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Abstract

Surgical reduction of pelvic dislocation is a challenging procedure with poor long-term prognosis 

if reduction does not accurately restore natural morphology. The procedure often requires long 

fluoroscopic exposure times and trial-and-error to achieve accurate reduction. We report a method 

to automatically compute the target pose of dislocated bones in preoperative CT and provide 3D 

guidance of reduction using routine 2D fluoroscopy. A pelvic statistical shape model (SSM) and a 

statistical pose model (SPM) were formed from an atlas of 40 pelvic CT images. Multi-body bone 

segmentation was achieved by mapping the SSM to a preoperative CT via an active shape model. 

The target reduction pose for the dislocated bone is estimated by fitting the poses of undislocated 

bones to the SPM. Intraoperatively, multiple bones are registered to fluoroscopy images via 3D–

2D registration to obtain 3D pose estimates from 2D images. The method was examined in three 

studies: (1) a simulation study of 40 CT images simulating a range of dislocation patterns; (2) a 

pelvic phantom study with controlled dislocation of the left innominate bone; (3) a clinical case 

study investigating feasibility in images acquired during pelvic reduction surgery. Experiments 

investigated the accuracy of registration as a function of initialization error (capture range), image 

quality (radiation dose and image noise), and field of view (FOV) size. The simulation study 

achieved target pose estimation with translational error of median 2.3 mm (1.4 mm interquartile 

range, IQR) and rotational error of 2.1° (1.3° IQR). 3D–2D registration yielded 0.3 mm (0.2 mm 

IQR) in-plane and 0.3 mm (0.2 mm IQR) out-of-plane translational error, with in-plane capture 

range of ±50 mm and out-of-plane capture range of ±120 mm. The phantom study demonstrated 

3D–2D target registration error of 2.5 mm (1.5 mm IQR), and the method was robust over a large 

dose range, down to 5 μGy/frame (an order of magnitude lower than the nominal fluoroscopic 

dose). The clinical feasibility study demonstrated accurate registration with both preoperative and 

intraoperative radiographs, yielding 3.1 mm (1.0 mm IQR) projection distance error with robust 

performance for FOV ranging from 340 × 340 mm2 to 170 × 170 mm2 (at the image plane). 

The method demonstrated accurate estimation of the target reduction pose in simulation, phantom, 

and a clinical feasibility study for a broad range of dislocation patterns, initialization error, dose 
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levels, and FOV size. The system provides a novel means of guidance and assessment of pelvic 

reduction from routinely acquired preoperative CT and intraoperative fluoroscopy. The method has 

the potential to reduce radiation dose by minimizing trial-and-error and to improve outcomes by 

guiding more accurate reduction of joint dislocations.
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1. Introduction

Pelvic dislocation is a severe pelvic injury that involves dislocations of the sacroiliac 

(SI) joint with frequent concurrence of pubic symphysis (PS) disruption (Halawi 2016) 

without bone fractures. Pelvis dislocation without bone fractures consists of 5% to 27% of 

pelvic trauma, depending on different studies (Dunn and Morris 1968, Holdsworth 2012). 

Following diagnosis and planning in CT (often in the emergency setting), surgical treatment 

of pelvic dislocation typically involves open or closed reduction and internal fixation 

under guidance of intraoperative x-ray fluoroscopy. Accurate reduction is challenged by 

the difficulty in reckoning the pose of complex 3D pelvic anatomy from 2D fluoroscopic 

projections, resulting in extended fluoroscopy time and frequent trial-and-error even for 

experienced trauma surgeons. In addition, residual displacement after reduction surgery 

(>4 mm) is associated with long-term complications such as persistent pain, limb length 

discrepancy, and disability (Smith et al 2005, Shillito et al 2014).

The surgical plan (i.e. determination of the dislocated bone(s) and definition of the 

target orientation) is performed based on preoperative CT—either qualitatively or with 

the assistance of various 2D or 3D manual planning tools. For example, segmentation 

of preoperative CT and virtual 3D image manipulation has been proposed as a basis for 

planning (Cimerman and Kristan 2007, Suero et al 2010, Pahuta et al 2012); however, 

manual manipulation is time consuming relative to rapid trauma workflow—for example, 

Suero et al (2010) reporting 174.8 min average planning time for a fracture of the tibial 

plateau.

Emerging methods for automatic image segmentation and registration provide the 

potential for more streamlined, accurate, and quantitative preoperative planning. Atlas-

based techniques have been widely reported as a means to relate population-based prior 

information to patient-specific images. Statistical shape models (SSMs) are a commonly 

used atlas-based approach to model anatomical shape variations of a single object in a 

linear space via principal component analysis (PCA) and have been incorporated in active 

shape model (ASM) segmentation (Cootes et al 1995) and surgical trajectory planning for 

pelvic fracture fixation (Goerres et al 2017, Han et al 2019). An ASM segmentation with 

constraints on proximity of multiple bone components was proposed in Brehler et al (2019) 

for analysis of ankle morphology. To study the shape and pose of multiple objects, Fletcher 

et al (2004) used a Lie group framework to define principal geodesic analysis (PGA) for 

statistical analysis and segmentation of shapes modeled by a set of connected continuous 
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medial manifolds in a nonlinear Lie group space. Bossa and Olmos (2006) proposed a 

statistical pose model (SPM) representation on the PGA Lie group framework for shape 

analysis in brain images. Related methods were further extended by Gorczowski et al 
(2010) to a multi-object scenario to study the shapes and poses of multiple brain structures 

simultaneously.

Advances in image-guided surgery, such as 3D intraoperative imaging (Tormenti et al 2010, 

Waschke et al 2013) and surgical tracking (Mezger et al 2013), offer opportunities to 

improve the precision and safety of orthopaedic surgery. Intraoperative CT or cone-beam 

CT (CBCT) provides visualization of bone morphology in relation to adjacent nerves 

and vessels; however, while such imaging systems are fairly widespread in cranial and 

spinal surgery, they are not broadly prevalent in orthopaedic trauma, where 2D fluoroscopic 

guidance is a mainstay. Tracking and navigation approaches usually involve fiducial markers 

placed on the patient and interventional devices, allowing registration of preoperative 

imaging to the world coordinate frame during surgery; again, while fairly common in 

neurosurgery, the use of navigation in orthopaedic trauma surgery is rare, due in part to the 

additional workflow associated with such systems.

To overcome such limitations in workflow (as well as cost and equipment), methods 

for 3D–2D registration-based guidance are being developed to register routinely acquired 

x-ray fluoroscopy images to preoperative 3D imaging as a basis for surgical guidance. For 

example, (Otake et al 2013, Uneri et al 2014a, 2014b, De Silva et al 2016) demonstrated 

the use of image registration between preoperative CT and 2D fluoroscopy for target 

localization and guidance in spine surgery. Furthermore, Han et al (2019) showed 3D–

2D registration as a basis for augmenting fluoroscopy with automatically determined 3D 

planning information in pelvic trauma surgery. However, these registration methods do not 

account for independent motions of multiple bones during the operation, presenting a source 

of geometric error that challenges conventional rigid registration methods. To address such 

limitations, Koyanagi et al (2011), Schmid and Chênes (2015) proposed piecewise rigid 3D–

2D registration in which multi-body 3D points are registered to fluoroscopy via feature point 

matching. Alternatively, Ketcha et al (2017) used a multi-scale 3D–2D image registration 

approach to account for deformation in spine surgery.

