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Shareable abstract (@ERSpublications)
Obstructive and restrictive phenotypes are present from childhood to adulthood but without age
trends. Established risk factors for airway disease are associated with the obstructive phenotype,
whereas low BMI is associated with the restrictive. https://bit.ly/3BMoMtI
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Abstract
Background The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to
early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to
explore these phenotypes and associations with well-known respiratory risk factors across ages and
populations in European cohorts.
Methods We studied 49334 participants from 14 population-based cohorts in different age groups (⩽10,
>10–15, >15–20, >20–25 years, and overall, 5–25 years). The obstructive phenotype was defined as forced
expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal
(LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ⩾LLN, and FVC z-score
<LLN.
Results The prevalence of obstructive and restrictive phenotypes varied from 3.2–10.9% and 1.8–7.7%,
respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI
2.14–3.04), preterm birth (aOR=1.84, 1.27–2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI
1.01–1.35) and family history of asthma (aOR=1.44, 95% CI 1.25–1.66) were associated with a higher
prevalence of obstructive, but not restrictive, phenotype across ages (5–25 years). A higher current body
mass index (BMI was more often observed in those with the obstructive phenotype but less in those with
the restrictive phenotype (aOR=1.05, 95% CI 1.03–1.06 and aOR=0.81, 95% CI 0.78–0.85, per kg·m−2

increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in
participants older than 10 years (aOR=1.24, 95% CI 1.05–1.46).
Conclusion Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood,
which supports the early origins concept. Several well-known respiratory risk factors were associated with
the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype,
suggesting different underlying pathobiology of these two phenotypes.

Introduction
Low peak lung function detected by spirometry in early adulthood relates to the increased incidence of
respiratory, cardiovascular and metabolic abnormalities, as well as premature death [1, 2]. Spirometry
allows the identification and quantification of the severity of a ventilatory impairment, as well as the first
step of classification into two main phenotypes, obstructive and restrictive patterns. The obstructive
phenotype is defined by a lower than expected forced expiratory volume in 1 s/forced vital capacity (FEV1/
FVC) ratio, and the restrictive pattern by an abnormally low FVC with a normal FEV1/FVC ratio (yet
acknowledging that body plethysmography is needed to diagnose restrictive lung disease) [3]. Although
both phenotypes are relatively common [4–10] and well-studied in adult cohorts [3, 9, 11, 12], to date, no
large study has investigated their respective prevalence, age dependency or associated risk factors in the
period from childhood to young adulthood. The CADSET (Chronic Airway Disease Early Stratification)
clinical research collaboration launched by the European Respiratory Society (ERS) in 2018 [13] offers a
unique opportunity to combine individual data from multiple cohorts to increase the sample size required
to explore these questions. In the current study, we collected data from almost 50000 subjects across 14
population-based cohorts in Europe in order to report the age-specific prevalence, characteristics and risk
factors for spirometric phenotypes from early childhood to young adulthood (5 to 25 years of age), using
the Global Lung Function Initiative (GLI) reference values [14].

Methods
Study design and subjects
14 European population-based cohorts from seven countries were included in the current meta-analysis. A
total of 49334 participants were included in the current study, and 18430 of them (from seven cohorts)
had repeated lung function measurements from 4 to 25 years of age. Details about each cohort and the
definition of covariates are provided in the online supplementary material.
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Measurements and definitions of outcomes
Pre-bronchodilator lung function was tested in each cohort according to the American Thoracic Society
(ATS/ERS spirometry criteria [15]. FEV1, FVC and FEV1/FVC were converted into z-scores according to
the equations from the GLI [14] for each cohort separately. Although no disease selective cohorts were
included, a high heterogeneity in GLI fit between age groups and between cohorts (see Results, “The fit of
GLI z-scores” and table 1) was observed, and we therefore applied a centring approach to make the
cohorts more comparable. Centring was performed separately for each cohort and age group by subtracting
the mean z-score (of FEV1, FVC and FEV1/FVC, respectively) of non-smoking individuals without asthma
(where a perfect fit would give a mean of 0 z-scores) from each individual z-score lung function variable.

The diagnostic algorithm of our spirometry phenotypes was based on the lower limit of normal (LLN) as
the lower fifth percentile of distribution that corresponds to a z-score −1.645 (rounded to −1.65 if two
decimals were used) and used as follows (supplementary Table E1): normal lung function was defined as
the FEV1/FVC ratio and FVC z-scores equal to or higher than LLN. The obstructive phenotype was

TABLE 1 Characteristics and forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio z-scores of each cohort included
in the age groups

