common animals used for ASD study
and then discuss the applications, clinical insights,
as well as challenges and prospects of current ASD
animal models.
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INTRODUCTION

Autism spectrum disorder (ASD) comprises a clinically
heterogeneous group of disorders characterized by social
deficits, narrow interests, stereotyped behaviors, and verbal
and non-verbal communication difficulties (Sandin et al.,
2017). The worldwide incidence of ASD has dramatically
increased in the past several decades, increasing from 1/150
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(0.67%) in 2000 to 1/54 (1.85%) in 2016 in American children,
with a 4.3 times higher incidence in boys than in girls
(Maenner et al, 2020). In China, the most extensive
population-based study (~120 000 children) indicates that the
prevalence of ASD in Chinese children aged 6 to 12 is
~0.70%. According to China’s 2016 national census data, this
estimate translates to approximately 700 000 Chinese children
(6 to 12 years) with ASD (Zhou et al., 2020). As early as 1943,
American pediatric psychiatrists reported on clinical autistic
symptoms in 11 children, which became an important basis for
the diagnosis of ASD (Kanner, 1968). However, there is still a
lack of practical methods for the diagnosis and treatment of
ASD, mainly due to high disease heterogeneity. ASD is not
only a medical problem for patients but also an urgent social
problem, imposing a heavy mental and financial burden on
families and society (Manoli & State, 2021). Therefore,
systematic investigations on the pathogenic regulators of ASD
are critical to provide theoretical and experimental support for
the development of new clinical diagnosis, treatment, and
intervention measures.

As indicated in twin and family studies, development of ASD
is predominantly attributed to genetic factors (Sandin et al.,
2017; Tick et al., 2016). Dozens of rare Mendelian disorders,
including fragile X syndrome, neurofibromatosis, Rett
syndrome, tuberous sclerosis complex, and structural
chromosomal variations, are also considered high risk factors
for the development of ASD (Bourgeron, 2015; Geschwind &
State, 2015). Genome-wide studies have identified hundreds
of risk loci for ASD, with a considerable number also related to
other neurodevelopmental diseases such as schizophrenia
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and intellectual disability (ID) (Geschwind & State, 2015).
Copy number variants (CNVs) are another major factor
responsible for ASD etiology (Chung et al., 2014). Recent
studies have also revealed the contribution of rare de novo
single nucleotide mutations, which together contribute
significantly to the pathogenesis of ASD (Bourgeron, 2015;
Gaugler et al., 2014; Geschwind & Flint, 2015; Geschwind &
State, 2015). Dysregulated immune response during early
embryonic development due to environmental factors, such as
chemical exposure, infection, inflammation, and emotional
health of pregnant mothers, can also increase ASD risk
(Ornoy et al., 2015).

Given the difficulties in obtaining samples from ASD
patients, animal models that restore the clinical features of
ASD are the best choice for exploring the pathogenic
regulators of ASD (Wintler et al., 2020). The establishment
and selection of a stable and reliable animal model of ASD is
critical for elucidating the relationship between the central
nervous system (CNS) and ASD pathogenesis and for
investigating  pathophysiological  processes, behavioral
changes, diagnosis, and treatment. To date, many ASD
animal models have been developed, and each animal
species and modeling method has its own unique advantages
and disadvantages. In this review, we first summarize the
standard animals used to study ASD, and then discuss the
applications and clinical insights of ASD animal models based
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Figure 1 Diverse animal models of ASD

on genetic and environmental factors. Finally, we discuss the
challenges and prospects of current ASD animal models. This
review should provide a better understanding of ASD research
and treatment.

COMMON ANIMALS USED IN ASD STUDY

Impaired social relationships and repetitive/stereotypic
behaviors distinguish ASD from other developmental disorders
(Rapin & Tuchman, 2008; Yenkoyan et al., 2017). Therefore,
advances in the pathophysiology of ASD symptoms are
classified into two categories: social communication/
interaction and patterns of behavior (Mukherjee, 2017; Peretti
et al., 2019) (Figure 1). Social communication and interaction
deficits include poor eye contact, lack of facial expressions,
flat affect, delayed (or no) speech, difficulty in understanding
questions and directions, aggressive or disruptive, repeated
phrases or words, and resistance to cuddling and holding.
Patterns of behavior are highlighted as repetitive movements
like handshaking, spinning, or rocking; hyperactivity; difficulty
in body movement coordination; sensitivity to light, sound, or
touch; self-harming activities such as head-banging; and
specific food preferences or food patterns.

Non-human primates (NHPs), domestic animals, rodents,
birds, fish, and invertebrates have been used as animal
models to mimic the clinical features of ASD (Figure 1;
Table 1). In this section, we summarize those animals used in
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Advances in understanding of ASD symptom pathophysiology can be classified into two categories: social communication/interaction and patterns

of behavior. Non-human primates, domestic animals, rodents, birds, fish, and invertebrates are the most commonly used in ASD research.
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Table 1 Advantages and limitations of different animals in ASD modeling

Category Animal Advantage Limitation

Non-human Rhesus, Relatives of humans, similar brain structure, tracible eye contact Expensive and inconvenient

primates cynomolgus experiment operation

Domestic Dogs, cattle Similarity of human in core clinical phenotypes, temperament, brain Large size, expensive,

animals structure, physiology, nutritional metabolism, and ethics inconvenient experiment
operation

Rodents Mice, rats, and Relatively low cost, powerful genetic tools, suitable for drug screening and No sulcus and gyrus structure

prairie voles preclinical study

Songbird Zebra finch Mimic language defect Brain is underdeveloped

Fish Zebrafish Low cost, stereotypical behavior Low homology, large differences
in organizational structure

Invertebrates Fruit fly, nematode, Low cost, powerful genetic tools, stereotypical behavior, habituation Large differences in brain

bee, Aplysia

behavior, suitable for large-scale screening for ASD risk genes and drugs _structure

ASD study and how their research advantages benefit our
understanding of the pathogenesis of ASD.

NHPs

As animal models, monkeys, including rhesus (Macaca
mulatta) and crab-eating macaques (M. fascicularis), best
simulate human social behavior. Compared with rodents that
have evolved for more than 70 million years, macaques
separated from human evolution nearly 25 million years ago,
and thus show greater similarity to humans in terms of
genetics, neurobiology, and behavior (Kumar & Hedges, 1998;
Rat Genome Sequencing Project Consortium, 2004).

Macaques mature about four times faster than humans.
However, the early social development of macaque infants is
similar to that of human infants in many aspects (Weinstein &
Capitanio, 2012; Weinstein et al., 2014), including complex
social groupings, communication through facial expressions,
body language, and sound (Testard et al., 2021), and
behavioral defects (Ghazanfar & Santos, 2004). In addition,
several key brain regions associated with social behavior in
macaques are similar to those in humans (Bauman &
Schumann, 2018). For example, the amygdala has a very
similar  nuclear structure, neurochemical distribution,
connectivity, and functional characteristics as humans and
other NHPs (Rutishauser et al., 2015), whereas nuclear
distribution differs significantly in rodent brains (Chareyron et
al., 2011; Pitkdnen & Kemppainen, 2002).

The Social Responsiveness Scale (SRS) provides a
quantitative measure of behavioral variability to identify
individuals who do not meet the diagnostic criteria for ASD but
still exhibit atypical social behaviors compared to the general
population (Constantino et al., 2006). It is adaptive to NHPs.
For instance, well-trained caregivers using the monkey SRS
can identify macaques that exhibit atypical social response
patterns related to social avoidance, social anxiety/rigidity,
lack of social self-confidence, and social embarrassment
(Feczko et al., 2016). Moreover, chromosome-scale genome
assemblies of NHPs not only allow us to better understand
these animal models but also provide an important basis for
human biomedical research (Jayakumar et al., 2021).
However, although NHP models can bridge rodent models of
human diseases, increased costs and ethical considerations
limit their use in research.

Domestic animals
Several studies have proposed that domestic animal models
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are complementary to traditional rodent models. For example,
the dog is an innovative and unique model for many human
neuropsychiatric diseases, including ASD (Bunford et al.,
2017; Sandor et al.,, 2021). The advantages of dog models
include: (a) significant inter-individual differences in social
cognitive performance in dogs; (b) greater phenotypic
similarity between dogs and humans than between rodents
and humans; (c) symptoms that are functionally similar to the
human condition; and (d) similar causes in dogs than in
rodents (Topal et al., 2019). Cattle have also been utilized to
study the molecular mechanism underlying ASD. A recent
study tested enrichment of polymorphisms associated with
cattle temperament in genes involved in four characteristics of
human psychosis and personality disorder, including
schizophrenia, ASD, neuroticism, and developmental delay
disorder (Costilla et al., 2020). As relatively advanced
mammals, domestic animals have a similar brain structure,
physiology, and nutritional metabolism to humans. However,
due to their large size, their maintenance and experimental
operation can be inconvenient and expensive.

Rodents

Rodents (namely mice and rats) have similar neuroanatomy,
biochemistry, electrophysiology, and genetics to humans. As
classic animal models, they are widely used in basic scientific
studies and preclinical trials due to the advantages of low
price, short pregnancy, and many offspring (Simmons et al.,
2021). Other rodents, such as prairie voles, have a stable
spousal relationship and parental behavior, which is beneficial
for studying social cognitive defects and ASD (Donovan et al.,
2020). Most current ASD animal models are generated in mice
and rats and will be discussed in detail in the following
sections.