In the work reported below, we incorporate the SSM pelvic segmentation of Han et 
al (2019) and the SPM analysis of Bossa and Olmos (2006) to obtain a framework 

for computing the target pose of multiple bone components in surgical reduction. The 

resulting method provides a means to guide reduction of a dislocated bone (or bones) to 

the target pose using routinely acquired intraoperative fluoroscopy/radiography without the 

need for manual segmentation or feature point identification. The approach can be used to 

augment fluoroscopic images with a 2D overlay of the 3D target reduction; alternatively, 

the method can be used as a basis for 3D tracking of the relative locations of multiple bone 

components with respect to the preoperative plan and to guide residual reduction needed 

to match the target pose. The method estimates 3D pose from just one or two fluoroscopic 

images, helping to reduce the challenge of interpreting complex 3D morphology in 2D 

projections and potentially decreasing trial-and-error and radiation dose. By facilitating 

guidance relative to 2D fluoroscopy and/or 3D preoperative CT, the method could improve 
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the accuracy of pelvic reduction and associated clinical outcomes without additional devices 

or major changes to surgical workflow.

2. Methods

The proposed approach for image-guided reduction of pelvic dislocation is illustrated in 

figure 1, using multi-body registration to: (1) preoperatively compute the target pose among 

multiple bone components; and (2) intraoperatively guide the reduction of dislocated bone 

by fluoroscopy-based navigation. The top branch in figure 1 illustrates the SSMs of three 

pelvic bones (sacrum and left/right innominate bones) preoperatively registered via ASM 

to the patient CT to obtain multi-body segmentations and target poses. An SPM is then 

fitted to one or more bones that are not dislocated for estimation of the target pose of 

the dislocated bone. The target pose constitutes the preoperative plan for reduction of the 

dislocation. The bottom branch of figure 1 shows automatically computed segmentations of 

multiple rigid bodies (three bones of the pelvis) intraoperatively mapped to one or more 

2D radiographs via a two-stage 3D–2D registration: first, matching digitally reconstructed 

radiographs (DRRs) to the 2D radiographs to resolve the pose of one bone with respect 

to the x-ray system; and second, to compute the pose of the pelvic bones with respect to 

each other. The target reduction pose is then overlaid on the fluoroscopy image to provide 

guidance in a form that is familiar to orthopaedic surgeons (i.e. the 2D fluoroscopic scene). 

Because the resulting registrations provide 3D pose estimations, they can alternatively be 

used to provide 3D visualization and guidance analogous to conventional surgical navigation

—i.e. visualization relative to preoperative CT. In either 2D or 3D guidance, the target pose 

estimation augments the surgeon’s determination of the extent to which the current reduction 

is within an acceptable range of the desired reduction.

2.1. Preoperative reduction planning

2.1.1. Pelvic shape atlas and segmentation—An open-source pelvic atlas (Han et 
al 2019) comprised of N = 40 CT images drawn from the Cancer Imaging Archive (Roth 

et al 2014, Seff et al 2014) was used, with separate segmentations of left/right innominate 

bone (i.e. ilium, ischium, and pubis) and sacrum represented by triangular surface meshes 

with corresponding vertices across the atlas population. The individual bone SSMs were 

represented as S(l) = S(l) + PSSM
(l) vSSM

(l) , where S is the population mean shape, PSSM is the 

principal component matrix, vSSM is a weight vector describing the populational shape 

variation, and the superscript l = 1 … L denotes the L = 3 pelvic bones. The pelvic 

bones were segmented using a multi-resolution ASM (Cootes et al 1995) to optimize image 

gradient magnitude along SSM boundaries via updates to the SSM weight vector vSSM
(l)  and 

overall pose similarity transformation TASM 
(l) . An unconstrained free-form deformation step 

(Han et al 2019) further refined the ASM output to produce the final segmentation surfaces 

denoted as triangular meshes S(l), l = 1, 2, 3. Details of the implementation can be found 

in Han et al (2019). These segmentations provided a basis for the pose estimation method 

described below.
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2.1.2. SPM and definition of target pose—The pelvic bones were treated as a 

multi-object model for which the relative poses (or the respective similarity transformations 

between bones) could be jointly modeled. Analogous to SSM in which PCA is used 

for multivariate shape analysis on a Euclidean space, the multivariate pose analysis 

was computed using PGA on a Riemannian manifold (Fletcher et al 2004, Bossa and 

Olmos 2006). A Riemannian manifold is a smooth manifold equipped with an inner 

product (generalized Euclidean space) on the tangent space of its points. The similarity 

transformation is written in homogenous coordinates as:

T =
sR3 × 3 d

0T 1
(1)

where s ∈ ℝ+ is a scaling parameter, R3×3 ∈ SO(3) is an orthogonal rotational matrix, and 

d ∈ ℝ3 is a 3D translation vector. The group of matrices following equation (1) forms a 

Lie group, which is globally curved but locally linear (i.e. Euclidean in the tangent space). 

The Lie group and its tangent space can be inter-converted using exponential and logarithm 

mapping due to the following properties:

exp

0 0 0 tx
0 0 0 ty
0 0 0 tz
0 0 0 0

=

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

(2a)

exp

0 −rz ry 0
rz 0 −rx 0

−ry rx 0 0
0 0 0 0

=
R 0

0T 1
(2b)

exp
ln sI3 0

0T 0
=

sI3 0

0T 1
(2c)

where (tx, ty, tz) are translation parameters, (rx, ry, rz) ∈ SO(3) are rotational parameters 

belonging to the 3D rotation group and I3 is an identity matrix of dimension 3 × 3. The 

tangent space of the similarity transformation can then be defined by a set of 7 parameters:

b = txtytzrxryrz log s T (3)

The b vector is an equivalent Euclidean space representation of the similarity 

transformation. Hence, any similarity transformation can be written as an exponential 

mapping of its orthogonal basis decomposition:

Han et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2021 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T = exp ∑
i = 1

7
[b]iBi (4a)

B1 1, 4 = B2 2, 4 = B3 3, 4 = 1,
B4 3, 2 = B5 1, 3 = B6 2, 1 = 1,
B4 2, 3 = B5 3, 1 = B6 1, 2 = − 1,
B7 1, 1 = B7 2, 2 = B7 3, 3 = 1,  otherwise  0

(4b)

where [b]i denotes the ith component of b, and [B]i,j denotes the ith column and jth row of 

B. The orthogonal basis B shares the same form as the matrices in the exponential operation 

in equation (2). Given two similarity transformations T1 and T2, the distance D between 

the two along the manifold is denoted as the geodesic distance and can be computed in the 

tangent space via logarithmic mapping:

D T1, T2 = ln T1
−1T2 (5)

where ln() is the inverse function of equation (4a) that converts a transformation to a Lie 

group b vector. Equation (5) defines a distance metric of the similarity transformation that 

forms the basis of mean and variance computation required for PGA, which is equivalent 

to performing PCA on the b vectors and converting to the Lie group space via exponential 

mapping. The result of the PGA is referred to as the SPM.

To create a SPM given a dataset of N atlas members, each with L objects, the dataset is 

first normalized by globally aligning the members to a common reference frame using the 

Procrustes method. The pose of each object instance Sn
(l), n ∈ [1, N], l ∈ [1, L] with respect 

to the mean pose—i.e. the local pose difference—is then:

Tn
(l) = arg min

T
 DP

2 Sn
(l), T S(l)

(6)

where DP
2  is the squared Procrustes metric after similarity alignment, and S(l) is the 

mean shape of object l. By converting the poses into the Euclidean space parameters bn
l , 

concatenating the L poses into a column vector ∈ ℝ7L, and concatenating N pose vectors 

into a matrix ∈ ℝ7L × N, the PGA results in:

T (l) = exp ∑
i = 1

7
b + PSPMvSPM l + iBi (7)

where b ∈ ℝ7L is the mean pose vector, PSPM ∈ ℝ7L × (N − 1) is the principal component 

matrix and vSPM ∈ ℝN − 1 is a weight vector describing the populational pose variation. 