Cohorts Nations Age groups n Age# FEV1 FVC FEV1/FVC ratio

GLI fit# Mean-centred¶ GLI fit# Mean-centred¶ GLI fit# Mean-centred¶

ALSPAC+ UK >5–10 6804 8.7±0.3 0.04±1.00 −0.09±1.02 −0.06±1.02 −0.02±1.04 0.15±1.02 −0.10±1.07
>15–20 4519 15.5±0.3 −0.68±1.29 −0.04±1.26 −1.02±1.29 0.04±1.25 0.61±1.16 −0.14±1.21
>20–25 3731 24.5±0.8 −0.52±1.01 0.06±1.00 −0.37±1.02 0.13±0.98 −0.27±0.94 −0.1±0.98

BAMSE+ Sweden >5–10 1832 8.3±0.5 0.47±0.94 −0.06±0.94 0.59±0.90 −0.00±0.91 −0.27±0.87 −0.07±0.89
>15–20 2052 16.7±0.4 0.06±0.92 −0.11±0.94 0.16±0.92 −0.01±0.92 −0.19±0.93 −0.15±0.96
>20–25 2032 22.5±0.5 −0.23±0.85 −0.03±0.86 −0.12±0.85 0.07±0.85 −0.20±0.88 −0.15±0.90

Generation R+ Netherlands >5–10 4738 9.8±0.3 0.19±0.93 −0.04±0.93 0.21±0.89 0.02±0.92 −0.08±0.90 −0.01±0.96
>10–15 3869 13.6±0.4 −0.15±1.01 −0.06±0.93 −0.09±0.98 0.04±0.99 −0.13±0.92 0.00±1.02

HUNT1 Norway >10–15 2705 14.1±0.6 −0.23±1.11 −0.02±1.11 −0.19±1.10 0.01±1.10 −0.07±1.03 −0.05±1.03
>15–20 5256 17.1±1.3 −0.12±1.04 −0.03±1.04 −0.09±1.01 0.02±1.01 −0.08±0.98 −0.08±0.98

HUNT3 Norway >10–15 2792 14.1±0.6 0.01±1.03 −0.01±1.03 0.10±1.05 0.04±1.05 −0.15±1.02 −0.22±1.02
>15–20 4363 16.9±1.2 0.09±0.99 −0.04±0.99 0.19±1.01 0.03±1.01 −0.19±0.98 −0.09±0.97

INMA+ Spain 1–5 704 4.5±0.2 −0.59±1.20 −0.01±1.21 −0.53±1.23 0.01±1.25 −0.03±0.95 −0.03±0.97
>5–10 1277 7.4±0.6 0.21±0.98 −0.01±0.99 0.40±0.95 0.01±0.96 −0.34±0.99 −0.03±1.00
>5–10 476 9.3±0.9 −0.02±1.07 −0.03±1.05 0.17±1.04 −0.00±1.01 −0.21±0.98 −0.06±0.95
>10–15 988 11.2±0.6 −0.20±1.00 −0.01±1.03 −0.06±1.03 0.02±1.04 −0.25±0.95 −0.04±1.01
>10–15 266 14.6±0.2 0.04±0.94 −0.04±0.95 −0.04±0.98 −0.02±0.95 0.13±0.87 −0.03±0.90
>15–20 120 17.7±0.3 −0.34±0.92 −0.03±0.89 −0.32±0.98 0.07±0.94 −0.04±0.99 −0.15±1.02

IoW UK >5–10 980 9.9±0.3 0.37±0.97 −0.04±0.99 0.16±0.88 0.02±0.88 0.33±0.96 −0.09±1.01
>15–20 836 17.8±0.6 0.30±0.92 −0.15±0.99 0.14±0.85 0.01±0.93 0.22±1.07 −0.21±1.11

LEAD Austria >5–10 451 8.4±1.0 0.46±1.27 −0.07±0.99 0.31±1.26 0.10±0.92 0.35±1.17 −0.31±1.13
>10–15 526 12.3±1.5 0.01±1.03 −0.35±1.02 −0.19±0.97 −0.14±0.98 0.36±0.95 −0.39±1.04
>15–20 540 17.4±1.4 −0.05±1.07 −0.36±1.01 −0.22±1.08 −0.11±0.97 0.30±1.08 −0.44±1.12
>20–25 703 22.5±1.4 −0.13±1.04 −0.42±0.92 −0.31±1.09 −0.16±0.92 0.22±0.99 −0.46±1.02

Lifelines Netherlands >15–20 2556 18.9±0.8 −0.42±0.91 −0.06±0.92 −0.34±0.90 0.03±0.89 −0.19±0.98 −0.14±1.01
>20–25 5028 23.3±1.5 −0.42±0.90 −0.06±0.91 −0.29±0.89 0.05±0.87 −0.23±0.96 −0.16±0.96

MAAS+ UK >5–10 778 8.0±0.2 0.15±0.93 −0.07±0.10 0.26±0.90 0.00±0.94 −0.24±0.89 −0.11±0.93
>10–15 778 11.5±0.5 −0.12±0.95 −0.05±1.00 −0.18±1.12 0.05±1.12 0.14±1.03 −0.15±1.10
>15–20 566 16.0±0.6 −0.26±0.95 −0.06±1.05 −0.43±0.90 0.03±0.96 0.31±1.02 −0.16±1.11
>15–20 504 19.4±0.8 −0.24±0.87 −0.04±0.95 −0.40±0.90 0.10±0.90 0.26±0.97 −0.24±1.04