Birds

Little is known about the neural and genetic basis of human
language development and related neurodevelopmental
disorders (including ASD), in which language deficits are
considered a comorbidity. Although no animal model can fully
capture the behavior and genetic complexity of ASD, as an
experimental language learning animal model, songbirds can
supplement the shortcomings of rodent genetic models and
provide essential insights into communication deficiencies. For
instance, zebra finches communicate through learned
vocalizations and can be used to simulate language
communication disorders (Ahmadiantehrani & London, 2017;
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Hacohen-Kleiman et al., 2020; Panaitof, 2012). Moreover,
recent genomic research has identified potential genetic
substrates for the evolution and regulation of vocal
communication (Warren et al., 2010). Furthermore, expression
of the ASD gene FOXP1 is reported to cause severe
impairment in speech/language learning and affect the cultural
transmission of bird songs between adult and juvenile zebra
finches (Garcia-Oscos et al., 2021).

Fish

Zebrafish serve as a model system due to their precocious
development, small transparent larval morphology, sensitive
pharmacology, and genetic and physiological similarities to
humans (de Abreu et al.,, 2020; James et al., 2021). For
neurological research, zebrafish have been widely used in
studies on brain development, synaptic growth, and other
functions that regulate the CNS, making it a powerful tool for
studying ASD (de Abreu et al., 2021; Gawel et al., 2020; Rea
& Van Raay, 2020). With homologous preference and
community aggregation, zebrafish can be used to study social
behaviors (Tang et al., 2020). The phenotypic characteristics
of zebrafish can be reliably evaluated by automatically
reconstructing three-dimensional swimming trajectories
(Stewart et al., 2015).

Invertebrates

The fruit fly (Drosophila melanogaster) is a unique and
powerful genetic model organism with a high degree of
genetic conservatism and easy genome manipulation, and
thus can be used to study a wide range of biological issues
(Cheng & Chen, 2018). Drosophila can help identify genes
associated with ASD (Hope et al., 2019). For instance,
Drosophila fed different doses of bisphenol propane show
more repetitive behavior (grooming behavior) and abnormal
social interactions (shorter distance from individual flies)
compared with the controls (Kaur et al., 2015). Recent
research on 286 gene orthologs implicated in ID with or
without comorbid ASD, specifically in Drosophila neurons, with
light-off jump habituation testing, identified nearly 100 ID
genes that regulate habituation learning, with some
“habituation-deficient” genes implicated in ASD (Cheng & Jin,
2019; Fenckova et al., 2019).

In addition to Drosophila, other invertebrates such as bees
(Kocher et al., 2018), Caenorhabditis elegans (Calahorro &
Ruiz-Rubio, 2011), and Aplysia (Choi et al., 2011) have been
used for ASD study. Although there are significant differences
in brain structure between invertebrates and humans, these
animals can be utilized as models to study the underlying
mechanism of ASD.

DIVERSE ANIMAL MODELS EXPLORING KEY FEATURES
OF ASD

Based on different construction methods, animal models of
ASD mainly include genetic models, environment-induced
models, and idiopathic models (Figure 2).

Genetic models
The genetic risks of ASD are conferred by hundreds of genes
(Satterstrom et al., 2020), broadly affecting various biological

processes, such as synaptic function and neuronal activity,
postsynaptic density protein metabolism, neuronal cell
adhesion, WNT signaling, and chromatin remodeling in the
process of neurogenesis (Abrahams & Geschwind, 2008;
Miles, 2011). Advanced sequencing and gene-editing
technologies, such as homologous recombination and
CRISPR/Cas9, have together resulted in the rapid
development of genetic animal models of ASD (Figure 2A). To
date, more than 200 ASD risk genes/loci are targeted to
generate corresponding animal models (https://gene.
sfari.org/database/animal-models/genetic-animal-models/). In
this section, we discuss the animal models of several typical
syndromic and non-syndromic ASD genes/loci. Many of these
genetic models have been used to examine the rescue
effectiveness of pharmaceutical agents, as summarized in
Table 2.

Syndromic ASD genes:

MECP2: Rett syndrome (RTT) is a progressive
neurodevelopmental disorder that causes mental retardation,
with an incidence of 1/10 000-15 000 (Amir et al., 1999). It is
frequently classified within ASD given their shared clinical
symptoms of repetitive movements, impaired motor
coordination, and social withdrawal. The primary cause of RTT
is mutation of the methyl CpG binding protein 2 (MECP2)
gene, a typical monogenic cause of ASD. MECP2 is located
on the X chromosome, and MECP2 mutation in males is
usually lethal; thus, RTT affects females almost exclusively
(Amir et al., 1999). Mouse models of MECP2 mimic the
symptoms of RTT, including impaired social behavior (Amir et
al.,, 1999; Li et al., 2020a; Orefice et al., 2019; Pizzamiglio et
al., 2021).

At present, classic Mecp2-mutant mice include deletion of
exon 3 (Chen et al., 2001), deletion of exons 3 and 4 (Guy et
al., 2001), and 308X point mutations (Shahbazian et al.,
2002). Although Mecp2-knockout mice show most of the
developmental and behavioral defects of patients with RTT,
identifying ASD-like behaviors in Mecp2-overexpressing
mouse models can be challenging (Collins et al., 2004).
Mecp2-knockout mice have also been used to explore the
regulatory mechanisms of other ASD risk genes, such as
Mir137, whose expression is controlled by Mecp2 in a
promoter binding-dependent manner (Szulwach et al., 2010).
In rat models, loss of Mecp2 results in growth retardation,
malocclusion, lack of exercise, weak forelimb grip, and
significant social communication defects (Wu et al., 2016).

Transgenic cynomolgus monkeys (Macaca fascicularis)
overexpressing human MECP2 show ASD-like behaviors and
stable inheritance of transgenic germlines (Liu et al., 2016).
Moreover, a MECP2 mutant cynomolgus monkey model
generated using transcriptional activator-like effector nuclease
(TALEN) technology to edit the MECP2 gene (Chen et al,
2017) has been applied to explore related phenotypes using
unique eye-tracking tests and magnetic resonance imaging
analysis, showing similar physiological, behavioral, and brain
structural abnormalities to those in ASD patients (Zhang et al.,
2019). Recently, the circuit abnormalities related to MECP2
and autism-like traits in monkeys have been mapped to
homogenous ASD subgroups, thus providing a new strategy
to deconstruct the clinical heterogeneity of ASD (Cai et al.,
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Figure 2 Schematic of major animal models of ASD

ASD animal models mainly include genetic, environment-induced, and idiopathic models. A: Developed technologies, such as homologous
recombination (HC) and CRISPR/Cas9, have been used to generate ASD risk gene knock-in, knockout, and overexpressed animal models. B:
Environmental factors can act as critical pathogenic regulators in ASD etiology, including valproic acid (VPA), propionic acid (PPA), bisphenol
propane (BPA), sevoflurane, maternal immune activation (MIA), borna disease virus (BDV), and repeated cold temperature stress (RCS). C:
Idiopathic models include BTBR T+ltpr3tfJ (BTBR) and BALB/cByJ mouse strains. BTBR mice mainly show decreased interactive social behaviors,
decreased vocal ability, and highly stereotyped and repetitive self-grooming behaviors. Abnormal behaviors in BTBR mice are primarily caused by
three single nucleotide polymorphisms in the Kmo gene. BALB/cByJ is another inbred mouse strain that shows significant social disorder and

stereotyped behavior. Imaging studies have demonstrated that BALB/cByJ mice have a reduction corpus callosum volume.
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Table 2 Genetic animal models targeting classical ASD risk genes