Figure 2 shows the first four modes of pose variation in the pelvis SPM, with the ±3λ 
standard deviation of the pose model shown in yellow and green, respectively. The first 
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mode represents the superior-inferior shift of the sacrum with respect to the innominate 

bones; the second mode represents rotational pose change in the axial plane, similar to 

the open-book flexion of the pelvis; the third mode represents rotational pose change in 

the sagittal plane (with the sacrum showing more rotational variation than the innominate 

bones); and the fourth mode represents the rotational change of the innominate bones in the 

coronal plane with respect to the sacrum.

In estimation of the target reduction—for example, the desired pose of the left innominate 

bone following dislocation—the poses bO of observed undislocated bones SO (the sacrum 

and right innominate defined by ASM segmentation) can be fitted to the SPM to infer 

the unknown pose bX of the dislocated bone SX before dislocation (left innominate) using 

incomplete PCA (Vidal et al 2016):

v = arg min
v

bO − [b]O − PSPM Ov 2
(8a)

bX = [b]X + PSPM Xv (8b)

where O and X are the indices of the undislocated and dislocated bones, respectively. The 

estimated SPM weight vector v in equation (8a) was solved using trust region gradient-based 

optimization (Steihaug 1983), and the target pose after reduction of the dislocated bone was 

computed through exponential mapping TX = exp ∑i = 1
7 bX iBi  as in equation (4a).

The SPM solution does not account for local shape variations of the pelvis and could result 

in overlap at the SI and PS joint spaces. A refinement step was therefore incorporated by 

imposing a collision constraint on opposing joint surfaces obtained from annotations in the 

SSM: the surface normals over the joint surfaces were computed, and a ray-tracing collision 

detection (Hermann et al 2008) was performed between opposing surfaces. Transformations 

resulting in overlap between opposing surfaces were refined locally by the smallest 3D 

translation Drefine to the dislocated bone along the direction of the surface normal. The final 

target pose of the dislocated bone with respect to the mean pose was the composition of the 

pose from the SPM and the collision constraint refinement: Ttarget = DrefineTX. The method 

without the collision refinement is termed SPM, and the method with the collision constraint 

is termed SPMCC.

2.2. Multi-body 3D–2D registration

2.2.1. First-stage registration: resolving one bone component to the system 
geometry—In the first stage of the registration process, the pose of one bone component 

is resolved with respect to the x-ray imaging system geometry. For registration to multiple 

fluoroscopic images, the system geometry associated with each image can be obtained via 

separate registration to each image. The system geometry is parametrized by the projection 

matrix H, which characterizes the projective transform and can be decomposed into 9 

degrees of freedom (DoF) describing the intrinsics (source position Ts = [Ts,x, Ts,y, Ts,z]T 

and extrinsics (detector position Td = [Td,x, Td,y, Td,z]T and 3D rotation of the detector Rd 

=[Rd,x, Rd,y, Rd,z]T). The projection matrix can be expressed as:
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H =
Ts, z 0 Ts, x 0

0 Ts, z Ts, y 0
0 0 1 0

R3 × 3 Rd, x, Rd, y, Rd, z

0 0 0

Td, x
Td, y
Td, z

1

(9)

such that any voxel in the 3D domain can be forward projected to the detector plane by 

multiplying its homogenous coordinates by . For a calibrated x-ray system such as a C-arm 

for which the projection matrix H is known, the pose of one bone with respect to the system 

can be simplified to a 6 DoF transformation, T, containing only the extrinsics (the second 

term in equation (9)).

Following the notion of ‘self-calibration’ described in Ouadah et al (2016), Uneri et al 
(2017), the first stage registers a single bone with salient image features (e.g. the left or 

right innominate bone) to a single 2D projection. For forward projection of the DRR, the 

single bone ASM segmentation surface was voxelized to a binary volume and each nonzero 

voxel is filled with its corresponding attenuation coefficients from the preoperative CT. 

DRRs were computed via linear forward projection of the bone volume. Gradient orientation 

(GO) was used as the similarity metric between the DRR and projection image, which was 

previously shown to be robust in a variety of clinical scenarios, including cases of content 

mismatch (e.g. surgical instruments in the projection image but absent from the 3D model 

(De Silva et al 2016)):

GO I1, I2 = 1
max N, NLB

∑
i ∈ Ω: ∇I1(i) > t1 ∩ ∇I2 > t2

2 − ln ψi + 1
2 (10)

where ∇ denotes the gradient operator, ψi denotes the angle between gradient vectors ∇I1 

(i) and ∇I2 (i) at pixel location i, and N and NLB denote the number of evaluated pixels 

and the lower bound (half of the total pixels in the radiograph), respectively. Only pixels 

with gradient magnitude exceeding the threshold values t1 and t2 (set as the median gradient 

magnitude of I1 and I2) are evaluated. The first stage registration solves for either H (for a 9 

DoF system, such as a mobile radiography system, equation 11(a)) or T (for a 6 DoF system 

such as a calibrated mobile C-arm, equation 11(b)) by maximizing GO:

H = arg max
H

GO R, ∫
H

S(l)d r H (11a)

T = arg max
T

GO R, ∫
H

T S(l) d r H (11b)

where r H is the ray from the x-ray source position along the projection matrix direction, 

and the integral represents the DRR computed by linear forward projection of the bone 

component.
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2.2.2. Second-stage registration: solving inter-body poses—A second stage 

registration resolves the L inter-body poses parametrized by 6 × (L − 1) DoF rigid 

transformations. Similar to section 2.2.1, multi-body 3D models S(l) were voxelized from 

ASM segmentations with attenuation coefficients from CT. DRRs were computed as the 

summation of the linear forward projection of the multi-body 3D models via the resolved 

system projection matrix Ĥ, and the image similarity metric GO was measured between the 

DRRs and the radiographs R. The multi-body 3D–2D registration solves for the set of rigid 6 

DoF transformations T 3D2D
(l)

 of the 3D models that maximizes the summation of GO from 

K radiographs:

T 3D2D
(l) = arg  max

T (l)
∑

k = 1

K
GO Rk, ∫

H
∑

l
T l S(l) d r Hk (12)

where K is the total number of fluoroscopic images used for registration and can be as few 

as 1. Rk is the kth fluoroscopic image, and Ĥk is the associated system projection matrix.

Equation (12) was solved using covariance matrix adaption evolution strategy (CMA-ES) 

optimization, with the same multi-resolution pyramid as in the first-stage registration. The 

3D–2D registration serves as an image-based tracking method of the dislocated bone(s) 

T3D2D,X with respect to the observed undislocated bone(s) T3D2D,O. The target reduction 

pose computed in section 2.1.2 can thus be transformed into the intraoperative coordinate 

frame as T3D2D,O Ttarget and forward projected onto the radiograph for 2D augmented 

guidance ∫
H

T3D2D, OTtarget SX d r H, as illustrated in figure 3(b). In addition, the residual 

transformation required to reduce the dislocated bone from the current location to the 

target can be computed as Tres = T3D2D, OTtargetT3D2D, X
−1 . As shown in figure 3(c), such 

information can be used for 3D visualization of the current reduction with respect to the 

preoperative target reduction. The proposed multibody 3D–2D registration therefore can 

provide both 2D fluoroscopy augmentation and 3D navigation using intraoperative 2D 

images alone.

Equations (11) and (12) were solved using the CMA-ES optimization algorithm (Hansen 

et al 2003) using a two-stage multi-resolution pyramid with image downsampling factor of 

[4×, 2×], a population size of [100, 100], and initial standard deviation σ of [4, 1] mm and 

[4, 1]°. The robustness of CMA-ES generally improves by increasing the population size to 

more densely sample the search space at the cost of performing more function evaluations 

(Otake et al 2013). A population size of 100 was empirically determined to yield robust 

3D–2D registration without severe compromise in computation time. An excessively large 

value of σ results in large search space that decreases robustness and requires an increased 

sampling population, whereas setting σ to a value that is too small inhibits convergence. The 

initial setting of σ = 4 {mm, °} at the coarser resolution (4× downsampling) represents an 

initial search range of ~±8 {mm, °} according to Gaussian distribution and was found to be 

sufficient for this work. The value of σ is reduced to finer scale σ = 1 {mm, °} at the latter 

stage (2× downsampling) to achieve local refinement.