OLIN Sweden >15–20 1470 18.2±0.5 −0.06±1.01 −0.04±1.01 0.08±1.06 0.01±1.03 −0.28±0.93 −0.07±0.96
PIAMA+ Netherlands >5–10 1058 8.1±0.3 0.54±0.88 −0.05±0.91 0.29±0.88 0.00±0.90 0.42±1.06 −0.09±1.09

>10–15 1267 12.7±0.4 −0.56±0.84 −0.04±0.86 −0.37±0.85 −0.01±0.86 −0.37±0.87 −0.04±0.89
>15–20 720 16.4±0.2 −0.19±0.86 −0.07±0.88 0.02±0.86 −0.00±0.82 −0.40±0.92 −0.10±0.94

SEATON+ UK 1–5 446 4.9±0.2 0.17±0.96 −0.03±0.95 −0.13±1.05 −0.00±1.05 0.08±0.93 −0.04±0.95
>10–15 430 10.3±0.2 −0.12±1.10 −0.06±1.09 −0.24±1.04 −0.01±1.04 0.15±0.93 −0.08±0.96
>15–20 534 15.1±0.3 −0.36±1.00 −0.04±1.00 −0.77±1.02 0.01±1.00 0.83±1.09 −0.10±1.13

SUS Denmark >15–20 2294 18.9±1.3 −0.29±0.90 −0.01±0.90 −0.33±0.88 0.05±0.88 0.01±1.00 −0.09±1.00

Data are expressed as mean±SD. GLI: Global Lung Function Initiative. #: based on the whole group of participants; ¶: based on non-asthmatic,
asymptomatic lifelong nonsmokers; +: they are longitudinal cohorts with repeated measurement at different age.
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defined as FEV1/FVC ratio z-score lower than LLN, and severity defined according to QUANJER et al. [16]
as mild, moderate and severe according to thresholds of FEV1: z-score less than LLN but ⩾−2, <−2 but ⩾
−3 and <−3, respectively. In addition to these, a very mild group was added, defined as a FEV1/FVC ratio
z-score lower than LLN and FEV1 z-score greater or equal to LLN. The restrictive phenotype (“Low FVC,
non-obstructive”) was defined as FEV1/FVC ratio z-score equal to or higher than LLN, and FVC z-score
lower than LLN. Severity was evaluated as mild, moderate and severe according to two thresholds of FVC:
z-score less than LLN but ⩾−2, <−2 but ⩾−3 and <−3, respectively [16].

Statistical analysis
We performed cohort-specific analyses followed by meta-analysis. The associations between the
cohort-specific prevalence of obstructive and restrictive phenotypes and age were tested by Pearson
correlation. Comparisons of the prevalence of wheezing and asthma between obstructive and restrictive
phenotypes and normal lung function groups were performed using the Wilcoxon Rank Sum test.
Multivariable regression models were conducted to identify risk factors of obstructive and restrictive
phenotypes, and FEV1, FVC and FEV1/FVC ratio z-scores, respectively. We used two models to explore
selected potential risk factors. In the first model, three well-known early-life respiratory risk factors
(asthma family history, maternal smoking during pregnancy and preterm birth (delivery before 37
completed weeks of gestation)), and two lifestyle factors (body mass index (BMI) and smoking status)
were evaluated using logistic (for obstructive and restrictive phenotypes) and linear regressions (for
z-scores). In the second model, current asthma was added as predictor to the models to specifically
evaluate the influence of asthma, since this is typically classified as an obstructive disease. In the
meta-analysis of cohort-specific results, we combined data from each cohort in age groups separately (⩽10,
>10–15, >15–20, >20–25 years), as well as overall across ages (5–25 years). For those cohorts that had
repeated lung function measurements from multiple time points (i.e., data from several age groups),
regression analysis for each time point was performed and included in the relevant age group. Where
multiple time points existed for a cohort in an age group, only the largest age group was used in the
meta-analyses (both age-bin specific and overall) to provide estimates from truly independent datasets.
Heterogeneity was assessed with the Q and the I2 statistic. The Q statistic was calculated according to the
weighted sum of squared differences between individual study effects and the pooled effect across studies
and is distributed as a chi-square statistic with k (number of studies) minus 1 degrees of freedom [17]. The
I2 statistic describes the percentage of variation across studies that is due to heterogeneity rather than
chance [18, 19]. A random-effects model was used to pool data if substantial heterogeneity was observed
(I2>50% or p<0.1 for Q statistic), otherwise we used a fixed-effects model. Meta-analyses were performed
using the R software (version 4.0.4) with “meta” package (version 4.18.1).