Clinical relevance?®

. Typical Animal Rescue agent®
Genes Neuronal function symptoms performances® References
0B ®6 O @ ® @ G Genetic Pharmaceutical
Syndromic
MECP2 Starts or inhibits + + + + + M+ + + — + Onecopy knocked 7,8-Dihydroxyflavone; Acetyl-  Achilly et al.,
transcription; R + + + + + outofCrh,orCrhr1, L-carnitine; D-Cycloserine; 2021; Zhan et
neuron maturation; F + + + — + O Oprm; Reducing ~ CX546; Antalarmin; al., 2021
regulated by Mecp2 expression Cysteamine; RU-486;
| + + + - + . .
development from a transgene, Isoguvacine; Midazolam;
MECP2-dNIC; Fenobam; SCH-23390; SCH-
Reinstatement of 39166
Mecp2
FMR1 Involves in + + + + + R + + + + + |Inactivation of one Cyclosporine-A; Dockendorff et
translation; affects E + + + — + alleleofApp gene; Dexpramipexole; Isoguvacine; al., 2002; Kim et
neuronal |+ + + — + inactivation of one CTEP; Bryostatin1; MPEP; al., 2014b;
proliferation and copy of S6K1; BW-723C86; MDL-11,939; Reynolds et al.,
migration inactivation of S6K1  JQ1; Sulpiride; CX-4945, 2021; Schiavi et
gene Recombinant IL-17a, Lithium; al., 2020
Minocycline;
Lipopolysaccharide;
Bumetanide; FRAX486
SHANK3 Promotes + + + + + M+ + + — + Reinstatement of CDPPB; MPEP; Insulin-like Han et al., 2013;
formation, R + + + + + Shank3; beta-catenin growth factor 1 and its peptide Kozol et al.,
maturation, and F + + + — + shRNA; constitutively derivative; CX-546; 2015; Liu et al.,
stability of active Rac1 Lipopolysaccharide; Cocaine; 2018; Matas et
dendritic spines b+ o+ v =4 Isoguvacine; D-Cycloserine; al., 2021; Mossa
7,8-Dihydroxyflavone; TG003; et al., 2021
Valproic acid; Aripiprazole;
Clozapine; Romidepsin;
Fluoxetine; Phospho-cofilin
peptide; Oxytocin;
Risperidone; Trichostatin A
TSC1/2 Regulates + + + + + R+ + + + + - D-Cycloserine, Fenobam, Normand et al.,
mTORC1 SCH-23390, SCH-39166, 2013; Tsai et al.,
pathway, neuronal Rapamycin 2012
differentiation, and
Purkinje cell
excitability
UBE3A Regulates + + + + + R + + + — + Reinstatement of CbIn1 expression; THIP; Krishnan et al,
neuronal Ube3a in GABAergic Pamin 2017; Xu et al,
homeostatic neurons 2018
synaptic plasticity
Non-syndromic
NLGNs Regulates the + + + + + R + + + + + Nign3, shRNAs ETC-168, ACEA, HU-210, Camacho et al.,
formation of against Nign1, Quinpirole, URB597 2014; Kolozsi et
hippocampal shRNAs against al., 2009;
neurons and post- Nign2, DIO-NL3 Sledziowska et
glutamatergic transgene in nucleus al., 2020
synapse proteins accumbens,
Optogenetic
activation of Pvalb
interneurons, NIgn3
reexpression
NRXNs Encodes neuronal + + + + + R+ + + + + - - Etherton et al.,
transmembrane 2009; Tromp et
protein; interacts al., 2021
glial cells
CHD8 Controls + + + + + R + + + — + Human CHDS; CPI-455; Oxytocin Kunkel et al,
epigenetic and F - — — _ _ stabilized 2018; Platt et al,
transcript Ctnnb1(S37A) 2017; Sugathan

regulation; affects
brain phenotype

et al, 2014
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Continued

Clinical relevance?®

. Typical Animal Rescue agent®
Genes Neuronal function symptoms performances® References
OJORORORE) O @ ® @ B Genetic Pharmaceutical
POGZ Regulates + + + + + R+ + + - — - NBQX; Oxytocin; Perampanel Matsumura et al,
neuronal 2020; Suliman-
development Lavie et al, 2020;
White et al, 2016
ANK2 Affects axonal + + + - - R+ + + - — - - lossifov et al,
branching; 2014; Sztainberg
regulates et al, 2016
postnatal
development of
excitatory
synapses
MIR137 Regulates + + + + + R + + + — — Ablationof Pde10a  Papaverine Cheng et al.,
neuronal gene 2018
expression and
neurogenesis
16p11.2 Controls prefrontal + + + + + R + + + + + - - Portmann et al,
connectivity; F - — — - — 2014; Yin et al,
endothelium- 2021
dependent
structural and
functional

neurovascular

a: M: Monkey; R: Rodents; F: Fish; I: Invertebrates. b: : Social communication disorders; @: Repetitive/stereotyped behaviors; 3): Narrow
interests; @: Impaired linguistics; ®: Intellectual disability. +: Positive, —: Negative. c: Based on the public data from SFARI GENE: https://

gene.sfari.org/database/animal-models/rescue-animal-models.

2020). These studies suggest that NHP ASD models are
feasible and reliable and can be applied to study ASD-related
neural mechanisms and potential therapeutic interventions.
FMR1: Fragile X syndrome (FXS) is mainly caused by the
excessive expansion of the CGG trinucleotide in the 5'UTR of
the fragile X mental retardation 1 (FMR17) gene, with a small
portion caused by point mutations of the FMR1 gene (Richter
& Zhao, 2021). Boys tend to exhibit more severe clinical
symptoms than girls, including ID, speech delay, anxiety,
attention deficit disorder, hyperactivity, seizures, and physical
deformities (Richter & Zhao, 2021). Similar to MECP2, FMR1
is considered as another monogenic cause of ASD.

Loss of Fmr1 in male mice is not lethal. The dendritic spines
of cerebral cortex neurons in Fmr1 knockout mice are longer,
thinner, and more curved than those in wild-type mice, and the
dendritic spines of the apical dendrites are denser (Comery et
al., 1997). In vivo two-photon calcium imaging found that the
adaptability of neurons in Fmr1-knockout mice to repeated
whisker stimulation is inadequate, suggesting that adaptive
impairment of the cortical sensory circuit may be a potential
cause of ASD tactile defense (He et al., 2017). In addition to
Fmr1-knockout mouse models, several clinically relevant
mouse models have been generated. For example, the
recurrent missense mutations in FMR7 encoding protein
FMRP (FMRP-R138Q) are reportedly associated with FXS
(Collins et al., 2010). In a knock-in mouse model expressing
the FMRP-R138Q protein, neuronal density increasing in the
hippocampus is related to synaptic ultrastructural defects and
increased surface expression of AMPA receptors (Prieto et al.,
2021). Based on biochemical analysis, high-resolution
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imaging, electrophysiological recording, and behavioral
testing, the R138Q mutation can lead to impaired long-term
hippocampal enhancement and social cognitive deficits in
mice (Prieto et al., 2021). Social dominance and hierarchy
changes in Fmri-knockout rats have been evaluated through
a penetrating experiment, providing new insight for
understanding complex social dynamics in an Fmr1-
dependent manner (Saxena et al., 2018).

SHANK3: SH3 and multiple ankyrin repeat domains protein 3
(SHANK3) is a postsynaptic density protein that interacts with
a variety of ionotropic and metabotropic glutamate receptors
and is associated with the actin cytoskeleton (Duffney et al.,
2013). SHANK3 mutation is associated with ASD and Phelan-
McDermid syndrome, with the latter characterized by global
brain retardation, mental disability, speech delay or loss, and
mild deformities (Tatavarty et al., 2020; Wang et al., 2020). In
Shank3-knockout mice, the cortex-striatum-thalamic loop in
mutant mice is overactive, leading to impaired social
behaviors (Wang et al., 2016). Early recovery of Shank3
expression in Shank3-knockout mice can prevent the ASD-like
behavior phenotype (Jaramillo et al., 2020). Loss of Shank3 in
male rats does not lead to the enhanced social approach
behavior that typically occurs after playback of pro-social
ultrasonic vocalizations (Berg et al., 2018).

In addition to rodent models, the first heritable Shank3b-
mutant zebrafish model also show ASD-like behavior and
changes in synaptic protein homer1 and synaptophysin levels
(Liu et al., 2018). Moreover, SHANK3-knockout cynomolgus
monkeys have been generated (Tu et al., 2019; Zhou et al.,
2019b), which show motor deficits, repetitive behaviors, social
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and learning disorders, and sleep disorders.

TSC1/2: Tuberous sclerosis complex (TSC) is an autosomal
dominant disease characterized by tuber-like benign tumors in
multiple organs (including the brain and kidney). It can
develop into malignant tumors, often accompanied by ASD
(Lam et al., 2018). TSC1 or TSC2 mutation can lead to a high
incidence of complications in ASD, and the protein product
dimerizes and negatively regulates mTOR signaling
transduction in mammalian targets.

The cerebellum primarily controls motor activity, while its
non-motor functions are also associated with psychiatric
disorders, such as ASD (Wolf et al., 2009). For example,
compared with TSC patients without ASD, TSC patients with
ASD show hypermetabolism in the deep structure of the
cerebellum based on functional imaging. Furthermore,
compared with the control group, human induced pluripotent
stem cell (hiPSC)-derived Purkinje cells (major cerebellum
neurons) from patients with pathogenic TSC2 mutations
exhibit excessive mTORC1 pathway activation, neuronal
differentiation  deficiency, RNA regulation deficiency,
decreased excitability, and lower synaptic activity (Sundberg
et al.,, 2018). However, upon loss of TSC2, the expression
levels of FMRP, glutamate receptor 62 (GRID2), and pre- and
post-synaptic markers (such as synaptophysin and PSD95)
decrease in hiPSC-derived Purkinje cells (Sundberg et al.,
2018). In mouse models, following specific deletion of Tsc1 or
Tsc2 in Purkinje cells, mice exhibit a battery of ASD
behaviors, including impaired memory, repetitive behaviors,
and altered vocalizations (Reith et al., 2013; Tsai et al., 2012).
Since the absence of Purkinje cells is one of the most
common anatomical abnormalities in ASD patients, this model
provides experimental support for related pathophysiological
studies.
15q11-q13 duplication (UBE3A): Among the known causes
of ASD, duplication of human chromosome 15911-q13, which
contains large repeat sequences, is the most frequently
associated cytogenetic abnormality. Disruption of this region
causes different disorders, including autism, Angelman
syndrome, and Prader-Willi syndrome (Pinto et al., 2010).
Duplications of chromosome 15q11-q13 account for up to 3%
of ASD, where increased levels of UBE3A, an E3 ubiquitin
ligase, are usually observed (Baron et al., 2006; Smith et al.,
2011). In patients with ASD, a mutation that impairs UBE3A
phosphorylation (p. T485A) can cause elevated UBE3A
activity (lossifov et al., 2014; Yi et al., 2015). Increased
expression of UBE3A negatively regulates the function of
cerebellin 1 precursor (CbIn1) in the ventral tegmental area,
resulting in impaired synaptic transmission and sociability
(Krishnan et al., 2017). In mice, ASD-like behaviors can be
induced when expressing excessive UBE3A, resulting in
impaired retinoic acid (RA)-mediated neuronal homeostatic
synaptic plasticity (Xu et al., 2018). UBE3A can regulate
ALDH1A2, the rate-limiting enzyme of RA synthesis, and
administration of an ALDH1A antagonist can rescue impaired
social behaviors associated with ASD (Xu et al., 2018). Other
genes involved in 15q11—q13 and their corresponding animal
models have been reviewed extensively (see Takumi, 2011).
Non-syndromic ASD genes:

NLGNs: Neuroligins (NLGNSs) are cell adhesion molecules on

the postsynaptic membrane and consist of excitatory and
inhibitory synapses. NLGNs interact with neurexins (NRXNs)
to promote the formation of presynaptic and posterior
membranes (Vieira et al.,, 2021). The five NLGN genes
expressed in humans (NLGN1, NLGN2, NLGN3, NLGN4X,
and NLGN4Y) are all associated with ASD, with NLGN3 and
NLGN4 most closely related to ASD symptoms (Heshmati et
al., 2018). Indeed, animal models suggest that NLGN-gene
knockout can cause synaptic changes and abnormalities in
neurotransmitters of the brain, leading to the emergence of
ASD symptoms (Stidhof, 2017).

Both Nign1-knockout and NIgn1-P89L-knock-in mice show
spatial memory impairment, but only Nign1-knockout mice
show vigorous combing and stereotyped behavioral
phenotypes (Blundell et al., 2010; Nakanishi et al., 2017).
Nign2-knockout mice also exhibit ASD-like behaviors, normal
social behaviors, increased anxiety-like behaviors, decreased
pain sensitivity, and poor motor coordination (Wohr et al.,
2013).

Mice with Nign3 gene deletion show impaired ultrasound
vocalization and social deficits (Modi et al., 2019; Radyushkin
et al., 2009). Mutation in Nign3 can lead to impaired oxytocin
signaling in dopaminergic neurons and changes in the
behavioral responses of mice to social novelty tests (Hornberg
et al., 2020). Additionally, Nign3-R451C-knock-in mice exhibit
ASD-related behavioral phenotypes, including deficiency in
social novelty preference, hyperactivity, and repetitive
behavior, indicating that Nign3 mutations damage striatal
circuits, leading to repetitive behavior (Rothwell et al., 2014).
Other studies suggest that abnormal gamma oscillations in the
prefrontal cortex may be a leading cause of social behavior
disorders in NIgn3-R451C-knock-in mice. Social defects can
be effectively reversed by manipulating the inhibitory effect of
parvalbumin intermediate neurons in the prefrontal cortex
(Cao et al., 2018).

NLGN4 gene mutations are found in many patients with

ASD and other neurodevelopmental disorders. For example,
single amino acid substitution (R101Q) mutations in NLGN4
can cause synaptic dysfunction in autistic patients (Cast et al.,
2021). In Nign4-knockout mice, PSD-95 in the cerebral cortex
and GABAA receptor and porphyrin immunoreactive synapse
density in the hippocampal CA3 region are significantly
decreased (Hammer et al., 2015).
NRXNs: Neurotoxins (NRXNs) serve as the presynaptic
binding ligand of NLGN and play important roles in synaptic
adhesion, differentiation, and maturation (Missler et al., 2003).
At present, most models come from mice in which all three
genes (NRXN-1, NRXN-2, and NRXN-3) are knocked out or
from NRXN-10/2a double knockout mice. Compared with wild-
type mice, triple- and double-knockout mice show fewer
inhibitory synapses in the brainstem and neocortex,
respectively (Missler et al., 2003).

ASD patients often show high comorbidity with attention
deficit hyperactivity disorder (ADHD). In rats, loss of Nrxn-1a
results in significant non-social cognitive deficits and
hyperactivity, similar to ADHD (Esclassan et al., 2015).
CNTNAP2, which encodes contactin-associated protein-like 2
protein, is another member of the neurexin family. The
CNTNAP2 gene is indispensable in promoting dendritic axons,
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maintaining synaptic stability, and transporting transmitters
(Gdalyahu et al., 2015; Varea et al., 2015). Mice with Cntnap2
mutations exhibit behavioral defects, hyperactivity, and
seizures (Pefagarikano et al., 2011). Other studies have
revealed that loss of Cntnap2 in rats can lead to changes in
social interaction, stereotyped behavior, and sensory behavior
(Scott et al., 2020). Interestingly, recent studies on songbirds
have shown that, across taxonomic classes, Cntnap2 plays an
important role in neural connectivity critical for vocal learning
(Condro & White, 2014).

CHD8: Chromodomain helicase DNA-binding protein 8
(CHD8) controls epigenetic and transcriptomic regulation and
acts as a master regulator of many ASD risk genes (Cotney et
al., 2015). Mutation of CHDS8 is a highly penetrant risk factor of
ASD (De Rubeis et al., 2014; Talkowski et al., 2012; Werling
et al., 2018).

As a recently identified ASD gene, the functions of CDH8
have been investigated in several animal models. For
example, CHD8 ortholog knockdown in mice increases brain
weight and volume and in zebrafish results in macrocephaly,
consistent with the macrocephaly of ASD patients with CHD8
mutations (Bernier et al., 2014; Katayama et al., 2016; O'Roak
et al., 2012; Platt et al., 2017). CHD8 haploinsufficiency in
mice causes ASD-like phenotypes associated with a delay in
neuronal development and small but global changes in the
expression of many genes in the brain during development
(Katayama et al., 2016). In germline heterozygous frameshift
Chd8 mutation mice, Chd8"% mice show standard core
features of ASD, including social interactions and repetitive
behaviors, but also exhibit cognitive impairment correlated
with increased regional brain volume (Gompers et al., 2017).

There is a male bias (84%) in autistic subjects with CHD8
mutations (n=24) (Stessman et al., 2017). In mice carrying
heterozygous mutation of Chd8 (Chd8*V?373K) which mimics
human CHD8 (Asn2373LysfsX2) mutation, male mutant mice
display a range of abnormal ASD-like behaviors during
development from pup to adult, but their female counterparts
do not (Jung et al., 2018). The differential patterns in male and
female Chd87M?73K mice are determined by sexually
dimorphic changes in neuronal activity, synaptic transmission,
and transcriptomic profiles, validating that human CHDS8
mutation indeed results in sexually dimorphic changes in mice
(Jung et al., 2018).

Moreover, recent study has also shown that cerebellar

granule neuron progenitor (GNP)-specific deletion of CHD8 in
mice impairs cellular proliferation and differentiation, and leads
to cerebellar hypoplasia and motor coordination defects, but
not to ASD-like behavioral abnormalities (Kawamura et al.,
2021).
POGZ: Pogo transposable element derived with ZNF domain
(POGZ) is widely expressed in human tissues, including the
brain. Expression analysis has shown that POGZ is expressed
in the mouse cortex and hippocampus in the early
developmental stages but decreases in the nucleus of both
cortical and hippocampal neurons at postnatal day 30 (P30)
(Ibaraki et al., 2019). In the developing cerebellum, POGZ is
mainly detected in the nucleus of Purkinje cells, while at P15
and P30, POGZ expression is observed in the granular and
molecular layers (Ibaraki et al., 2019).
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Recent studies provide compelling evidence that loss-of-

function mutations in POGZ are associated with abnormal
development and behavior (Stessman et al., 2016; White et
al., 2016; Ye et al.,, 2015). POGZ is one of the chromatin
regulators of several genes implicated in ASD (De Rubeis et
al., 2014; Suliman-Lavie et al., 2020). Many individuals with
POGZ mutations, known as White-Sutton syndrome, manifest
ID, ASD, specific facial features, and other phenotypic spectra
(Fukai et al,, 2015). A recent study suggested that ASD-
related de novo mutations in Pogz impair neuronal
development in the developing mouse brain and induce
pluripotent cell lines from an ASD patient (Matsumura et al.,
2020). In addition, mice with heterozygous de novo Pogz
mutation exhibit ASD-like abnormalities and reduced anxiety-
related avoidance (Cunniff et al., 2020; Matsumura et al.,
2020). Nervous system-specific deletion of Pogz in mice leads
to microcephaly, impaired growth, and ASD-like behaviors that
mimic several human symptoms, suggesting that Pogz-
dependent heterochromatin dysregulation can lead to
cerebellar circuit dysfunction and behavioral abnormalities in
ASD (Suliman-Lavie et al., 2020).
ANK2: ANK2 is a member of the ankyrin gene family, which
encodes two primary ankyrin B (ankB) polypeptides, including
a 440 kDa polypeptide (giant ankB) expressed only in the
nervous system (Chan et al., 1993; Kunimoto, 1995), and a
220 kDa polypeptide expressed in various tissues. Clinical
history shows that defect/mutation of giant ankB alone is
sufficient to cause non-syndromic ASD. ANK2 is not directly
related to gene regulation or synaptic function, and most ASD
patients diagnosed with ANK2 mutations are non-syndromic
and show average intelligence (lossifov et al.,, 2014;
Sztainberg & Zoghbi, 2016).