Han et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2021 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Experiments

2.3.1. Experimental comparison: alternative pose estimation methods—Two 

other pose estimation methods were implemented and experimentally tested as a basis of 

comparison to the SPM approach: (1) treating the pelvic SSM as a single, rigid object 

(cf, L separate rigid components); and (2) based on the assumption of pelvic symmetry 

about the sagittal plane. Both alternative methods used triangular mesh surfaces from ASM 

segmentation. In the first, an SSM of the pelvis was constructed as a single object as in 

section 2.1.1, such that S = S + PSSMvSSM. The full pelvis SSM couples the shape and pose 

variations and hence can be used to estimate shape and pose simultaneously. After ASM 

segmentation of the observed undislocated bones SO, the vertices of the target bone surface 

SX can be estimated in a manner similar to equation (8):

v = arg min
v

SO − [S]O − PSSM Ov 2
(13a)

SX = [S]X + PSSM Xv (13b)

The target pose of the dislocated bone can be computed by Procrustes rigid alignment of the 

mean shape to the target shape T target = arg min
T

D2 T [S]X , SX . The method is referred to as 

‘single-pelvis SSM,’ or SSMsingle for short.

In the second method, the target pose of the dislocated innominate bone was estimated as the 

mirrored pose of the undislocated contralateral side reflected about the plane of symmetry 

defined by the sacral midline. The transformation was solved using the rigid-body method of 

(Combes et al 2008) using the vertices point cloud of the ASM sacrum segmentation. The 

method is referred to as ‘contralateral mirroring,’ or CM in short.

2.3.2. Simulation study—Preoperative estimation of the target reduction (section 

2.1) and intraoperative multi-body 3D–2D registration (section 2.2) were evaluated in a 

simulation study involving a leave-one-out cross-validation of the atlas (N = 40). For each 

atlas member, the corresponding CT image and pelvic bone segmentations were used to 

simulate pelvic dislocations. A range of dislocations Tdisl were simulated, including PS 

dislocation, SI joint dislocation, and combinations of the two following dislocation patterns 

from case studies reported in Mulhall et al (2002), Çıçek et al (2015), with dislocation 

magnitude uniformly distributed from 0 to 20 mm and 0°–10°. Pure PS dislocation 

corresponds to a small and clinically insignificant disruption of the SI joint, which is not 

treated surgically and was not addressed in this paper. The upper limit of the simulated 

dislocation was based on maximum clinical measurements (Zhang et al 2009, Kim et 
al 2016). Dislocations that resulted in collision between bones were removed, and new 

simulations were generated. Gap regions left by bone dislocation were infilled by linear 

interpolation of adjacent soft-tissue regions. The remaining 39 members were used to 

construct the SSM and SPM for segmentation and estimation of the target reduction.
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The ASM segmentation accuracy was quantified in terms of the Dice Coefficient and 

the surface segmentation root mean square deviation (RMSD) between vertices from the 

segmentation and ground truth (defined by manual segmentation in the pelvis atlas with 

intra-observer variability of 0.93 ± 0.01 Dice Coefficient (Han et al 2019)). The accuracy 

of the target reduction pose was quantified by the error between the simulated dislocation 

and the target pose: εr = Tdisl
−1 Ttarget. The reduction error is a rigid transformation that was 

analyzed in terms of constituent translational and rotational errors. The alternative pose 

estimation methods SSMsingle and CM were also evaluated.

To quantify the accuracy of multi-body 3D–2D registration, multiple radiographs were 

simulated via DRR computation with the dislocation at intermediate stages of reduction, 

Tdisl′ , where Tdisl′ > Tdisl . The radiographs were simulated for standard pelvic views 

(AP, lateral, inlet, and oblique) using the projection geometry of a mobile C-arm (source-

axis distance = 600 mm, source-detector distance = 1100 mm). The ASM segmentation 

models were registered to two such radiographs, using the two-stage registration with 6 

DoF projection geometry of the C-arm. The accuracy of 3D–2D registration was measured 

in terms of the difference between the intermediate dislocation and the registration result: 

ε3D2D = Tdisl
′ − 1T3D2D, from which the translational error (x, y, z) can be extracted. The x 

and z coordinates define the in-plane horizontal and vertical axes parallel to the detector 

edge, respectively, and y defines their cross product (out-of-plane). A total of 120 simulated 

registrations were performed (3 for each of the 40 atlas members).

The multi-body 3D–2D registration was initialized by the poses from preoperative CT and 

typical x-ray system geometry (subject at isocenter) to provide coarse overlap between the 

radiographs and the DRRs at the start of the registration. Because initialization can differ 

strongly from the poses in intraoperative radiographs (e.g. due to surgical reduction, patient 

motion, or changes in setup geometry), we investigated the sensitivity of the algorithm to 

initialization error by evaluating the accuracy (ε3D2D) of multi-body 3D–2D registration 

with the initialization in translation (x, y, z) perturbed by ±200 mm and in rotation (rx, ry, rz) 

perturbed by ± 60°.

2.3.3. Phantom study—The performance of target reduction and multi-body 3D–2D 

registration was also evaluated in a phantom study using a custom Sawbones pelvis phantom 

(Sawbones, Vashon Island WA) with a radiopaque cortical surface. As shown in figures 4(a) 

and (b), a passive mechanical arm was attached to the left innominate bone to orient the 

phantom at different dislocation configurations. Ten metal BBs were affixed to the pelvic 

surface for evaluation of target registration error (TRE). The phantom was submerged in a 

water-filled container (comparable size to a medium human abdomen) to emulate soft-tissue 

attenuation of the body, giving realistic levels of attenuation and x-ray scatter for medium 

adult body habitus (Seltzer 1996). The proposed method focuses on bone registration, and 

soft-tissue gradients are filtered (thresholded) during registration (by equation (10)). A 

heterogeneous soft-tissue density distribution therefore has little or no contribution to the 

optimization, and the uniform water phantom was sufficient for the current study. With 

the left innominate bone displaced at moderate and severe magnitude (~10 mm and ~15 

mm, respectively), two preoperative CT scans were acquired (Precision CT, Canon Medical 
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Systems, Tustin CA) and reconstructed at 0.39 × 0.39 × 3 mm3 voxel size with a volume size 

of 1024 × 1024 × 100 voxels. ASM segmentation was first applied to the preoperative CT 

images to define the three pelvic bone segmentations and poses, and target reduction poses 

were computed using SPMCC.

In physical experiments to study intraoperative registration, the left innominate bone 

was moved to three intermediate poses between full dislocation and complete reduction, 

and radiographs were acquired on a mobile C-Arm (Cios Spin, Siemens Healthineers, 

Erlangen, Germany) at 16 gantry orbital and tilt angle combinations (annotated in figure 

4(c)): (0, 0), (0,±10), (0,±20), (±15, 0), (±30, 0), (±30,±20), (±45, 0), (90, 0)°. The 

radiographs were acquired at 120 kV, 4.1 mA, and 50 μGy/frame, a dose rate typical in 

conventional fluoroscopy (6–28 μGy/frame for low-dose fluoroscopy and 56–110 μGy/frame 

for high-dose fluoroscopy (Mahesh 2001)). CBCT images were also acquired at the three 

intermediate poses for truth definition of BB targets. Multi-body 3D–2D registrations were 

computed with 6 DoF system projection geometry between the segmentation models and 40 

combinations of two radiographic views, with the BB targets masked to remove the bias in 

3D–2D registration. The accuracy of registration was measured in terms of 3D TRE, defined 

as the distance of metal BB between their intraoperative locations (defined by CBCT) and 

their registered locations from MDCT to radiographs.