Results
Basic characteristics
Table 1 illustrates the basic characteristics of the cohorts. Of the 14 included cohorts, seven (ALSPAC,
BAMSE, Generation R, INMA, MAAS, PIAMA, SEATON) contributed repeated data from early
childhood to young adulthood (age 4 to 25 years). Two, eight, eight, 13 and four cohorts contributed
results in the 1–5, >5–10, >10–15, >15–20, >20–25 years age groups, respectively. As the 1–5 age bin
only contained two cohorts (INMA and SEATON), the 1–5 and >5–10 age groups were combined into the
<10 age bin in the meta-analysis. Although INMA contributed data at 4, 7 and 9 years, only the largest
dataset (7 years) was included in the meta-analysis in the <10 age bin.

The fit of GLI z-scores
The fit of GLI z-scores is described for each cohort in non-asthmatic, asymptomatic lifelong nonsmokers
as mean and SD in table 1. While the overall GLI fit was good in many age groups in the cohorts, a high
heterogeneity was observed. For six, four and three cohorts, GLI fit estimates for FEV1, FVC and FEV1/
FVC z-scores, respectively, were outside the suggested range using 0.4 as a cut-off [20] (supplementary
Figure E1). Therefore, we proceeded with mean-centred z-scores (as described in the Methods) for
comparisons of prevalences across cohorts, and for the meta-analyses. While mean GLI z-score values
varied by cohort and age, the SD was close to 1 in all groups.

Prevalence of spirometric phenotypes and association with respiratory symptoms
We used the mean-centred z-scores to explore the prevalence of spirometry impairment phenotypes across
ages and cohorts. The prevalence of obstructive and restrictive phenotypes during early childhood and
young adulthood ranged from 3.2 to 10.9% and 1.8 to 7.7%, respectively (figure 1a and b). There was no
overall association between age and the prevalence of obstructive and restrictive phenotypes (r=0.14,
p=0.39 and r=−0.14, p=0.41, respectively, supplementary Figure E2A and E2B). Most participants with
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the obstructive phenotype were classified as having a (very) mild impairment, while most participants with
the restrictive phenotype were classified as having a mild to moderate impairment (figure 1a and b).

Participants with the obstructive phenotype more frequently reported wheezing in the previous 12 months
and having been diagnosed with asthma when compared to participants with normal lung function
(median=26.6%, interquartile range (IQR)=16.7 to 36.4% versus 12.5%, IQR=7.9 to 18.1%, p<0.001, and
29.8%, IQR= 21.9 to 42.3% versus 12.3%, IQR=7.1 to 22.5%, p<0.001, respectively, figure 2 and
supplementary Figure E3). However, no significant difference in respiratory symptoms between
participants with the restrictive phenotype and normal lung function was observed (12.7%, IQR=7.6 to
18.1% versus 12.5%, IQR=7.9 to 18.1%, p=0.95, and 10.1%, IQR=7.1 to 20.9% versus 12.3%, IQR=7.1
to 22.5%, p=0.57, respectively, figure 2 and supplementary Figure E1). In the adjusted regression models,
a current diagnosis of asthma was strongly associated with the obstructive phenotype (5–25 years age
group aOR=2.55, 95% CI 2.14–3.04, figure 3, for other subgroups see supplementary Figure E4). No
association between a current diagnosis of asthma and the restrictive phenotype (supplementary Figure E5)
was observed.

Risk factors associated with impaired lung function
We explored the mutually adjusted associations of three well-known early-life respiratory risk factors
(preterm birth, maternal smoking during pregnancy and asthma family history), as well as the lifestyle
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FIGURE 1 Prevalence of the a) obstructive and b) restrictive phenotypes from early childhood to young adulthood. The numbers above each bar
represent the number of cases in the respective study. Cohorts linked by lines had the same mean age (in years).
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factors at the time of lung function testing, BMI and smoking status (former and current smoker) and
obstructive and restrictive phenotypes as well as FEV1, FVC and FEV1/FVC ratio z-scores. The combined
meta-analysis results are illustrated in table 2 (for spirometry phenotypes) and supplementary Table E2
(for z-scores) and results additionally adjusted for asthma in table 3 and supplementary Table E3.