Mice lacking the two ankB peptides die during the neonatal
period, and long axon bundles are lost, including pyramidal
tracts and corpus callosum (Lorenzo et al., 2014; Scotland et
al.,, 1998). For the neuronal-specific giant ankB, giant ankB-
mutant mice show increased axonal branching in cultured
neurons and a ftransient increase in excitatory synapses
during postnatal development, providing evidence that normal
structural connections require a considerable amount of ankB
in the CNS (Yang et al., 2019). Dysfunction of giant ankB
leads to inheritable impaired communicative and social
behaviors, as well as superior executive function, suggesting
giant ankB-deficiency/mutation is a potential cause for the
abnormal structural connectivity and penetrant behaviors in
mice and humans carrying ASD-related ANK2 mutations
(Yang et al., 2019).
1p21.3 microdeletion (MIR137): Among chromosome 1p21.3
microdeletion carriers, most have been shown to have ASD
(11 out of 12 patients) and all have ID (Carter et al., 2011;
D'Angelo et al., 2015; Tucci et al., 2016; Willemsen et al.,
2011). Interestingly, although each patient exhibits different
genomic deletions on chromosome 1p21.3, the minimal
overlapping regions only include the MIR137 gene. Genetic
studies have also identified that the MIR137 gene is highly
associated with ASD, schizophrenia, and bipolar disorder
(Duan et al, 2014; Pinto et al.,, 2014; Schizophrenia
Psychiatric Genome-Wide Association Study (GWAS)
Consortium, 2011). Thus, miR-137 appears to be a critical
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pathogenic regulator mediating the core clinical features of
ASD in these patients.

To study the role of miR-137, we generated Mir137
germline-knockout (gKO) and nervous system-knockout (cKO)
mice and found that complete loss of miR-137 in gKO and
cKO mice leads to postnatal lethality (Cheng et al., 2018). In
contrast, heterozygous gKO and cKO mice are viable,
indicating that all chromosome 1p21.3 microdeletion carriers
are hemizygous. The partial loss of miR-137 in heterozygous
gKO and cKO mice can cause synaptic overgrowth and
impaired synaptic plasticity related to ASD, as well as
impaired repetitive behaviors, learning, and social behaviors
(Cheng et al., 2018). Multi-omics studies have revealed that
one of the miR-137 mRNA targets, phosphodiesterase 10a
(Pde10a), is elevated in Mir137-knockout mice, and the
application of the Pde10a inhibitor papaverine or lentivirus-
induced Pde10a knockdown significantly ameliorates the
deficits observed in heterozygous Mir137-knockout mice.
Given the known genetic link between MIR137 and
neuropsychiatric diseases, our study provides direct evidence
that the dysregulation of miR-137 is involved in the molecular
pathogenesis of ASD.
16p11.2 microdeletion and duplication: Microdeletion and
microduplication at 16p11.2 (containing 29 genes) are strongly
associated with autism, accounting for about 1% of cases
(Weiss et al., 2008). To explore which of the 29 genes in this
genomic region are critical for the corresponding phenotypes
of 16p11.2 microdeletion and microduplication, Golzio et al.
(2012a) conducted functional screening in a zebrafish model
and identified KCTD13 as a key gene responsible for the
mirrored neuroanatomical phenotypes in humans.

Given that 16p11.2 microduplication is also reported in
schizophrenia (McCarthy et al., 2009), animal models used for
ASD often focus on loss-of-function of 16p11.2. For example,
16p11.2-deficient mice exhibit diminished prefrontal
connectivity, thalamo-prefrontal miswiring, and reduced long-
range functional synchronization (Bertero et al., 2018).
Compared to wild-type male litermates, male mice with
16p11.2 heterozygous deletion (16p71.2"") produce strikingly
fewer vocalizations during first exposure to an unfamiliar
estrous female (Yang et al.,, 2015) and a complete lack of
habituation similar to that observed in some autistic individuals
(Portmann et al., 2014). In addition, partial loss of 16p11.2 can
lead to endothelium-dependent structural and functional
neurovascular abnormalities in 76p77.2" male mice and in
male mice with endothelium-specific 16p11.2 deletion,
suggesting a potential role for endothelial impairment in ASD
(Ouellette et al., 2020). Moreover, based on in vivo two-photon
imaging analysis in awake mice, layer 2/3 excitatory neurons
in the motor cortex of adult male 16p711.2%~ mice are
dysregulated, showing overactivation during the initial phase
of learning, with prolonged learning-induced spine
reorganization (Yin et al., 2021). Local infusion or
intraperitoneal injection of clozapine N-oxide (CNO) is
sufficient to ameliorate these impaired cellular and behavioral
phenotypes, suggesting a novel role of noradrenergic
neuromodulation in improving delayed motor learning in
16p11.2"~ male mice (Yin et al., 2021).

Environment-induced models

Environmental factors can also act as important pathogenic
regulators in the etiology of ASD (Cheroni et al., 2020; Hertz-
Picciotto et al., 2018). Children with ASD often show oxidative
stress and methylation damage, which may be related to
environmental pollution, exposure to chemical or toxic
substances, and viral infection (Bélte et al., 2019; Varghese et
al.,, 2017). In addition, when the mother is affected by certain
antibodies and neurotoxins, her offspring can exhibit ASD-like
symptoms. Animal models of ASD induced by drugs or other
substances (~45 models) have the advantages of simple, fast,
and low-cost operation. However, each animal model only
reflects a few aspects of the possible pathogenesis of ASD
(https://gene.sfari.org/database/animal-models/induced-
animal-models). Nevertheless, these environment-induced
animal models can be used to study nervous system function,
screen new drugs, and explore treatment protocols for ASD
(Figure 2B; Table 3).

Drug-induced models:

Valproic acid (VPA): VPA was first used as an anti-epileptic
drug and later as a mood stabilizer in epilepsy, bipolar
disorder, migraine, and schizophrenia (Evatt et al., 2009). In
animal experiments, researchers have simulated typical ASD
models of newborn mice by exposing female mice to VPA
during pregnancy. Prenatal and postnatal VPA exposure in
mice can induce autism-like behaviors, and inflammatory
cytokines and oxidative/nitrosative stress markers in the
prefrontal cortex and hippocampal homogenate are increased
in VPA-treated offspring (Elnahas et al., 2021). The degree of
neuropathological changes depends on the dose and duration
of VPA exposure (Bringas et al., 2013). Combined with
histopathology and immunohistochemistry, the prenatal VPA
model is better than the postnatal VPA model at inducing
behavioral and neuropathological changes, thus highlighting
the superiority of prenatal VPA exposure as a translation
model for understanding the pathophysiology of ASD and
developing new targets for treatment. In rat models where
mothers are exposed to VPA, their offspring show changes in
serotonin levels in the prefrontal cortex, hippocampus,
cerebellum, and peripheral blood, similar to the results of
current human clinical studies, suggesting that VPA
application may be a good candidate for generating animal
models of ASD (Sacco et al., 2010).

Propionic acid (PPA): PPA is a short-chain fatty acid, the
final product of intestinal bacterial metabolism, and a common
food preservative. Many studies have demonstrated that PPA
can cause ASD-like behaviors and neuroinflammatory
responses in rats. For example, rats treated with PPA show
less interest in specific objects and weaker social behavior, as
well as reactive astrocyte proliferation and microglia activation
in brain tissue, indicating that PPA application can lead to a
congenital neuroinflammatory response (MacFabe et al.,
2011). The impacts of PPA on social behavior, anxiety
behavior, and ultrastructure of central amygdaloid nucleus
have also been explored in rats, with acute administration of a
relatively low dose of PPA (175 mg/kg) found to significantly
affect social behavior (Lobzhanidze et al., 2019). Although
these results provide an experimental basis for using PPA to
establish rodent ASD models, the direct correlation between
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Table 3 Environmental-induced ASD animal models

Clinical relevance?®

Environmental

factors Brain impacts Typical symptoms Animal performance® References
0 2 6 ® 6 O 2@ 6 ® 6
VPA Affects expression of BDFN mRNA in + 4+ + o+ R + + + - + Almeida et al., 2014;
brain tissue F + + + - + Banerjee et al., 2014; Kim
et al,, 2014a; Reynolds et
al., 2021
PPA Reactive astrocyte keratinization of NT NT NT NT NT R + + + - + El-Ansary et al., 2012;
brain tissue; microglia are activated; Foley et al., 2015;
oxidative stress markers rise; MacFabe et al., 2011;
glutathione declines Shultz et al., 2009
BPA Changes in number of neurons and glia + o+ + o+ R + + + - + Braniste et al., 2010;
in the medial prefrontal lobe Sadowski et al., 2014;
Vermeer et al., 2014; Xu
etal., 2015
Sevoflurane Increases the number of apoptotic cells NT NT NT NT NT R + + + - + Chen et al., 2020; Jin et
in brain; inhibits the axon development al., 2020
of hippocampal neurons
MIA Abnormal increase of offspring’s brain + o+ + o+ M+ - Bauman et al., 2013;
volume R + _ Braunschweig et al.,
2012; Breach et al., 2021
BDV Abnormal hippocampal and cerebellar + o+ + o+ R + + + - + Pletnikov et al., 2002;
development Taieb et al., 2001
GM Regulation of neuroactive metabolites + o+ + o+ M + + + - + Sharon et al., 2019
R + + + - +
F + + + - +
| + + o+ - o+
RCS Changes in neurotransmitter and NT NT NT NT NT R + + + - + Hata et al., 1987;

corticosterone levels

Namimatsu et al., 1992

a: D: Social communication disorders; @: Repetitive/stereotyped behaviors; @): Narrow interests; @: Impaired linguistics; ®: Intellectual disability.
+: Positive, —: Negative; NT: Not tested. b: M: Monkey; R: Rodents; F: Fish; I: Invertebrates.