The effect of fluoroscopy dose on 3D–2D registration accuracy was investigated for 

potential dose reduction. The radiographs in the study described above, acquired at 50 

μGy/frame nominal dose, were tested for baseline performance. Radiographs accurately 

reflecting increased noise at lower dose settings that are not achievable with the current 

C-Arm protocols were simulated as in (Wang et al 2014) by injecting corresponding levels 

of noise to the nominal dose radiographs. The noise injection includes accurate models 

of quantum noise, system blur (correlation), and detector electronics noise, and has been 

validated in both noise magnitudes and noise-power spectrum (Wang et al 2014). Five 

levels of lower dose radiographs (down to 0.5 μGy/frame, 1% of the nominal dose) were 

simulated. In each dose level, the same combinations of two radiographic views were used 

for registration as in the baseline study, and the dependence of registration accuracy on 

fluoroscopy dose was measured in terms of TRE.

2.3.4. Reader study—A reader study was conducted with a fellowship-trained 

orthopaedic surgeon to qualitatively assess the degree of clinical acceptability of target 

pose estimation from the proposed SPMCC method with respect to a healthy pelvis. The 

surgeon was presented with an experimental group of six cases that included four from the 

simulation study and two from the phantom study. The six cases were selected to present 

two cases of ‘mild’ (~5 mm), ‘moderate’ (~10 mm), and ‘severe’ (~15 mm) levels of 

dislocation. For each case (both simulation and phantom), the target reduction pose was 

computed using SPMCC, and a CT image was simulated by transforming bones into the 

target pose and infilling soft-tissue intensities to the gaps from the reduction.

As a control group and to judge intra-observer reproducibility, six healthy cases without 

dislocation (drawn from the simulation study) were also presented. The reader study thus 

included 18 total cases (six cases of dislocation, six cases following SPMCC, and six healthy 
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control cases). Each case was presented to the surgeon as both a CT image (tri-planar views 

with adjustable window-level, magnification, slice scrolling, etc) and a 3D bone surface 

rendering (with tilt, roll, and magnification). The reading order was randomized, and the 

surgeon was asked to evaluate the severity of dislocation into the same three categories 

(‘mild,’ ‘moderate,’ and ‘severe’).

2.3.5. Retrospective clinical feasibility study—The proposed method was further 

quantitatively assessed in an IRB-approved retrospective clinical study of images acquired 

for a patient undergoing pelvic reduction surgery. The patient exhibited dislocation of 

the left innominate bone, including both the SI joint and PS (‘open book’ dislocation). 

Preoperative CT was acquired (Somatom Definition Flash, Siemens Healthineers, Erlangen 

Germany) and reconstructed at 0.74 × 0.74 × 3 mm3 voxel size and 512 × 512 × 260 voxels. 

Per standard clinical workflow, two preoperative and two intraoperative radiographs (AP and 

inlet views) were acquired on a mobile radiography system (DRX-Revolution, Carestream 

Health, Rochester, NY) to visualize the pelvic bony anatomy. Thirteen unambiguous 

anatomical landmarks were identified in the preoperative CT and radiographs. Single-view, 

two-stage 3D–2D registration was performed for each radiograph according to the 9 DoF 

optimization of section 2.2, and registration accuracy was quantified in terms of the 

projection distance error (PDE)—i.e. the distance (on the detector plane) between the 

registered landmarks projected from 3D segmentations and the corresponding landmarks 

on the radiographs.

The images from the mobile radiography system had a field of view (FOV) of 350 × 420 

mm2 at the detector plane with magnification factor slightly above 1, covering the entire 

pelvis from the iliac crest to the inferior aspect of the ischium with roughly the same 

FOV at the anatomy. In many intraoperative settings, however, radiographs are acquired 

with limited FOV to reduce scatter and dose-area product. To study the performance of the 

registration algorithm in such scenarios, radiographs were cropped to sizes ranging from 

340 × 340 mm2 FOV down to 150 × 150 mm2 centered randomly within the original FOV 

such that at least 20% of at least two bones was contained in the cropped image. FOV 

dimensions are at the image plane—e.g. 350 × 430 mm2 for a common full-field (14″ × 

17″) digital radiograph or 300 × 300 mm2 maximum FOV for recent FPD mobile C-arms, 

as used for the simulation and phantom study. With a magnification factor ~1.8, such mobile 

C-arms have FOV around 180–220 mm near isocenter. FOV size smaller than 150 mm was 

not studied due to violation of the requirement of multiple bones present in the cropped 

radiograph. Single-view, two-stage 3D–2D registration was performed using 10 randomly 

cropped images at each FOV size, and the sensitivity of 3D–2D registration to FOV was 

measured in terms of PDE over 10 random trials.

3. Results

3.1. Simulation study

The leave-one-out cross-validation of ASM bone surface segmentation among the 40 

pelves showed segmentation surface RMSD of median 1.8 mm (0.2 mm IQR) and overall 

Dice Coefficient of median 0.95 (0.09 IQR). Large errors were primarily in regions of 
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high curvature of the cortical surface, not necessarily associated with the dislocation 

per se. The accuracy was consistent with results demonstrated in (Han et al 2019) for 

ASM segmentation of intact pelvis CT images and demonstrated the feasibility of ASM 

segmentation in CT images of dislocated pelves.

As shown in figure 5, the accuracy of the target reduction pose was evaluated by comparison 

of four methods: the single-pelvis SSM (SSMsingle), contralateral mirroring (CM), the SPM 

method without collision constraint (SPM), and the SPM method with collision constraint 

(SPMCC). The SSMsingle method exhibited translational errors of median 7.7 mm (3.5 mm 

IQR) and rotational errors of 5.5° (4.0° IQR)—comparable to the scale of dislocations 

themselves. Because the SSMsingle method mixes shape and pose variations into a single 

PCA, it introduces a basic inaccuracy in the statistical model. Interestingly, the CM method 

improved registration only slightly, achieving translational error of 4.6 mm (2.4 mm IQR) 

and rotational error of 4.8° (2.8° IQR). This finding suggests limits to the assumption of 

contralateral symmetry—for example, pelvic asymmetry associated with the dominant leg. 

Moreover, the CM method is not applicable to cases of bilateral dislocation. No significant 

direction of error was identified in the SSMsingle or CM methods.

The SPM approach achieved translational error of 3.8 mm (1.7 mm IQR) and rotational 

error of 2.2° (1.4° IQR), and the SPMCC method achieved the lowest overall translational 

error of 2.3 mm (1.4 mm IQR) and rotational error of 2.1° (1.3° IQR). Both of the SPM 

methods (with or without collision constraint) provided more accurate estimation of target 

reduction pose compared to a conventional single rigid-body model (SSMsingle) or the model 

invoking the assumption of contralateral symmetry (CM) (p ≪ 0.05 using paired student 

t-test). The methods also demonstrated accurate estimation of the target pose for a wide 

range of dislocation patterns and magnitudes due to the statistical variation intrinsic to the 

population-based pose distribution. Further examination of SPM and SPMCC showed the 

latter to yield better performance in translation (p ≪ 0.01 using paired student t-test) but not 

in rotation—especially in the direction orthogonal to the SI joint and PS surfaces for which 

the refinement was aplied. With the joint space collision constraint, SPMCC improved target 

pose estimation along the direction normal to the joint space by pushing the target pose away 

from collision (empirically up to ~1.5 mm) without globally affecting the accuracy of the 

SPM.

Figure 6 summarizes the accuracy of multi-body 3D–2D registration in the simulation study. 