Preterm birth was associated with a higher likelihood of having the obstructive phenotype in the <10, >10–
15, >15–20 and the overall 5–25 years age groups (aOR=1.82, 95% CI 1.08–3.06, aOR=2.73, 95% CI
1.67–4.46; aOR=1.61, 95% CI 1.13–2.29 and aOR=1.84, 95% CI 1.27–2.66, table 2), and effect estimates
remained similar when current asthma was included in the model (table 3). Maternal smoking during
pregnancy was also associated with a higher risk of the obstructive phenotype in several age groups,
including the overall 5–25 years group (aOR=1.16, 95% CI 1.01–1.35), but the effect estimates somewhat
attenuated when current asthma was adjusted for in the model (table 3). Asthma family history was
associated with the obstructive phenotype in Model 1, but the effect estimates attenuated with additional
adjustment for current asthma in Model 2 (aOR decreased from 1.44 to 1.21). No association between
these risk factors and the restrictive phenotype was observed. Using spirometry indices as continuous trait
outcomes, preterm birth was negatively associated with FEV1, FVC and FEV1/FVC ratio z-scores
(supplementary Table E2). Maternal smoking during pregnancy was negatively associated with FEV1 and
FEV1/FVC ratio. Asthma family history was negatively associated with FEV1 and FEV1/FVC ratio
z-scores, but not with FVC z-scores.

BMI was positively associated with the obstructive phenotype in all age groups in both models (from
aOR=1.03, 95% CI 1.01–1.05 to aOR=1.06, 95% CI 1.04–1.09 per kg·m−2 increase, tables 2 and 3). In
contrast, BMI was negatively associated with the restrictive phenotype in all age groups in both models
(from aOR=0.79, 95% CI 0.74–0.84 to aOR=0.88, 95% CI 0.80–0.96 per kg·m−2 increase, tables 2 and 3
and figure 4) except in the >20–25 age bin (supplementary Figure E6). In addition, a higher BMI was
associated with higher FEV1 and FVC but lower FEV1/FVC ratio z-scores (supplementary Table E2).

Current smoking was positively associated with the obstructive phenotype in the >15–20, >20–25 and
>10–25 years age groups in Model 1, but the association somewhat attenuated when current asthma was
adjusted for in the model (table 3). No clear associations between former smoking and an obstructive
phenotype were observed in the current study because former smoking was both positively and negatively
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FIGURE 2 Prevalence of any wheezing in participants with obstructive or restrictive phenotypes, or normal lung function. The numbers above each
bar represent the number of cases in the respective study. Cohorts linked by lines had the same mean age (in years).
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associated with obstructive phenotype. No association between participants’ smoking status and the
restrictive phenotype was observed. In addition, both former and current smoking were associated with
higher FVC but lower FEV1/FVC ratio z-scores (supplementary Table E2).

Discussion
The main observations in the current study using data from 14 population-based cohorts are that: 1) the
obstructive and restrictive phenotypes are present at any age from childhood to early adulthood without an
apparent age trend; and 2) a diagnosis of asthma, family history of asthma, maternal smoking during
pregnancy, preterm birth, a higher BMI and current smoking were risk factors for the obstructive
phenotype, while a lower BMI was the only factor associated with a restrictive phenotype in this age
range.

Previous studies
Previous studies have reported that the prevalence of an obstructive spirometric phenotype in young adults
is between 5 and 7% [21–23]. Our current results extend these previous findings by demonstrating that an
obstructive phenotype widely exists in the general population from childhood to early adulthood. The
prevalence of the restrictive phenotype during early childhood to young adulthood ranged from 1.8 to
7.7% in our study. These figures are lower than in population-based studies of adults 40 years or older,
where prevalence ranges from around 7 to 20% [5–10]. Most participants with obstructive and restrictive
phenotypes in our study were classified as having mild impairments, and interestingly, no difference in
respiratory symptoms between participants with the restrictive phenotype and normal lung function was
observed. As such, they may be at the early stage of the impairment and indicate a potential window of
opportunity for early interventions to conserve or improve their lung function [24].

Interpretation of key findings
Several early-life potential risk factors, including asthma family history, maternal smoking during
pregnancy and preterm birth, were associated with the obstructive phenotype. Preterm birth is associated
with several respiratory sequelae during early childhood, such as bronchopulmonary dysplasia and higher
risk of lower respiratory tract/respiratory syncytial virus infections [25]. Further, preterm birth has been
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TABLE 2 Meta-analysis results of obstructive and restrictive phenotypes in Model 1# in different age groups

Variables Age groups Number of cohorts I2 p-value for Q statistic OR (95% CI)

Obstructive phenotype
Preterm birth <10 9 60.8 0.0089 1.82 (1.08–3.06)

2.73 (1.67–4.46)
1.61 (1.13–2.29)
1.37 (0.88–2.12)
1.84 (1.27–2.66)

>10–15 5 17.6 0.30
>15–20 8 6.7 0.38
>20–25 4 0.0 0.63
5–25 10 51.6 0.016

Maternal smoking during
pregnancy

<10 9 0.0 0.61 1.11 (0.94–1.30)
1.20 (0.90–1.59)
1.43 (1.14–1.78)
1.43 (1.07–1.93)
1.16 (1.01–1.35)

>10–15 6 0.0 0.98
>15–20 10 9.1 0.36
>20–25 3 0.0 0.41
5–25 11 0.0 0.53

Asthma family history <10 9 26.9 0.20 1.34 (1.14–1.58)
1.39 (1.01–1.93)
1.46 (1.24–1.72)
1.59 (1.22–2.07)
1.44 (1.25–1.66)