PPA models of ASD and human ASD requires further
verification.

Bisphenol propane (BPA): BPA is an important organic
chemical material and a significant derivative of phenol and
acetone and is widely used in the packaging of canned food
and beverages. Various studies have provided evidence on
neural correlates of human exposure to BPA. For instance,
prenatal maternal exposure to BPA can lead to changes in the
microstructure of white matter in preschool-aged children and
plays an intermediary role in the relationship between BPA
exposure in early life and internalization (Grohs et al., 2019).
In addition, as an endocrine disruptor, exposure to BPA during
fetal and perinatal periods can lead to abnormal
neurodevelopment and behavioral changes in children
(Elsworth et al., 2013; Nakamura et al., 2012). Studies
exploring the relationship between endocrine interferon and
ASD/ADHD have revealed that BPA is a low-dose
developmental neurotoxic drug (Mustieles & Fernandez,
2020).

Social cognition tests on three consecutive generations of
mice after BPA exposure during pregnancy show that these
mice exhibit more exploratory behaviors compared with the
controls (Wolstenholme et al.,, 2013). However, third-
generation mice cannot recognize new stimuli (strange mice),
indicating long-term disruptive social memory in offspring.
These results suggest that BPA may cause
neurodevelopmental diseases in a cross-generational way
(Wolstenholme et al., 2019). A recent study of 46 autistic
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children and 52 normal children found that those with ASD
show a direct association with BPA exposure (Stein et al.,
2015). Metabolomics analysis has also shown a correlation
between ASD and the metabolic pathways of essential amino
acids, i.e., precursors of neurotransmitters, such as tryptophan
and serotonin. Furthermore, compared with age-matched non-
autistic children, there are two fundamentally different types of
serotonin synthesis abnormalities in autistic children, i.e.,
overall brain capabilities and focal abnormalities (Sarrouilhe &
Dejean, 2017).

In mouse models, during neural development,
intergenerational exposure to BPA can disrupt social
interactions in mice and the normal expression of the PSD
gene (Wolstenholme et al.,, 2019). In Drosophila, the
application of different doses of BPA (0, 0.1, 0.5, 1 mmol/L)
can lead to differences in autonomous movement (Kaur et al.,
2015). Drosophila treated with BPA (especially 0.5 mmol/L
BPA) also exhibit more ASD-related behaviors than the
controls, including repetitive behaviors (grooming behavior)
and abnormal social interactions (shortened distance from
surrounding flies) (Kaur et al., 2015).

Sevoflurane: During the rapid and sensitive period of CNS
development, harmful stimuli can cause serious
consequences. The effect of anesthetic exposure during
pregnancy on CNS development in offspring is still unclear but
has aroused widespread concern. For instance, long-term
exposure to sevoflurane, a commonly used general anesthetic
in pediatrics, can lead to social defects in mice (Zhou et al.,
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2019a). Moreover, in addition to neurons, astrocytes may be
important targets of sevoflurane toxicity, suggesting that the
morphological integrity of astrocytes is essential for synaptic
formation and neurobehavior (Zhou et al., 2019a).

In mouse models, narcotic sevoflurane can cause
neurotoxicity in the developing brain, as well as adverse
neurobehavioral outcomes, including inattention, insufficient
social interaction, and learning and memory disabilities (Jin et
al., 2020). Newborn mice inhaling sevoflurane exhibit
dysfunction in learning ability (Satomoto et al., 2009). The
number of apoptotic cells in the brain tissue of neonatal mice
exposed to sevoflurane increase significantly after anesthesia,
leading to the continuous loss of learning behavior in
adulthood (Satomoto et al., 2009). Furthermore, mice exposed
to sevoflurane exhibit impaired social communication, which is
not caused by loss of interest or smell as they tend to show
normal exploratory behavior and olfaction (Satomoto et al.,
2009). These results indicate that exposure to sevoflurane
during the neonatal period can lead to abnormal learning and
social behaviors, resulting in ASD-like characteristics.

In pregnant mice exposed to sevoflurane when germ cells
are epigenetically reprogrammed during embryonic
development, >38% of F1 mice exhibited anxiety and social
interaction disorders and 44%—-47% of F2 and F3 mice without
direct sevoflurane contact showed the same behavioral
problems (Wang et al., 2021). In addition, in the sperm of F1
mice, more than 1 200 differentially accessible loci were
identified, 69 of which were also found in the sperm of F2
mice, most of which were found in the regulatory regions of
genes closely related to ASD, including Arid1b, Nirk2, and
Stmn2 (Wang et al., 2021). These results suggest a long-
lasting impact of sevoflurane in the pathogenesis of ASD,
transmitting through male germlines between and across
generations.

In rat models, compared with other brain regions of
offspring, the hippocampus, a vital component of the brain
involved in learning and memory, is more susceptible to
repeated sevoflurane exposure (Chen et al., 2020). In addition
to affecting motor sense and emotional and social behavior in
offspring mice, repeated exposure to sevoflurane can cause
memory deficits, probably by inhibiting the axonal
development of hippocampal neurons (Chen et al., 2020).
Maternal immune activation (MIA) models: Many studies
have shown that MIA in pregnant women can cause significant
damage to fetal development. During pregnancy, maternal
immunoglobin G (IgG) can provide passive immunity to the
fetus through the placenta; however, protective and
pathogenic antibodies will be transmitted to the fetus in the
same way (Zimmerman et al., 2007). In the presence of
autoimmune diseases or antigens, autoantibodies are
activated during or before pregnancy, and damage caused by
maternal autoantibodies to the fetus can cause congenital
developmental disorders (Haddad et al., 2020; Zimmerman et
al., 2007).

There is a known association between maternal IgG
antibodies that are reactive to proteins in the fetal brain and
autistic childhood outcome. Animal experiments have shown
that maternal anti-fetal brain protein antibodies are closely