Registration performance was evaluated in terms of the translational component of 6 DoF 

transformations T3D2D
(l) , l = 1, 2, 3. Example AP and oblique (orbit 30° and tilt −20°) 

radiographs are shown with SI and PS dislocation magnitude of ~10 mm and ~5° (near 

the average magnitude in simulation studies). In figure 6(b), DRR Canny edges of the 

left innominate after the first-stage registration are overlaid on the radiographs, showing 

accurate pose estimation. In figure 6(c), DRR Canny edges of all three pelvic bones are 

overlaid on the radiographs after the second-stage registration, showing good alignment to 

the anatomy and accurate inter-body pose estimation. The 3D–2D registration achieved 0.3 

mm (0.2 mm IQR) in-plane and 0.3 mm (0.2 mm IQR) out-of-plane translational error, 

demonstrating accurate and robust performance over a wide range of test cases despite the 
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presence of potentially confounding image features (e.g. the femurs and contrast-enhanced 

bowel) that are present in the radiographs but not in the 3D models. SPMCC target reduction 

estimation and 3D–2D registration guidance yielded median error of 2.3 mm and 0.3 mm in 

the simulation study, respectively. The overall reduction error, combining the two sources of 

error is well below the acceptable range (<4 mm) suggested in Smith et al (2005), Shillito et 
al (2014).

The capture range of the registration algorithm is characterized in figure 7 in terms of the 

translation error measured as a function of initialization error. For each case, 0 mm on the 

horizontal axis represents initializing the 3D model at the ground truth location, and the 

dashed horizontal line indicates 4 mm translational error. In this work, the capture range 

was defined as the range of initialization error in which registration error was below 4 mm 

(consistent with residual errors above which long-term prognosis of complications is poor 

(Smith et al 2005, Shillito et al 2014)). The in-plane capture range (x, z) of registration was 

measured to be around ±50 mm, beyond which the method did not reliably converge to the 

correct solution due to image gradients moving out of the radiographic scene. In the out-of-

plane direction (related to the magnification of the DRRs), however, the capture range was 

even more robust, yielding ±120 mm. A possible explanation of the robustness is that the 

overall alignment of the multi-object DRRs to the radiographic anatomy is maintained for a 

wider range of displacement in the out-of-plane direction (i.e. salient image gradients do not 

leave the FOV). The plateaus in y and z directions as shown in figures 7(b) and (c) were due 

to the absence of anatomical structures in the direction of initialization error, which allowed 

the registration to converge to a similar solution. As shown in figures 7(d)–(f) for rotations, 

the in-plane rotation capture range was shown to be significantly larger (±50°) compared 

to the out-of-plane rotation capture ranges (±30°). One reason for narrower out-of-plane 

rotational capture range is that out-of-plane rotations correpond to shallower dimensions of 

the search space that are more susceptible to noise and local minima. Considering the size 

of the pelvis, the result suggested a high degree of robustness to initialization error in all 

three directions and the potential feasibility for clinical application without time-consuming 

manual initialization.

3.2. Phantom study

ASM segmentation of MDCT images of the phantom achieved surface RMSD of median 

2.5 mm and overall Dice Coefficient of 0.89. The accuracy was slightly worse than that 

in the simulation study, presumably due to differences between the (somewhat unrealistic, 

idealized) shape of the simple phantom compared to that of real human pelves. A lack of 

heterogeneous interior bone gradients in the phantom may also contribute to a decrease in 

accuracy. Nonetheless, the segmented surfaces were sufficiently accurate for pose definition 

in SPM target pose estimation.

Figure 8 summarizes the accuracy of multi-body 3D–2D registration to two radiographic 

views in the phantom study. Figures 8(a) and (b) shows example AP and oblique (orbital 

30° and tilt 10°) radiographs with moderate dislocation (~12 mm) of the left innominate 

bone. DRR Canny edges (yellow) of the three bones overlaid onto the radiograph show close 

alignment to the anatomy. TRE after registration is plotted in figure 8(c), with median of 1.8 
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mm (0.8 mm IQR) (in-plane) and 1.6 mm (2.1 mm IQR) (out-of-plane). The out-of-plane 

IQR was higher due to limited depth information for some combinations of radiographic 

views (e.g. (0, 0) and (0, 10) views). In addition, errors in 3D bone model definition arising 

from ASM segmentation errors could result in local minima, especially in the out-of-plane 

direction for cases of limited depth resolution. The overall TRE exhibited median of 2.5 mm 

(1.5 mm IQR), within reasonable accuracy for orthopaedic surgical applications (Smith et al 
2005, Shillito et al 2014).

The sensitivity of multi-body 3D–2D registration to simulated image noise (dose) is 

summarized in figure 9. Figures 9(a)–(c) shows radiographs at the nominal 50 μGy/frame, 5 

μGy/frame and 0.5 μGy/frame dose level, respectively. DRR Canny edges after registration 

overlaid on the radiographs show accurate registration at both 50 μGy/frame and 5 μGy/

frame, which is consistent with the TRE plot in figure 9(d). A fairly weak dependence was 

observed with dose down to ~5 μGy/frame, below which TRE increases sharply as quantum 

noise dominates the image. Registration accuracy with TRE < 4 mm (horizontal dashed line) 

at doses as low as 5 μGy/frame suggests the possibility of reducing fluoroscopy dose while 

maintaining guidance accuracy.

3.3. Reader study

Qualitative evaluation of the clinical acceptability of target reduction by an orthopaedic 

surgeon is summarized in table 1. In the experimental group, dislocations were reliably 

detected by the surgeon, who judged (2/6) cases as ‘mild’, (2/6) as ‘moderate’, and (2/6) 

as ‘severe’, increasing in proportion to the dislocation magnitude. In the 6 corresponding 

cases after SPMCC reduction, (5/6) were assessed as healthy and (1/6) was rated as ‘mild’ 

dislocation; all cases were judged to have improved in comparison to the initial, dislocated 

state. The experimental finding was comparable to the control group (non-dislocated pelves), 

in which (5/6) healthy cases were judged to be healthy, and (1/6) was rated as ‘mild’ 

dislocation. The study suggests that the method estimates the target reduction pose at a level 

that is clinically indistinguishable (within intra-observer variability) from a natural, healthy 

pelvis.

The case that was rated as ‘mild’ in the experimental reduced group and the case that was 

rated as ‘mild’ in the control group are further illustrated in figures 10(a) and (b). Figure 

10(a) shows the experimental reduced case with a slight mismatch in height between the left 

and right pubis and a slightly narrow left SI joint. Even in the healthy control case, as shown 

in figure 10(b), a slight mismatch of the left and right pubis (the left side slightly higher 

than the right side) resulted in a misclassification by the surgeon. This finding suggests that 

misclassification of the dislocation could result from minor misalignment of the joints that 

are not clinically significant.

3.4. Retrospective clinical feasibility study

Clinical feasibility was further evaluated in a case study involving a subject presenting with 

‘open book’ separation of the PS and disruption of the left SI joint, as shown in the 3D 

rendering of the preoperative CT in figure 11(a). ASM segmentation of the preoperative CT 

achieved segmentation surface RMSD of median 1.4 mm and overall Dice Coefficient of 
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0.97, comparable to the result from the simulation study. Two radiographs (AP and inlet) 

were acquired immediately prior to reduction as shown in figures 11(b) and (c), and a 9 DoF 

multi-body 3D–2D registration was computed (9 DoF, since unlike the mobile C-arm, the 

mobile radiography system allows free variation of SDD and detector angulation). In both 

cases, DRR Canny edges of all three bones show reasonable alignment with the anatomy 

as depicted in the radiograph. The estimation of the target reduction is overlaid on the 

radiographs in green to illustrate the reduction needed to restore the left innominate bone to 

the correct pose.

Two intraoperative radiographs (AP and inlet) were subsequently acquired in the course of 

surgical reduction as shown in figures 11(e) and (f). Single-view, two-stage, multi-body, 9 

DoF registrations were performed, and each demonstrates close alignment of anatomy after 

registration (evident in Canny edge overlay) despite the presence of surgical instrumentation 

in the image. The overall registration accuracy in the four images yielded PDE 3.1 mm 

(1.0 mm IQR) at the detector plane. A substantial component of this error is attributed to 

truth definition—i.e. the ability to define consistent, corresponding landmarks between the 

CT and radiographs, which exhibited ~1.5 mm intra-subject variability. Figures 11(e) and 

(f) shows the target reduction overlaid in green, providing a guide to further refinement of 

the reduction. The residual reduction is similarly evident in the orientation of the PS in the 

3D-rendered CT image of figure 11(d).