>10–15 6 0.0 0.55
>15–20 11 0.0 0.52
>20–25 3 29.6 0.24
5–25 12 0.0 0.83

BMI <10 9 40.6 0.097 1.06 (1.02–1.10)
>10–15 8 55.3 0.022 1.04 (1.00–1.09)

1.05 (1.04–1.07)
1.03 (1.01–1.05)
1.05 (1.03–1.06)

>15–20 12 17.7 0.27
>20–25 4 0.0 0.47
5–25 13 44.7 0.019

Former smoker >10–15 2 0.0 0.61 0.67 (0.45–1.01)
0.83 (0.71–0.98)
1.37 (1.04–1.82)
0.93 (0.75–1.16)

>15–20 10 28.9 0.18
>20–25 4 0.0 0.63
10–25 11 41.3 0.048

Current smoker >10–15 2 51.0 0.15 0.88 (0.38–2.05)
1.21 (1.01–1.44)
1.34 (1.01–1.78)
1.24 (1.05–1.46)

>15–20 11 35.5 0.11
>20–25 4 0.0 0.70
10–25 11 29.8 0.13

Restrictive phenotype
Preterm birth <10 8 0.0 0.79 1.17 (0.78–1.75)

1.46 (0.72–2.97)
1.16 (0.72–1.87)
0.88 (0.41–1.92)
1.20 (0.84–1.70)

>10–15 5 0.0 0.92
>15–20 6 0.0 0.79
>20–25 3 0.0 0.87
5–25 9 0.0 0.98

Maternal smoking during
pregnancy

<10 9 0.0 0.92 0.91 (0.73–1.14)
1.16 (0.79–1.70)
0.98 (0.61–1.58)
0.84 (0.52–1.36)
1.00 (0.82–1.22)

>10–15 6 0.0 0.95
>15–20 9 40.9 0.095
>20–25 4 0.0 0.73
5–25 11 0.0 0.66

Asthma family history <10 9 3.8 0.40 0.92 (0.74–1.15)
0.91 (0.58–1.44)
0.89 (0.71–1.12)
0.97 (0.66–1.42)
0.96 (0.79–1.16)

>10–15 6 0.0 0.97
>15–20 10 13.4 0.32
>20–25 4 0.0 0.64
5–25 12 0.0 0.84

BMI <10 9 69.3 0.001 0.88 (0.80–0.96)
0.80 (0.75–0.85)
0.80 (0.75–0.85)
0.84 (0.70–1.00)
0.81 (0.78–0.85)

>10–15 8 51.6 0.035
>15–20 12 78.8 <0.001
>20–25 4 92.6 <0.001
5–25 13 75.1 <0.001

Former smoker >10–15 2 0.0 0.35 0.65 (0.40–1.04)
0.98 (0.79–1.21)
0.57 (0.27–1.23)
0.93 (0.76–1.12)

>15–20 9 25.3 0.24
>20–25 4 56.6 0.075
10–25 11 35.9 0.10

Current smoker >10–15 2 62.2 0.10 0.89 (0.27–2.97)
0.80 (0.60–1.05)
0.72 (0.48–1.06)
0.85 (0.67–1.08)

>15–20 11 27.3 0.18
>20–25 4 0.0 0.54
10–25 11 19.6 0.23

#: Model 1 was adjusted for asthma family history, maternal smoking during pregnancy, preterm birth, body
mass index (BMI) and smoking status.
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TABLE 3 Meta-analysis results of obstructive and restrictive phenotypes in Model 2# in different age groups

Variables Age groups Number of cohorts I2 p-value for Q statistic OR (95% CI)

Obstructive phenotype
Preterm birth <10 8 53.1 0.037 2.04 (1.24–3.34)

2.83 (1.73–4.46)
1.53 (1.06–2.22)
1.49 (0.94–2.36)
1.83 (1.31–2.57)

>10–15 6 21.0 0.28
>15–20 8 7.1 0.38
>20–25 4 0.0 0.47
5–25 10 40.1 0.06

Maternal smoking during
pregnancy

<10 9 0.0 0.70 1.06 (0.89–1.28)
1.28 (0.95–1.73)
1.48 (1.20–1.82)
1.23 (0.86–1.75)
1.13 (0.97–1.33)

>10–15 6 0.0 0.97
>15–20 10 17.0 0.29
>20–25 3 0.0 0.79
5–25 11 0.0 0.58

Asthma family history <10 9 21.9 0.25 1.09 (0.90–1.32)
1.17 (0.82–1.67)
1.28 (1.07–1.52)
1.33 (0.74–2.40)
1.21 (1.04–1.41)