related to offspring ASD-like symptoms (Gfadysz et al., 2018).
After injecting 1gG in utero, offspring mice respond more
positively to new things during adolescence but show anxiety-
like behaviors at the adult stage and react strongly to external
stimuli (Ariza et al., 2017; Singer et al., 2009). In addition, in
mice injected intravenously with brain-reactive IgG antibodies
from the “mothers of autistic children” and “mothers of normal
children”, offspring exposed to IgG antibodies from the
“mothers of autistic children” show impaired sensory and
increased anxiety, suggesting that maternal 1gG in autistic
children can cause long-term behavioral abnormalities
(Braunschweig et al.,, 2012). Similarly, in a maternal
autoantibody model of rhesus monkeys, offspring brain
volume is abnormally increased (Bauman et al., 2013).
Maternal infections or fever during pregnancy are also
associated with autism or developmental delay (Zerbo et al.,
2013). For example, the pro-inflammatory cytokine interleukin-
6 (IL-6) has been identified as the cause of the ASD-like
phenotype associated with prenatal exposure to MIA (Kumari
et al., 2020). Moreover, tumor necrosis factor a (TNF-a), IL-2,
IL-6, and IL-17A are also important in the pathogenesis of
ASD (Eftekharian et al., 2018). For example, recent evidence
suggests that the underlying inflammatory pathway links MIA-
related ASD with the activity of T helper 17 (Th17)
lymphocytes and its effector IL-17A. Furthermore, antibody
blockade of IL-17A signaling can prevent ASD-like behavior in
offspring exposed to MIA (Wong & Hoeffer, 2018).
Borna disease virus (BDV) models: BDV is a widely
distributed, non-segmental, non-cytolytic neurotrophic, single-
stranded RNA virus. It can infect vertebrates and lead to
multiple immune-mediated CNS diseases, depending on
various host and viral factors (Taieb et al., 2001). In animal
infections, BDV can persist in the CNS and lead to changes in
brain cell function, neurodevelopmental abnormalities, and
behavioral disorders (Taieb et al., 2001). Although BDV
infection has been observed in both humans and animals, the
epidemiology of BDV in humans, especially children, is
unclear. Based on immunofluorescence, western blotting, and
radioligand analysis, Honda et al. (2018) reported on the
prevalence of BDV antibodies (7.4%) in Japanese ASD
children, thus providing valuable baseline data on the
epidemiology of BDV in children for future research.
Therefore, as a unique teratogenic factor, BDV could be used
to study the pathophysiological mechanism underlying the
interaction between heredity and the environment and to help
carry out preclinical drug treatment trials. Additionally, in BDV-
induced ASD rat models, infected young rats exhibit various
behavioral dysfunctions, including impaired sensory, motor,
social, emotional, and cognitive functions (Pletnikov et al.,
2002).
Gut microbiota (GM) models: Traditionally, the core
symptoms of many neurological diseases are considered to
involve genetic variations that affect brain development and
function. However, as a new research hotspot, the gut
microbiome is now recognized as another important source of
variation that can also affect specific behaviors of ASD (Wu et
al., 2021). For example, recent studies have shown that GM
can affect mouse behavior by regulating neuroactive
metabolites, indicating that the gut-brain axis may be closely
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related to the pathogenesis and pathophysiological processes
of ASD (Hsiao et al., 2013). Transplant experiments have
confirmed that the GM in ASD patients is sufficient to induce
obvious ASD-like behaviors (Sharon et al., 2019). In Cntnap2-
knockout mice, it has been shown that the microbiome and
host genes unexpectedly regulate impaired behaviors in an
interdependent manner (Buffington et al., 2021). Furthermore,
the hyperactive phenotype of Cntnap2-knockout mice is
caused by host inheritance, while the gut microbiome
mediates the social behavior phenotype. Interestingly, specific
microbial interventions can selectively save social deficits in
Cntnap2-knockout mice by up-regulating metabolites in the
tetrahydrobiopterin synthesis pathway. These results indicate
that behavioral abnormalities may have different origins (host
genetics and microbes), changing the way we think about
neurological diseases and their treatment (Buffington et al,,
2021).
Repeated cold temperature stress (RCS) models: Other
environment-induced models, such as RCS, can lead to
changes in neurotransmitter and corticosterone levels in the
rat brain (Hata et al., 1987; Namimatsu et al., 1992). Rats
exhibit impaired locomotor activities and anxiety after RCS
(Hata et al., 1988). Moreover, offspring of rats treated with
RSC (during pregnant days 9-12.5) show autism-like
behavioral abnormalities (Tazumi et al., 2005). Given its
operational reproducibility, the RCS model has become a
commonly used autism model, but the underlying mechanism
is currently unclear; thus, its reliability needs to be further
demonstrated.
Idiopathic models: The etiology of ASD is complex, and
various factors together lead to the pathogenesis of ASD.
Genetic and environment-induced models cannot simulate all
pathological features of ASD. Therefore, strains of mice and
rats that better mimic the core symptoms of ASD can be
generated using idiopathic models, which are helpful for
identifying novel ASD risk genes. At present, eight inbred lines
have been used as idiopathic models, most of which are
based on BTBR T+ltpr3tflJ and BALB/cByJ strains
(https://gene.sfari.org/database/animal-models/inbred-animal-
models/; Figure 2C).
Inbred line BTBR T+Itpr3tf/lJ mouse model: The BTBR
T+ltpr3tf/ld (BTBR) mouse strain is a widely used animal
model of ASD (Meyza & Blanchard, 2017; Queen et al., 2020).
BTBR mice show behavior consistent with most core clinical
features of ASD and exhibit stable progeny replication (Endo
et al, 2019; Meyza & Blanchard, 2017). In behavioral
experiments, BTBR mice show decreased interactive social
behaviors, decreased vocal ability, and highly stereotyped and
repetitive self-grooming behaviors (Dodero et al., 2013;
Ellegood et al., 2013). The abnormal behaviors of BTBR mice
are mainly caused by three single nucleotide polymorphisms
in the Kmo gene, which encodes urine 3-monooxygenase
(McFarlane et al.,, 2008). Urine 3-monooxygenase can
regulate the synthesis of kynurenic acid, one of the
metabolites of tryptophan, which is abnormally expressed in
other mental diseases such as schizophrenia (McFarlane et
al., 2008).

Clinically, ASD patients often show corpus callosum
hypoplasia or corpus callosum volume reduction, leading to
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speech disorders and social communication disorder
symptoms (Frazier & Hardan, 2009). Based on imaging
studies, the most significant neuroanatomical features of
BTBR mice include loss of the corpus callosum, extreme
reduction of hippocampal neurons, abnormal synaptic
projections of glial cells in brain white matter, and decreased
brain size (Stark et al., 2008). At the same time, gray matter
volume in BTBR mice is reduced in the ventral tegmental
area, cingulate gyrus, lateral thalamus, posterior thalamus,
occipital and parietal cortices, and subcortex, but increased in
the olfactory bulb, medial prefrontal and insular cortices,
amygdala, and dorsal hippocampus (Pagani et al., 2016).
These findings are consistent with the continuous decrease of
gray matter volume in the brains of clinical ASD patients over
time. Thus, abnormalities in other brain structures of BTBR
mice may be helpful in clinical diagnosis in future studies.
Inbred line BALB/cByJ mouse model: Compared with
highly social inbred mice, such as C57BL/6J and FVB/NJ, the
inbred BALB/cByJ mouse strain shows significant social
disorder and stereotyped behavior. Imaging studies have
demonstrated that BALB/cByJ mice have a reduced corpus
callosum volume. However, BALB/cByJ mice require a
specific control group and do not fully present all typical
clinical symptoms of ASD (Fairless et al., 2008, 2012).

CLINICAL INSIGHTS OF ASD ANIMAL MODELS

There is currently no effective treatment for ASD, resulting in a
heavy burden on individuals, families, and society. Many drug
therapies only treat peripheral symptoms, such as aggression,
anxiety, and depression, rather than improving the core
symptoms of ASD and lack effectiveness and safety.
Therefore, systematic research and evaluation of innovative
treatment methods to ameliorate the core social defects of
ASD are needed (Anagnostou & Hansen, 2011; Doyle &
McDougle, 2012a, 2012b).

Based on ASD animal models, the effects of hundreds of
genetic and pharmaceutical rescue agents have been
examined, indicating the great value of these models. For
example, it has been shown that mTOR signaling is
significantly associated with the neurological and behavioral
phenotypes of certain ASD animal models, such as Tsc1/2-
mutant mice, and impaired social behaviors can be corrected
using the mTOR inhibitor rapamycin (Haji et al., 2020; Sato et
al., 2012). Complete loss of eukaryotic initiation factor 4E
(elF4E)-binding protein 2 gene (Eif4ebp2) can lead to an
imbalance in the excitatory/inhibitory ratio and ASD-like
behaviors, while application of metabotropic glutamate
receptor 1 (mGIuR1) antagonists (JNJ16259685) or mGIuR5
antagonists (fenobam) can reverse these defects (Aguilar-
Valles et al., 2015). Similarly, in VPA mouse models of autism,
mGIluR5-antagonist (2-methyl-6-phenylethyl-pyrididine, MPEP)
can ameliorate stereotyped repetitive behaviors (Mehta et al.,
2011). Moreover, by inhibiting ionotropic glutamate receptors
(NMDARSs), d-cycloserine (DCS) can rescue ASD-associated
social defects and repetitive behaviors in multiple animal
models, including NLGN-17", Shank2”", and BTBR inbred
mice (Budreck et al., 2013; Burket et al., 2013; Won et al.,,
2012).
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Oxytocin (OXT) and gut microbiota (GM) treatment in ASD patients are recent hotspots. In humans, OXT is associated with social interaction and
trust, and application of OXT may improve social function in some autistic patients. In support, monkey and rodent models have shown that OXT is
closely related to social interaction and affinity and can selectively weaken attention of rhesus monkeys to negative facial expressions, reduce social
vigilance, enhance gaze following response, and shift attention to emotional interference factors. Patients with ASD often exhibit changes in GM
composition, as demonstrated in ASD animal models. Current GM treatments, including probiotics, fecal microbial transplantation (FMT), and
microbial transfer therapy (MTT), can effectively alleviate ASD-like behaviors.

In the section below, we will briefly discuss several recent
hotspots of ASD treatment that have benefited from animal
model studies (Figure 3).

Oxytocin (OXT) treatment

As a brain neuropeptide, OXT is related to human social
interactions and trust, and its application may improve social
function in some autistic patients (Guastella & Hickie, 2016).
Intranasal application of OXT is practical for autism, especially
for enhancing language comprehension, emotional trust, and
positive interactions with peers (Kosaka et al., 2012).
Moreover, OXT can facilitate amygdala-dependent, socially
reinforced learning and emotional empathy in men
(Hurlemann et al., 2010).

In monkey models, OXT application can selectively weaken
the attention of rhesus monkeys to negative facial expressions
(Parr et al., 2013), reduce social vigilance (Ebitz et al., 2013),
enhance gaze following response (Putnam et al., 2016), and
shift attention to emotional interference factors (Landman et

al., 2014). Application of OXT can also reduce fMRI response
to fear and aggressive faces in macaques and selectively
reduce functional coupling between the amygdala and
occipital and infratemporal cortical regions (Liu et al., 2015).
Moreover, in rodent models, OXT is reported to be closely
related to social interaction and affinity (Silverman & Crawley,
2014). At present, there are about 10 genetic models targeting
OXT and its receptor (OXTR) (https://gene.sfari.org/database/
animal-models/rescue-animal-models). These animal models
have confirmed the rescue effects of several pharmaceutical
agents, including OXT, cocaine, and arginine vasopressin,
strongly suggesting the clinical value of drug treatments
targeting OXT and OXTR.