Figure 12 summarizes the sensitivity of multi-body 3D–2D registration to the size of the 

radiograph FOV. Figure 12(a) shows example FOVs of size (190 × 190) mm2 with 10 

randomly cropped boundaries overlaid (left subfigure). The Canny edges of registered DRRs 

from 10 trials are also overlaid (right subfigure). Over the range of FOV studied, accurate 

edge alignment was achieved within the FOV. However, the edge alignment outside the FOV 

could not be guaranteed, and the overall robustness of registration degraded as FOV size 

decreased, primarily due to decreased feature content in the images used for registration. 

The finding is evident in the Canny edge overlays in the right subfigures of figure 12(a): 

the PS (present in all cropped images) were well registered in all cases, whereas the right 

iliac crest (not present in every cropped image) was not accurately registered in all 10 trials. 

Figure 12(b) quantifies the observation in terms of PDE, showing a weak dependence on 

FOV above 170 mm (median PDE < 4 mm and IQR < 2 mm). For FOV smaller than 

170 mm, PDE and variability increased sharply. Common intraoperative mobile C-arms, as 

used in the simulation and phantom study, have FOV ~300 × 300 mm2 (at the detector) 

corresponding to ~180–220 mm in the patient, as shown in the gray zone in figure 12(b). 

Thus, the FOV of such systems is near the minimum FOV requirement for accurate 3D–2D 

registration. Such findings support application of the method in scenarios with reduced 

FOV down to ~170 mm—e.g. fluoroscopy systems with limited FOV and/or collimation 

minimized to an area of interest to reduce dose and scatter—provided that enough salient 

anatomical features remain in the FOV to drive registration.

Computation time is another import criterion for intraoperative guidance. Fluoroscopy-

guided orthopaedic surgery often relies on step-and-shoot workflow in which surgeons 

acquire a single fluoroscopic view that is used to assess anatomy before acquiring a 

subsequent view (cf continuous fluoroscopy). Table 2 summarizes computation times for 
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each step of the preoperative and intraoperative process. Preoperative runtime (ASM 

segmentation and reduction pose estimation) was ~4 min in total, which does not bear 

on intraoperative workflow—a planning step conducted prior to the case. Intraoperative 

runtime includes first and second stage of 3D–2D registration and augmentation/overlay, 

with total runtime of ~2 min for the first fluoroscopic image acquired in the procedure. For 

subsequent registrations, the first stage registration can be omitted, reducing runtime to ~40 

s. The reported runtime correspond to a basic research implementation on a single GPU and 

further optimization and acceleration is anticipated to bring runtime suitable for workflow 

requirement.

4. Discussion and conclusion

An algorithm for automatic estimation of target reduction pose and 3D–2D guidance of 

pelvic reduction surgery was reported. The method involves automatic segmentation of 

pelvic bones in preoperative CT using SSM, with experiments demonstrating segmentation 

accuracy of 1.4–1.8 mm (median surface RMSD) in the simulation and clinical feasibility 

studies. Estimation of the target reduction pose using the SPMCC method yielded ~2 mm 

translational and ~2° rotational error in the simulation study. The system solves a two-stage 

multi-body 3D–2D registration with or without knowledge of the x-ray system projection 

geometry (i.e. 6 or 9 DoF, respectively) to track multiple, semi-independently moving pelvic 

bones in intraoperative fluoroscopy/radiography. Registrations demonstrated sub-millimeter 

transformation error in both in-plane and out-of-plane directions in the simulation study. In 

the phantom study, 3D–2D registration achieved 2.5 mm overall TRE in the 3D coordinates 

of the patient, whereas in the clinical study, registration achieved 3.1 mm PDE at the 

detector plane. The system was also shown to be robust to initialization error (~±50 mm 

and ±120 mm capture range in- and out-of-plane, respectively), radiation dose (~one order 

of magnitude lower than the nominal dose of a fluoroscopic frame), and FOV size (down to 

~170 × 170 mm2).

The accuracy of the registration algorithm was found to be dependent in part on the 

accuracy of ASM segmentation. As reported in previous work (Han et al 2019), the ASM 

segmentation is susceptible to errors (up to ~4 mm surface RMSD) in high curvature regions 

of the pelvis, which could negatively affect downstream target pose estimation and 3D–2D 

registration. The effect was mitigated somewhat in the current work using 3D segmentation 

models with CT attenuation coefficient from the original CT within the segmented surfaces. 

More sophisticated segmentation algorithms, such as using hierarchical SSM (Cerrolaza et 
al 2012), graph-cut optimization (Seim et al 2008), or deep learning methods (Al Arif et 
al 2018) may improve segmentation accuracy and the overall accuracy of registration and 

target pose estimation.

In the current implementation of multi-body 3D–2D registration, the transformations among 

multiple bones was solved in parallel without accounting for the inter-body relationship. In 

some scenarios, such as LAT or oblique radiographic views depicting a complex overlap of 

3D shapes, misregistration could occur due to overlap of multiple bones in 3D. In addition, 

the DRR edges from one bone could be registered to the opposing joint surface of another 

bone due to the overall shape similarity in 2D. Future investigation could involve multi-body 
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collision constraints within the 3D–2D registration to confine the search space and improve 

robustness in registering to such difficult radiographic views.

The experiments in the current work are not without limitations. In the phantom study, 

a simple SawBones phantom was used without soft-tissue structures or bowel gas in the 

projection images. The water tank in which the phantom was submerged, however, did 

present attenuation comparable to medium body habitus, giving an appropriate exposure 

level and realistic magnitude of image noise. Increased error observed in the phantom study 

was likely due to the somewhat unrealistic correspondence of the Sawbones phantom to 

the natural shape and image texture of real human pelves. For example, the highest density 

gradient in the phantom was related to the radiopaque shell instead of a more realistic 

subperiosteal layer of cortical bone. A more realistic phantom (including natural bone as 

well as soft-tissue heterogeneities surrounding the pelvis) and/or cadaver studies are the 

subject of further investigation.

Moreover, while the clinical study involved only one subject as a case study and initial 

investigation of feasibility, the case included multiple image instances (both CT and 

radiographs) that presented numerous aspects pertinent to the method, including a large 

magnitude of dislocation and the presence of interventional tools in the radiographs 

(content mismatch between CT and radiographs). Therefore, the study was sufficient to 

demonstrate basic feasibility of the proposed method and provided a basis for preliminary 

investigation of dependence on FOV size. Instead of evaluating registration error in terms 

of 2D PDE, 3D evaluation of the intraoperative bone poses is the subject of future work 

in which intraoperative CT or CBCT is available. For evaluation of the method in a more 

comprehensive clinical dataset and application to fluoroscopy systems using an x-ray image 

intensifier, an additional image distortion correction (Soimu et al 2003, Gutírrez et al 2008) 

common is likely warranted.

The preoperative segmentation and estimation of target reduction pose were computed with 

a runtime of ~4 min, which is well within the requirements of preoperative workflow. 

The (intraoperative) multi-body 3D–2D registration required a runtime of ~1–2 min, 

depending on the availability of x-ray system geometry and initialization error. Practical 

implementation within the rapid workflow requirements of trauma surgery will require 

runtime acceleration, which could potentially be accomplished using a number of methods 

currently being developed. For example, ongoing work considers a cascade of optimizers, 

with (slower, more robust) derivative-free CMA-ES performed at coarse-resolution, and 

refining with a (faster) derivative-based optimization at finer resolution (Grupp et al 2019). 