>10–15 6 0.0 0.63
>15–20 11 0.0 0.84
>20–25 3 69.6 0.037
5–25 12 0.0 0.67

BMI <10 9 53.7 0.027 1.05 (1.00–1.11)
1.06 (1.04–1.09)
1.04 (1.03–1.06)
1.04 (1.01–1.07)
1.04 (1.03–1.06)

>10–15 8 0.0 0.50
>15–20 12 16.5 0.28
>20–25 4 0.0 0.88
5–25 13 34.4 0.071

Former smoker >10–15 2 0.0 0.72 0.67 (0.45–1.01)
0.83 (0.70–0.97)
1.55 (1.14–2.11)
0.96 (0.76–1.22)
0.89 (0.37–2.15)

>15–20 10 20.8 0.25
>20–25 4 0.0 0.59
10–25 11 47.0 0.023

Current smoker >10–15 2 54.1 0.14
>15–20 11 45.1 0.052 1.18 (0.90–1.54)

1.28 (0.92–1.79)
1.18 (0.93–1.49)

>20–25 4 0.0 0.67
10–25 11 37.6 0.07

Restrictive phenotype
Preterm birth <10 8 0.0 0.70 1.08 (0.68–1.73)

1.80 (0.88–3.71)
1.17 (0.72–1.92)
0.76 (0.30–1.92)
1.13 (0.77–1.68)

>10–15 5 0.0 0.85
>15–20 6 0.0 0.83
>20–25 3 0.0 0.95
5–25 9 0.0 0.97

Maternal smoking during
pregnancy

<10 9 0.0 0.71 0.95 (0.75–1.22
1.19 (0.78–1.79)
0.98 (0.59–1.62
1.01 (0.61–1.69)
1.06 (0.86–1.32)

>10–15 6 0.0 0.98
>15–20 9 43.8 0.076
>20–25 4 0.0 0.99
5–25 11 0.0 0.59

Asthma family history <10 9 3.8 0.40 0.99 (0.77–1.27)
0.89 (0.54–1.46)
0.88 (0.69–1.12)
0.99 (0.63–1.56)
1.02 (0.83–1.25)

>10–15 5 0.0 0.88
>15–20 10 25.9 0.21
>20–25 4 0.0 0.61
5–25 12 0.0 0.84

BMI <10 9 75.0 <0.001 0.86 (0.77–0.95)
0.79 (0.74–0.84)
0.80 (0.75–0.85)
0.84 (0.70–1.01)
0.81 (0.77–0.85)

>10–15 8 50.8 0.039
>15–20 12 75.9 <0.001
>20–25 4 92.2 <0.001
5–25 13 76.9 <0.001

Former smoker >10–15 2 0.0 0.35 0.64 (0.40–1.04)
0.96 (0.77–1.20)
0.69 (0.43–1.08)
0.91 (0.75–1.11)

>15–20 9 40.3 0.12
>20–25 4 46.7 0.13
10–25 11 35.2 0.11

Current smoker >10–15 2 62.8 0.10 0.89 (0.26–3.07)
0.74 (0.49–1.13)
0.73 (0.47–1.15)
0.87 (0.68–1.13)

>15–20 11 41.8 0.07
>20–25 4 0.0 0.56
10–25 11 19.2 0.24

#: Model 2 was adjusted for asthma family history, maternal smoking during pregnancy, preterm birth, body
mass index (BMI) and smoking status, as well as for current asthma.
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associated with substantial impairments in airflow later during childhood and adolescence [26, 27]. In the
current study, preterm birth was related to a higher risk of having an obstructive phenotype and a lower
FEV1 z-score up to early adulthood. Despite recent substantial advances in neonatal care, with more babies
surviving after preterm birth (including extreme prematurity, defined as <28 weeks’ gestation), the
underlying pathophysiological mechanisms related to future respiratory health in these patients need further
investigation [28].

Maternal smoking during pregnancy is a well-known in utero exposure that is negatively associated with
fetal lung development and respiratory function in new-born infants [29] and with a higher risk of
recurrent wheezing throughout childhood [30, 31]. Our results support these findings by demonstrating that
maternal smoking during pregnancy is associated with a higher risk of the obstructive phenotype and
impaired lung function development assessed as FEV1 and FEV1/FVC ratio z-scores in offspring.