Encouraged by successful OXT treatment in animal models,
a randomized placebo-controlled study of 38 male autistic
patients aged 7-16 years was conducted to evaluate the
effects of OXT (nasal spray); however, the study found no
significant improvement in emotional cognition, social skills, or
problem behavior, highlighting that intervention methods for

Zoological Research 42(6): 800—824,2021 813



ASD patients should be considered carefully (Yatawara et al.,
2016). However, in a recent long-term follow-up treatment
study, multi-dose intranasal OXT treatment effectively induced
long-lasting adaptations in core social brain regions (posterior
superior temporal sulcus and amygdala) from the four weeks
of intranasal OXT administration until four weeks (even up to
one year) post-treatment (Bernaerts et al., 2020). Therefore,
OXT may be a promising molecule to promote social behavior
(Gauthier et al.,, 2016). OXTR gene expression is low in
POGZWT/Q1038R mice, and intranasal OXT administration
can effectively restore impaired social behavior in these mice
(Kitagawa et al., 2021). Up to 20 clinical trials are currently
testing compounds for ASD treatment, including vasopressin
in OXT and OXTR animal models.

Treatment of GM

Potential probiotic therapies for specific behavioral symptoms
of gastrointestinal and human neurodevelopmental disorders
have been identified using ASD mouse models (Hsiao et al.,
2013). Indeed, changes in the GM can regulate
gastrointestinal physiology, immune function, and even
behavior, suggesting a certain correlation between specific
bacteria in the GM and ASD-related phenotypes (Coretti et al.,
2017; Wu, 2017). Thus, probiotics, fecal microbial
transplantation (FMT), and microbial transfer therapy (MTT)
have been applied for treating ASD.

Many studies have shown that probiotics, such as
Bifidobacterium, yeast, Lactococcus, and Lactobacillus, can
prevent and treat animal models and human diseases, such
as obesity, depression, colorectal cancer, and Crohn’s
disease (Tomova et al., 2015). Indeed, in rodent models of
ASD, application of Bacteroides fragilis can reduce intestinal
permeability and change intestinal microbiota composition,
resulting in improved ASD-like behaviors (Hsiao et al., 2013).
In a recent study of 131 autistic children and adolescents
(male:female=122:19; age: 86.1+41.1 months), probiotics
were shown to ameliorate several symptoms of ASD (Mensi et
al., 2021), suggesting that probiotics can standardize intestinal
microbiota, enhance the intestinal barrier in animal models or
ASD patients, and alleviate ASD-like behaviors. However,
whether probiotics play a positive role in humans remains
controversial, and more clinical evidence is needed.

The transplantation (i.e., FMT) of fecal flora from healthy
people into the intestines of recipients to help them recover
normal gastrointestinal flora has been used to ftreat
gastrointestinal and other diseases (Antushevich, 2020). FMT
from EphB6-deficient mice results in ASD-like behavior in
antibiotic-treated C57BL/6J mice, whereas FMT from wild-type
mice ameliorates autism-like behavior in EphB6-deficient mice
(Li et al., 2020b). Although it is workable in animal models,
there are many adverse reactions caused by FMT, such as
diarrhea, abdominal colic, and transient low fever.
Nevertheless, FMT can normalize the intestinal microbiota of
ASD patients and improve their constipation symptoms
(100%) (Rossen et al., 2015).

Similarly, MTT, in which patients are treated with antibiotics
for 14 days, followed by intestinal cleansing, and
administration of a high dose of standardized human GM for
7-8 weeks, may be another way to treat ASD (Hamilton et al.,
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2012). MTT not only improves gastrointestinal symptoms
(such as constipation, diarrhea, dyspepsia, abdominal pain)
and ASD-related symptoms, but also normalizes the
microbiota of ASD patients, with improvement for up to two
years post-MTT (Kang et al., 2017, 2019).

CHALLENGES AND PROSPECTS

ASD is a complex neurodevelopmental disorder caused by a
variety of pathogenic regulators. Although susceptible factors
have been clarified through epidemiological data and clinical
observations, our understanding of this disease remains
relatively poor. At present, animal models remain the best
choice for studies on the causes and treatment of ASD.
Moreover, continuous technological improvements and
breakthroughs, such as multiphoton in vivo imaging and
single-cell technology, will deepen our understanding of the
pathogenesis of ASD and provide necessary support for the
development of new diagnostic methods and treatment
(Figure 4).

Assessment of current animal models

The more effective a model is, the better it can reflect human
diseases. Validation is essential for evaluating the reliability of
animal models and cannot be replaced when assessing the
efficacy of drug treatments (Figure 4). Three types of
validation are widely used to assess the closeness of a model
to human disease (Chadman, 2017). Firstly, structural validity
requires that the model conform to a certain theoretical
hypothesis, and pathophysiological changes must be
consistent with the hypothesis or theory. From this point of
view, models more consistent with structural validity include
ASD animal models with single-gene variation and confirmed
toxic drugs. Secondly, surface validity requires that the model
simulate typical characteristics of the disease in many
aspects, such as behavior. From this point of view, almost all
current ASD animal models conform to this feature to different
degrees, given that typical clinical symptoms (such as
stereotyped and impaired social behavior) are present.
However, except for songbirds, no animal models are suitable
for studying linguistic defects in ASD patients. Thirdly,
predictive effectiveness requires that the pharmacological and
non-pharmacological responses of the model are consistent
with clinical treatment performance and can provide
predictability for long-term treatment and pathogenesis
research. From this point of view, although there is no ideal
drug to treat impaired social communication and repetitive
stereotyped behavior in human ASD, current ASD animal
models are capable of predictive effectiveness to a certain
extent. Importantly, many drugs approved for other diseases
can effectively alleviate ASD symptoms without knowing the
underlying mechanism, and thus basic research using ASD
animal models is necessary. Of note, given its high
heterogeneity, there is no current agreement on which animal
model is best to investigate the pathogenesis of ASD, and
finding shared causes from independent models is an
excellent way to identify novel pathogenic regulators of ASD.

Developing new animal models for ASD
In addition to current ASD animal models, developing new
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ASD

Animal model robustness can be evaluated based on structural validity, surface validity, and predictive effectiveness. Newly developed technologies
and animal models using animals evolutionarily close to humans, such as tree shrews and pigs, are of great value for investigating ASD

pathogenesis.

models with novel animals that are evolutionarily close to
humans, such as tree shrews and pigs, is important (Figure 4).

The tree shrew (order Scandentia) is a small animal closely
related to primates and is considered an intermediary between
rodents and primates (Savier et al., 2021). It has a small body
size, low maintenance cost, and a relatively short reproductive
cycle, making it an ideal model for studying various human
diseases (Chen et al., 2020; Xu et al., 2020; Zhang et al.,
2020). Extensive characterization of critical factors and
signaling pathways in the immune and nervous systems
shows that tree shrews have conservative and unique
characteristics compared with primates (Fan et al., 2019; Yao,
2017; Ye et al., 2021). Tree shrews have a more developed
nervous system and a stress system similar to humans,
suggesting they may be a good choice for models of mental
illness behavior. Indeed, tree shrews exhibit strong novelty
preferences similar to those in rodents and primates (Khani &
Rainer, 2012). A recent study on social avoidance behavior
toward unfamiliar conspecifics showed notably differences
between tree shrews and mice, suggesting that tree shrews
may be an ideal animal model for exploring social avoidance
and prosocial behaviors (Ni et al., 2020). Tree shrews have
also been used to establish social frustration, learned
helplessness, and chronic mild stress models (Meng et al.,
2016). Based on drug antidepressant experiments,
clomipramine has been shown to reverse social withdrawal
behavior in depressed animals, while fluoxetine has a reversal
effect on learned helplessness. In contrast, carbetocin has
been shown to have a significant therapeutic impact on
decreased interest, social withdrawal, and learned
helplessness (Meng et al., 2016). Moreover, visuospatial
cognitive task experiments have demonstrated that trees
shrews have much higher cognitive abilities than rodents,

including reverse learning, reward, and punishment
expectations (Ohl et al., 1998). Thus, using tree shrews to
explore the pathogenesis of ASD is likely to become a hotspot
in ASD research.

Pigs are another potential candidate animal. Compared with
rodents, pigs have advantages in anatomy, physiology, and
nutritional metabolism, and are more suitable for animal
models of human diseases. Various human disease model
pigs have been generated by gene-editing and somatic cell-
cloning technology. In recent years, pig models have been
used in studies on diabetes, cardiovascular diseases, genetic
diseases, tumors, and neurodegenerative diseases. Studies
have shown that mini pigs explore novel objects significantly
more than familiar objects, indicating that pigs exhibit
measurable social novelty behavior (Moustgaard et al., 2002;
Sendergaard et al., 2012). Previous studies have identified
promising tasks in pig cognitive research, e.g., universal
space that allows simultaneous measurement of multiple
behavioral domains. The use of appropriate tasks can
facilitate the collection of reliable data on pig cognition (Gieling
et al, 2011). Recent study investigated the effects of
intrauterine growth retardation level (IUGR, score 0-3; i.e.,
“normal” to “severe”) in pigs at birth, and found that some low
birth-weight piglets can perform spatial tasks and object
recognition tests, but performance is modulated by IUGR
levels (Schmitt et al., 2019). Moreover, their relatively large
littermate size makes pigs an ideal model for drug screening.
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