Alternatively (or in combination), the voxelized 3D model image could be converted to 

a more compact volumetric tetrahedral mesh representation for more efficient forward 

projection and volume transformation computation.

Overall, the method for guidance of pelvic reduction demonstrated accurate and robust 

performance in a variety of scenarios in simulation, phantom, and a clinical study. The 

resulting target pose estimation and multi-body 3D–2D registration provides an accurate 

means of preoperative planning and 3D–2D guidance for fluoroscopically guided reduction 

of pelvic trauma—specifically, dislocation. The solution offers the potential for application 
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in mainstream trauma surgery, since it uses images already routinely acquired in current 

clinical workflow and does not introduce additional hardware, imaging, or tracking systems. 

The system has the potential to improve surgical accuracy (and hopefully the associated 

clinical outcomes) in treatment of pelvic trauma, reduce radiation dose associated with 

trial-and-error ‘fluoro hunting,’ and provide a basis for QA of the surgical product (i.e. 

quantitative assessment of bone reduction as achieved in the OR, compared to the SPM 

target reduction). Future work includes translation and validation of the method in a more 

comprehensive clinical dataset and generalization to other anatomical sites, such as hip 

and shoulder dislocation. In addition, ongoing work involves incorporating both pelvic 

dislocation and pelvic bone fracture into the proposed guidance framework (Han et al 2020).
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Figure 1. 
Flowchart for automatic multi-body planning and fluoroscopy guidance in reduction 

of pelvic dislocation. Preoperative registration steps are in the top branch (gray), and 

intraoperative steps are in the bottom branch (blue). The intraoperative steps involve a 

two-stage registration, with the first stage (solid dark blue) solving for one bone component 

to the x-ray system geometry and the second stage (dashed light blue) solving for inter-body 

poses.
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Figure 2. 
SPM of the pelvis. (a)–(d) The first four modes of variation (+3λ in yellow, −3λ in green) in 

pose of the sacrum and innominate bones.
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Figure 3. 
Multi-body 3D–2D registration and guidance. (a) AP fluoroscopic image of a pelvis with 

left innominate dislocation. The DRR Canny edges (yellow) computed from the left/right 

innominate bones and sacrum after registration overlaid on the fluoroscopic image show 

close alignment. (b) The fluoroscopic image is augmented with a projection (green) of the 

target pose of the dislocated innominate bone using the resulting 3D–2D registration to 

visualize the current state of the patient relative to the target pose (and possible need for 

further reduction). (c) 3D rendering of preoperative CT overlaid with the target pose (green) 

of the dislocated left innominate bone.
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Figure 4. 
Phantom study of pelvic dislocation. (a), (b) The phantom with left innominate bone 

dislocation controlled using a passive mechanical arm. Two types of dislocations were 

induced: (a) disruption of the PS and (b) disruption of the SI joint and PS. (c) The mobile C-

Arm used for fluoroscopic image acquisition at various orbital and tilt angles. The phantom 

is shown in-air, but experiments involved submersion in a water tank simulating medium 

body habitus.
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Figure 5. 
Target pose estimation error for four registration methods: using a single pelvis SSM 

(SSMsingle), contralateral mirror (CM), SPM without collision constraint (SPM), and SPM 

with collision constraint (SPMCC). (a) Translational error and (b) rotational error. Boxplots 

show the median (red horizontal line), IQR (rectangle), and full range superimposed with the 

distribution of (N = 40) individual sample points.
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Figure 6. 
Multi-body 3D–2D registration accuracy in the simulation study. (a) Example AP and 

oblique radiographs (orbit 30° and tilt −20°) with dislocation of the left innominate bone. 

(b) Yellow DRR Canny edges of the left innominate after first-stage registration overlaid on 

the radiograph, resolving its pose with respect to the x-ray system. (c) Canny edges of three 

pelvic bones after the second-stage registration overlaid onto the radiographs, resolving the 

poses of all three bones with respect to each other. (d) In-plane and out-of-plane translational 

error in the multi-body 3D–2D registration after two-stage registration.
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Figure 7. 
Capture range measurement characterizing the robustness of multi-body 3D–2D registration 

to initialization error in translations ((a) in-plane direction x, (b) in-plane direction z, and 

(c) out-of-plane direction y) as well as rotations ((d) in-plane direction rx, (e) out-of-plane 

direction rz, and (f) out-of-plane direction rx). The horizontal dashed line indicates 4 mm 

translational error, below which the capture range was defined.
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Figure 8. 
Multi-body 3D–2D registration in the phantom study with dislocation of the left innominate 

bone. (a), (b) Radiographs at two C-arm views with registered DRR Canny edge overlay. 

Cyan and yellow points mark the fiducials on the radiographs and projected via the DRRs, 

respectively. (c) In-plane and out-of-plane registration error from 3D–2D registration.
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Figure 9. 
3D–2D registration accuracy as a function of radiographic dose. (a) Radiographs at nominal 

dose of 50 μGy/frame, with yellow DRR Canny edges after registration. (b), (c) Simulated 

low dose radiographs at 5 μGy/frame (10% of nominal dose) and 0.5 μGy/frame (1% 

of nominal dose), respectively, with DRR Canny edges (yellow) after registration. (d) 

Registration accuracy (TRE) measured as a function of dose.

Han et al. Page 31

Phys Med Biol. Author manuscript; available in PMC 2021 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Example reader study cases. (a) 3D rendering of the case in the experimental reduced group 

that was rated by the surgeon as ‘mild’ dislocation. (b) 3D rendering of the case in the 

control group (healthy undislocated pelvis) that was also rated by the surgeon as ‘mild’ 

dislocation.
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Figure 11. 
Multi-body 3D–2D registration and target reduction pose in a clinical case study. (a) 3D 

rendering of preoperative CT, showing ‘open book’ dislocation at the PS and SI joint. 

Intraoperative AP (b) and inlet (c) radiographs acquired prior to reduction and overlaid with 

Canny edges of DRRs from three registered bones. The reduction target is overlaid in green, 

providing guidance for surgical reduction. Anatomical landmarks defined in the radiographs 

are labeled in cyan, and those projected from 3D models are shown in yellow. Images in (d–

f) show the progress of reduction, again overlaid with DRR Canny edges (yellow), reduction 

target (green), and anatomical landmarks.
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Figure 12. 
Effect of radiographic FOV on 3D–2D registration accuracy. (a) Preoperative inlet 

radiograph with 10 randomly cropped FOV boundaries at 190 × 190 mm2. The 10 cropped 

FOVs are shown as color boxes on the left, and registered DRR Canny edges from 10 

trials are overlaid on the right in the corresponding colors. (b) Registration accuracy (PDE) 

measured as a function of FOV size, with a range in FOV for the mobile C-arm used in the 

simulation and phantom study marked in gray.
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Table 1.

Evaluation of target reduction (and healthy subjects) by an orthopaedic trauma surgeon. The top 

row (experimental/dislocated) shows the surgeon’s assessment of dislocation severity. The second row 

(experimental/reduced) shows the surgeon’s assessment after reduction by an amount estimated by the 

proposed method, which was found to agree with the third row (control), which shows the surgeon’s 

assessment of dislocation in natural, healthy (non-dislocated) pelves.

Group Healthy Mild Moderate Severe

Experimental
Dislocated 0 2 2 2

Reduced 5 1 0 0

Control 5 1 0 0
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Table 2.

Computation time of the preoperative and intraoperative segmentation and registration steps.

Preoperative runtime (mean ± std) (s) Intraoperative runtime (mean ± std) (s)

ASM Segmentation 122.0 ± 5.7 3D–2D Registration: First Stage 78.6 ± 29.2

Pose Estimation 116.2 ± 10.5 3D–2D Registration: Second Stage 40.0 ± 11.5

Fluoroscopy Augmentation 0.2 ± 0.1
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