Further, asthma and smoking are other well-known factors associated with airway obstruction [32], and
children with persistent asthma are at higher risk for fixed airflow obstruction and possibly COPD in early
adulthood [33, 34]. As expected, current asthma was strongly associated with the obstructive phenotype
(>2-fold) and lung function impairment (lower FEV1 and FEV1/FVC z-scores) in our study. Current
smoking of the participants was also associated with a higher likelihood of the obstructive phenotype
(almost 20%). However, the association between current smoking and the obstructive phenotype was
attenuated somewhat when a current diagnosis of asthma was taken into consideration, and the same trend
was also observed for asthma family history and maternal smoking during pregnancy, suggesting that
involved mechanisms partly overlap with asthma pathophysiology. It should be noted that we did not
consider asthma as a confounder in the regression model (Model 2), since asthma and airway obstruction
may represent the same disease entity, but rather to explore shared risk factors between asthma and our
spirometry outcomes. However, we acknowledge that not all individuals classified as having asthma
necessarily have clinical asthma, as the criteria for asthma in young children are typically based on
symptoms only and not any objective tests. Future studies may explore more specific characteristics of
asthma, such as airway hyperresponsiveness or airway inflammation, in relation to lower lung function
development.
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FIGURE 4 Meta-analysis results of association between body mass index and restrictive phenotype in Model 2 in 5–25 years age group. TE: the
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We did not identify any association between explored risk factors and the restrictive phenotype, except for
BMI, where we found a lower BMI to be associated with the restrictive phenotype, indicating different
underlying metabolic pathobiology between the obstructive and restrictive phenotypes. Although restrictive
spirometry outcomes and lung disease are receiving increased attention in respiratory research lately, most
studies to date were designed to explore health consequences of restrictive disease [9, 10, 12], while
origins and risk factors remain poorly studied. In adults, early-life circumstances, such as low birthweight
and intrauterine growth restriction [35, 36], pneumonia before school age [37], smoking [38], abdominal
adiposity [38] and dust exposure [39] have been associated with lower FVC levels. In our study, smoking
status was not associated with the restrictive phenotype, possibly because of the low cigarette load among
adolescents and young adults. However, we observed a two-way relationship between BMI and lung
function in our study. On the one hand, a lower BMI was associated with increased likelihood of restrictive
phenotype and BMI correlated negatively with FVC z-scores from childhood to adolescence. On the other
hand, a higher BMI was associated with increased likelihood of obstructive phenotype and correlated
negatively with FEV1/FVC ratio z-scores from childhood to young adulthood. In children, faster weight
growth is associated with higher FVC and FEV1 values [40]. BMI gain during early childhood has,
however, greater influence on lung volume than airway growth, which may lead to airway dysanapsis [41,
42]. This is a phenomenon where the growth of the lung parenchyma is beyond the calibre of the airways
leading to a higher FVC than FEV1, and a lower than expected FEV1/FVC ratio [43]. Of high clinical
relevance is the observation that among obese children with asthma, dysanapsis has been associated with
severe disease exacerbations [41].

Lower BMI during early childhood has in other studies been associated with lower FVC [42] and
restrictive spirometric phenotype [44]. Those results indicate that maintenance of normal BMI during
childhood to early adulthood may lead to improved respiratory health. In addition, the influence of BMI on
lung function could differ depending on the proportion of different body components (i.e., fat mass and
lean mass) [45, 46]. Owing to lack of body composition data in our study, we cannot explore these
mechanisms further.

Strengths and limitations
Using data from 14 population-based cohorts in Europe, we provide robust estimates on the prevalence of
obstructive and restrictive phenotypes from childhood to young adulthood. However, some limitations of
the current study should be noted. Firstly, our current study is exploratory. Although three well-known
early-life risk factors and lifestyle factors were taken into account, residual confounding, by e.g., diet or
physical activity, and unexplored risk factors may still be an issue. Besides, the definition of restrictive
phenotype in the current study was based on spirometry, which is commonly used in population-based
studies [9, 10] but was not confirmed by residual volume and/or total lung capacity data. While the
obstructive disease has received much attention in recent years, less is known about factors associated with
restrictive outcomes. Future studies may explore the association between a restrictive phenotype and other
early-life factors, such as additional perinatal factors (including extreme prematurity), growth trajectories,
air pollution exposure, respiratory insults and diet [47, 48]. In addition, we did not have the possibility to
explore potential influence of allergic comorbidities such as atopy, atopic dermatitis or allergic rhinitis, as
earlier studies have indicated [49, 50]. Secondly, our study included almost 50000 participants from 14
population-based cohorts from Europe, which provides high study power and external validity of the
results, but also introduces some heterogeneity according to the fit of the GLI equation. In order to make
the results comparable between cohorts, we centred the z-scores in each cohort according to the mean
values of non-asthmatic, asymptomatic lifelong nonsmokers [14]. Thirdly, not all cohorts contributed data
on all the risk factors, but we included all available variables in the regression analysis. In addition,
definitions in some risk factors slightly differed between cohorts as appears in the online supplementary
material.

Conclusions
Both obstructive and restrictive phenotypes do indeed occur during childhood and early adulthood but
without a clear age trend. Participants with the obstructive phenotype more often reported asthma and
wheezing symptoms. In addition, several well-known risk factors for airway disease in adults were
associated with the obstructive phenotype across ages, including asthma family history, preterm birth,
smoking and higher BMI, while the only identified factor related to the restrictive phenotype was lower
BMI, pointing to other reasons for this phenotype in children compared to adults. Further studies on the
mechanisms of these functional abnormalities are warranted.
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